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Abstract

Purpose

Ellipsoid zone (EZ) and outer retinal integrity are strongly linked to visual prognosis, but

quantitative normative data is lacking. This study evaluates the EZ, outer retina, and inner

retina in eyes without macular disease across a wide age spectrum.

Methods

An IRB-approved study was performed for eyes without macular pathology undergoing

Spectral Domain Optical Coherence Tomography (SD-OCT) scans on the Cirrus HD-OCT

system (Carl Zeiss Meditec, Oberkochen, Germany). Scans were analyzed using a previ-

ously described automated EZ mapping tool with line-by-line manual verification. Segmen-

tation included internal limiting membrane (ILM), outer nuclear layer/Henle fiber layer

complex (ONL/HFL), EZ, and the retinal pigment epithelium (RPE). The output included

metrics for the inner retina (ILM-OPL/HFL), outer retina (ONL/HFL-RPE), EZ-RPE area and

volume, and en face EZ mapping. EZ-RPE attenuation on en face mapping was defined as

EZ-RPE thickness < 20 um, and total attenuation was 0 um. Imaging parameters were

assessed for the group and compared to age, sex, visual acuity and spherical equivalent.

Results

167 eyes from 167 subjects were included. Mean age was 49.7 years (range 10–84 years).

The mean foveal retinal thickness was 200.58 ± 19.22 um. Mean inner retinal thickness was

21.47 ± 13.60 um. Mean outer retinal thickness was 179.11 ± 18.52 um. Mean EZ-RPE

thickness was 50.58 ± 6.01um. The mean EZ-RPE volume was 1.20 ± 0.10 mm3. Mean EZ

attenuation percentage per macular map area was 0.87% ± 1.13% and mean percentage

total attenuation was 0.12% ± 0.14%. Total and inner retinal thickness metrics decreased

with age. Mean outer retinal thickness increased with age. EZ-RPE parameters were

unchanged with age. However, EZ attenuation was negatively correlated with age.
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Conclusion

This study provides important information for inner and outer retinal parameters. Future

research on quantitative EZ integrity can utilize this data for comparison.

Introduction

Outer retinal changes are linked to multiple macular disease processes, as well as their progno-

sis and visual outcome. [1–19] Optical coherence tomography (OCT) provides a noninvasive,

in vivo, and time efficient modality to reveal microscopic retinal and choroidal pathology,

often not visible on clinical examination. [20–23] Previous studies have established normative

quantitative metrics for total retinal thickness, individual layers and choroidal parameters

using various methods. [24–39] However, few studies in particular have established a norma-

tive database for outer retinal and ellipsoid zone (EZ) metrics. [26, 28] This is particularly

important given that the integrity of the outer retina and EZ have been directly linked to reti-

nal function in numerous diseases, including age-related macular degeneration, achromatop-

sia, retinitis pigmentosa, ocular macular dystrophy, acute zonal occult outer retinopathy,

hydroxychloroquine toxicity, ocriplasmin maculopathy, punctate inner choroidopathy, and

following the repair of macular holes and retinal detachments. [1–8, 10, 11, 18, 19, 40]

The availability of an age-stratified normative dataset for inner and outer retinal parameters

and metrics is important to provide comparative data for evaluation of pathologic alterations.

This study aims to establish an outer retinal metrics dataset in eyes without macular pathology

utilizing a recently developed, automated segmentation algorithm based on the internal limit-

ing membrane, (ILM), outer nuclear layer/henle fiber layer complex (ONL/HFL), and various

EZ parameters. This algorithm calculates various meters, including thickness, area, and volu-

metric measurements in eyes. [8]

Methods

This was an IRB-approved, retrospective case series, which included 167 eyes of 167 subjects

without macular disease. Inclusion criteria included Spectral Domain-OCT (SD-OCT) scan-

ning with Cirrus HD-OCT system (Carl Zeiss Meditec, Oberkochen, Germany) between June

2011 and June 2016, availability of 512x128 macular cube with signal strength of 7 of 10 of

greater, and sufficient OCT quality for analysis. The Cirrus HD-OCT platform recommends a

signal strength of 6 or higher for quantitative analysis. [41] OCT had been obtained as part of

standard of care for assessment of the fellow eye or due to suspected pathology in the study

eye. Exclusion criteria for the study eye included intraocular surgery other than routine pha-

coemulsification, high myopia (i.e.,� 6.5 diopters), high hyperopia (i.e.,� 5.0 diopters), high

amounts of astigmatism (i.e., > 4 diopters), any history of diabetic retinopathy, glaucoma,

macular or neuro-ophthalmic disease, disc drusen, retinal/choroidal pathology on any line of

the macular cube, and the presence of any retinal tissue architectural alteration on any line of

the macular cube. Subject demographics and clinical data were gathered through the electronic

medical record.

In the Cirrus Review software platform, each macular cube scan was reviewed line-by-line

for the presence of any retinal/choroidal pathology and to confirm normal retinal anatomy

and a lack of disruption of the retinal anatomy. Following confirmation of normal anatomy,

the macular cube scans were exported for analysis.

Outer retinal assessment in normal eyes
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The scans were imported into a previously described recently developed retinal layer analy-

sis platform. [8, 42] In brief, this software platform enables linear, area and volumetric mea-

surements of the various retinal layers through segmentation of the ILM, ONL/HFL, and EZ,

as well as en face evaluation of the panmacular EZ-retinal pigment epithelium (RPE) thickness

parameters. As documented in an earlier study, there is a high correlation between the auto-

mated measurements on repeat testing of the same eye. [8] The ONL/HFL was combined due

to the challenges in discriminating HFL from the true ONL given the optical properties of the

tissue and the lack of directional OCT information.

A trained expert reader then reviewed each macular cube line-by-line for verification of

appropriate segmentation. Any segmentation errors were manually corrected. Following initial

segmentation validation, the segmented B-scans were reviewed by a single expert reader to

assess for consistency of segmentation correction (N.D.). Once final segmentation validation

was completed, multiple metrics were exported for analysis. Cross-sectional metrics included

thickness, area, and volume measurements of layer parameters. Thickness measurements

included inner retinal parameters from the ILM to the proximal boundary of the ONL. Outer

retinal thickness was defined by the proximal ONL boundary to the RPE. EZ specific measure-

ments were measured from the proximal end of the EZ to the proximal boundary of the RPE.

Total retinal thickness measurements combined the measurements from the ILM to the RPE.

Thickness measurements included central foveal thickness (CFT), juxtafoveal measurements

on the foveal B-scan at 1 mm nasal and temporal to the fovea. (Fig 1)

Central foveal ONL/HFL-EZ area (which measured the total area occupied by the ONL/

HFL to the EZ segments on a 6 mm horizontal B-scan) and volumetric measurements (which

measured the total volume across the entire macular scan occupied by the space from the

outer nuclear layer to the EZ) were also obtained. Similarly, central foveal EZ-RPE area,

(which measured the total area occupied by the EZ and photoreceptor outer segments on a 6

mm horizontal B-scan) and volumetric measurements (which measured the total volume

across the entire macular scan occupied by the space from the EZ to the RPE) were also

obtained.

En face mapping measurements related to EZ absence/total attenuation (e.g., EZ to RPE

thickness = 0 microns) and EZ attenuation (EZ to RPE thickness < 20 microns), as previously

described. These were represented as percentages of the overall macular cube.[8] (Fig 2) In the

aforementioned study, over 99% patients without macular pathology had a thickness of 20 um

or more. These parameters were compared to age, visual acuity and spherical equivalent.

These two factors were analyzed as an entire group (n = 167), and between males (n = 66) and

females (n = 101). All analyzed metrics were analyzed by T test between the male and female

cohort.

Patients were additionally divided into four cohorts based on age (1: 10–30, 2: 31–50, 3:51–

70, 4:61–85), in order to analyze trends within segmentation layers. An ANOVA P test was

performed to determine if there was a statistically significant difference between the quartiles.

In terms of statistical analysis, a Pearson’s product moment correlation coefficient (in

short, R-value) was calculated between each OCT parameter versus age, visual acuity and

spherical equivalent. We further applied T-test to evaluate the statistical significance of the R-

value, in order to obtain the corresponding P-value. All statistical analysis was done in R ver-

sion 3.4.3.

Results

There were 167 eyes of 167 patients included in this study. The mean age was 49.7 years,

(median, 55 years; range 10 to 84 years), and 101 (60.5%) of subjects were female and 66

Outer retinal assessment in normal eyes
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(39.5%) were male. 146 (87.4%) eyes were phakic. (Table 1) Average visual acuity was 20/21

(range: 20/15 to 20/40). Average spherical equivalent was -0.48, (median, 0.0, range -5.63 to

4.3). Of the 167 patients, 4 had type 2 diabetes, and none had a current or previously docu-

mented history of diabetic retinopathy or macular edema. The reasons for obtaining OCT in

the normal eye are documented in Table 1. All patients with a history of hydroxychloroquine

use had normal visual field testing to confirm no toxicity. In patients with uveitis, a thorough

history and examination had been performed to confirm unilateral involvement. Additional

imaging was also obtained, as needed, to rule out bilateral disease.

Total retinal thickness parameters

Central foveal B-scan retinal thickness parameters. Overall mean central B-scan

ILM-RPE thickness for the 167 eyes was 200.58 um (standard deviation: 19.22; range 158.4 to

264 um). In males, mean central ILM to RPE thickness was slightly higher than females.

Fig 1. Segmentation map of macular OCT in a patient without macular pathology. (A) Segmentation of inner and outer retinal layers, at the inner limiting

membrane (ILM, blue), outer limiting membrane (OLM, green), ellipsoid zone (EZ, yellow), and retinal pigment epithelium (RPE, red). (B) SD-OCT B scan. (C)

EZ-RPE thickness map. (D) ILM-RPE thickness map.

https://doi.org/10.1371/journal.pone.0203324.g001
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Fig 2. Comparison of EZ loss. (A) En-face map of the EZ layer with minimal loss, as shown by the majority of the green, from a patient included in this

normative EZ study. (B) En-face map with moderate EZ loss, with more central blue, from a patient with Stargardt disease. (C) Severe loss, as shown by

the expansive central blue areas, also from a patient with Stargardt disease.

https://doi.org/10.1371/journal.pone.0203324.g002

Table 1. Assessment of inner and outer retinal layer metrics on the cirrus HD-OCT platform in normal eyes,

demographic features.

Feature All patients (n = 167)

Age (years) Mean (median, range) 49.7 years (55, 10–84 years)

Gender Male 66 (39.5%)

Female 101 (60.5%)

Spherical Equivalent (diopters) Mean (median, range) -0.48 (0.0, -5.63 to 4.3)

BCVA 20/15 5 (7.5%)

20/20 126 (71.6%)

20/25 23 (13.0%)

20/30 11 (6.3%)

20/40 2 (1.2%)

Lens Status Phakic 146 (87.4%)

Pseudophakic 21 (12.6%)

Laterality Right 87 (52.1%)

Left 80 (47.9%)

Reason for OCT Hydroxychloroquine use 39 (23.4%)

Uveitis/endophthalmitis, contralateral eye 24 (12.2%)

Baseline (initial visit) 19 (11.3%)

Retinal vein occlusion, contralateral eye 17 (10.2%)

CSR, contralateral eye 14 (8.4%)

Macular hole, contralateral eye 14 (8.4%)

Retinal detachment or retinal tear, contralateral eye 12 (7.2%)

Cataract evaluation, contralateral eye 11 (8.4%)

Macular edema, contralateral eye 9 (5.4%)

ERM, contralateral eye 8 (4.8%)

History of diabetes 4 (2.4%)

AMD, contralateral eye 2 (1.2%)

Coats disease, contralateral eye 1 (0.6%)

https://doi.org/10.1371/journal.pone.0203324.t001
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Juxtafoveal nasal and temporal thickness parameters. Juxtafoveal nasal ILM to RPE

thickness averaged 327.14 um (standard deviation: 19.04; range 267.8 to 397.1 um). The mean

temporal juxtafoveal ILM to RPE thickness was lower, and measured 307.73 um (standard

deviation: 17.85; range 250.9 to 353.9 um). When comparing the two groups, the juxtafoveal

temporal ILM-RPE thickness was significantly lower in females versus males (p = 0.004).

(Table 2)

Inner retinal thickness parameters

Central foveal inner retinal thickness parameters. The mean central ILM to OPL thick-

ness for the 167 eyes was 21.47 um (standard deviation: 13.6; range 0 to 78.2 um). The male

cohort had a higher central average thickness of in the female cohort, although not statistically

significant. (Table 2)

Table 2. Assessment of inner and outer retinal layer metrics on the cirrus HD-OCT platform in normal eyes, metrics in entire cohort and sex breakdown.

Total (N = 167)

Average (standard

deviation, range)

Males (N = 66)

Average (standard

deviation, range)

Females (N = 101)

Average (standard

deviation, range)

P

values

Total Retina (ILM-RPE) (mean, standard

deviation, range, um)

Central thickness 200.58 (19.22, 158.4 to

264)

204.06 (20.40, 164.2 to

264)

198.30 (17.78, 158.4 to

263.9)

0.07

Juxtafoveal nasal

thickness

327.14 (19.04, 267.8 to

397.1)

329.71(19.03, 285.4 to

365.7)

325.45 (18.95, 267.8 to

397.1)

0.156

Juxtafoveal temporal

thickness

307.73 (17.85, 250.9 to

353.9)

312.53 (16.55, 275.7 to

353.9)

304.59 (18.16, 250.9 to

346.1)

0.004

Inner Retina (ILM-OPL) (mean, standard

deviation, range, um)

Central thickness 21.47 (13.60, 0 to 78.2) 23.52 (14.80, 0 to 78.2) 20.13 (12.67, 0.9 to 66.5) 0.12

Juxtafoveal nasal

thickness

201.56 (23.74, 138.8 to

287.7)

203.40 (22.09, 158.4 to

260)

200.36 (24.79, 138.8 to

287.7)

0.40

Juxtafoveal temporal

thickness

174.60 (18.81, 103.6 to

234.6)

179.62 (18.45, 138.8 to

234.6)

171.32 (18.40, 103.6 to

219)

0.005

Outer Retina (ONL/HFL-RPE) (mean,

standard deviation, range, um)

Central thickness 179.11 (18.52, 125.2 to

228.8)

180.54 (18.13, 125.2 to

228.8)

178.17 (18.78, 129.1 to

217)

0.42

Juxtafoveal nasal

thickness

125.57 (18.43, 84to 166.2) 126.31 (18.97, 86 to

166.2)

125.09 (18.14, 84 to

164.2)

0.68

Juxtafoveal temporal

thickness

133.13 (16.26, 69.1 to

172.1)

132.91(16.46, 84.1 to

166.2)

133.27 (16.20, 69.1 to

172.1)

0.89

Ellipsoid zone (EZ-RPE) (mean, standard

deviation, range, um)

Central thickness 50.58 (6.01, 37.1 to 68.4) 50.42 (6.25, 39.1 to 68.4) 50.68 (5.879, 37.1 to 66.5) 0.78

Juxtafoveal nasal

thickness

34.92 (5.52, 19.6 to 48.9) 31.10 (6.04, 19.6 to 48.9) 35.41 (5.13, 25.4 to 48.9) 0.17

Juxtafoveal temporal

thickness

33.39 (5.47, 21.5 to 58.7) 33.67 (5.63, 21.5 to 48.9) 33.20 (5.39, 21.5 to 58.7) 0.59

Area and Volumetric measurements ONL-EZ Central Foveal

Area (mm2)

0.55 (0.05, 0.43 to 0.73) 0.55 (0.06, 0.45 to 0.73) 0.55 (0.05, 0.43 to 0.64) 0.60

ONL-EZ Volume (mm3) 2.87 (0.22, 2.41 to 3.57) 2.87 (0.24, 2.42 to 3.58) 2.88 (0.21, 2.41 to 3.36) 0.61

EZ-RPE Central Foveal

Area (mm2)

0.21 (0.02, 0.16 to 0.31) 0.21 (0.03, 0.16 to 0.31) 0.21 (0.02, 0.16 to .29) 0.88

EZ-RPE Volume (mm3) 1.20 (0.10, 0.97 to 1.68) 1.2 (0.11, .97 to 1.68) 1.2 (0.1, .99 to 1.6) 0.76

ONL-RPE Central Foveal

Area (mm2)

0.76 (0.06, 0.63 to 0.96) 0.77 (0.06, 0.65 to 0.96) 0.76 (0.06, 0.62 to 0.92) 0.58

ONL-RPE Volume (mm3) 4.08 (0.27, 3.53 to 4.84) 4.07 (0.27, 3.53 to 4.78) 4.08 (0.27, 3.57 to 4.84) 0.75

En face measurements Twenty-micron EZ Map

Coverage (%)

0.87 (1.13, 0.01 to 4.94) 0.99 (1.28, 0.12 to 4.93) .78 (1.01, 0 to .62) 0.25

Zero-micron EZ Map

Coverage (%)

0.12 (0.14, 0 to 1.10) 0.1 (0.16, 0 to 1.1) .13 (0.13, 0 to .62) 0.29

https://doi.org/10.1371/journal.pone.0203324.t002
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Juxtafoveal nasal and temporal thickness parameters. Similarly to overall total retinal

thickness trends, the juxtafoveal temporal ILM to OPL thickness measured less than the nasal

measurements. As with the total retinal measurements, the juxtafoveal temporal inner retinal

measurements were significantly lower in females than males (P = 0.005). (Table 2)

Outer retinal thickness parameters

Central foveal B-scan outer retinal thickness parameters. The mean central ONL/HFL

to RPE thickness for the 167 eyes was 179.11 um (standard deviation: 18.52; range 125.2 to

228.8 um). Males had a higher central ONL/HFL to RPE thickness as compared to females, but

this was not statistically significant. (Table 2)

Juxtafoveal nasal and temporal thickness parameters. In contrast to the total retinal and

inner retinal thickness parameters, juxtafoveal nasal ONL/HFL to RPE thickness was lower

than juxtafoveal temporal ONL/HFL to RPE thickness. There were no significant differences

between males and females.

Ellipsoid zone thickness parameters. In the total cohort, the central EZ to RPE thickness

was 50.58 um (standard deviation 6.01; range 37.1 to 68.4 um). Males averaged 50.42 um for

EZ to RPE thickness, and females averaged 50.68 um. There was no significant difference

between males and females.

Juxtafoveal nasal and temporal thickness parameters. In the total group, juxtafoveal

nasal EZ to RPE thickness averaged 34.92 um (standard deviation, 5.52; range 19.6 to 48.9

um), and temporal EZ to RPE thickness averaged 33.39 um (standard deviation, 5.47; range

21.5 to 58.7 um). In the males, temporal thickness higher, while in females, nasal thickness was

higher. Neither of these was statistically significant. (Table 2)

Outer retinal area metrics

Average ONL to EZ central foveal area measured 0.55 mm2 (standard deviation, 0.05, range,

0.43 to 0.73). Measurements were similar in males and females. (Table 2). EZ to RPE central

fovea area was 0.21 mm2 (standard deviation, 0.02; range, 0.16 to 0.31 mm2). Measurements

were similar with the male and female cohort as well. Overall, ONL to RPE central foveal area

was 0.76 mm2 (standard deviation, 0.06, range, 0.63 to 0.96). There was no statistically signifi-

cant difference between males and females.

Outer retinal volume metrics

Mean ONL to EZ volume measured 2.87 mm3 (standard deviation, 0.22, range, 2.41 to 3.57),

with similar values between males and females. Average EZ to RPE volume measured 1.2 mm3

(standard deviation, 0.1; range 0.97 to 1.68 mm3). Males and females measured similarly. In

total, mean ONL to RPE volume measured 4.08 (standard deviation 0.27, range 3.53 to 4.84),

with no statistically significant difference between male and female values for any of the vol-

ume measurements. (Table 2)

En face mapping metrics of ellipsoid zone loss and attenuation

The average percentage of ellipsoid zone attenuation was 0.87% (standard deviation, 1.13%,

range, .01% to 4.94%), and the average EZ total loss was .12% (standard deviation, 0.14%,

range 0% to 1.1%). Males had slightly higher, but not statistically significant, average EZ atten-

uation. (Table 2) In terms of EZ loss, males and females had very similar averages. (Table 2).

The most common areas for notable “attenuation” or “total attenuation” were areas of shadow-

ing related to retinal blood vessels.
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Metrics in comparison to gender, age, best-corrected visual acuity and

spherical equivalent

Gender. There was no significant difference between the two groups in terms of age,

BCVA, or SE. The majority of thickness metrics were lower in the female cohort, while only

two of these reached the level of significance: total retinal thickness and temporal inner retinal

thickness. (Table 2)

Age. When comparing the entire cohort to age, several trends arise. Almost all of the total

retinal measurements were negatively correlated to age in the total group and when stratified

based on gender. In terms of total retinal thickness, temporal ILM to RPE thickness was statis-

tically significantly but weakly negatively correlated with age, (r = -0.2; p = 0.008). In terms of

the inner retina, the central, nasal and temporal measurements were also negatively correlated

with age (r = -0.39, -0.21, -0.33; p<0.001, p = 0.006, p<0.001) respectively. For the outer retina,

all measurements in all groups were weakly positively correlated with age. In terms of statisti-

cal significance, both central and temporal and central ONL/HFL to RPE thickness were

weakly but positively correlated with age, (r = 0.2, r = 0.16; p = 0.007, p = 0.37, respectively).

None of the ellipsoid zone thickness, area, volume or absolute loss measurements were signifi-

cantly correlated with age. However, the amount of EZ attenuation was significantly negatively

correlated with age (r = -0.48, p<0.001). (Table 3, Fig 3)

Additionally, the total cohort was divided into quartiles based on age. (Table 4) On the

whole, total retinal thickness (ILM-RPE), along with temporal and nasal thickness, tended to

measure slightly higher in younger quartiles than older quartiles, with a significant difference

between quartiles when comparing temporal total thickness. (P = 0.03) The inner retinal thick-

ness was also found to be higher in younger quartiles than older quartiles, with a significant P

value when examining central, temporal and nasal thicknesses. (P<0.001, P = 0.003, P<0.001)

Table 3. Assessment of inner and outer retinal layer metrics on the cirrus HD-OCT platform in normal eyes. Comparison to age.

Metric All Males (N = 66) Females (N = 101)

R value P value R value P value R value P value

Total Retina (ILM-RPE) Central thickness -0.07 .34 -0.14 .26 0.01 .94

Juxtafoveal nasal thickness -0.14 0.06 -0.19 0.12 -0.09 .34

Juxtafoveal temporal thickness -0.20 0.008 -0.29 0.02 -0.12 .22

Inner Retina (ILM-OPL) Central thickness -0.39 0.0000002 -0.33 0.0076 -0.43 <0.001

Juxtafoveal nasal thickness -0.21 0.006 -0.38 0.36 -0.09 0.36

Juxtafoveal temporal thickness -0.33 0.00001 -0.39 0.0001 -0.27 0.007

Outer Retina (ONL/HFL-RPE) Central thickness 0.20 0.007 0.10 0.41 0.3 0.0024

Juxtafoveal nasal thickness 0.12 0.12 0.25 0.043 0.03 0.79

Juxtafoveal temporal thickness 0.16 0.037 0.16 0.21 0.17 0.09

Ellipsoid Zone Central thickness -0.06 .43 -0.209 0.09 0.05 0.60

Juxtafoveal nasal thickness 0.10 0.19 0.04 0.76 .14 0.16

Juxtafoveal temporal thickness 0.10 0.19 -0.012 0.91 0.20 0.044

Area and Volume measurements ONL to EZ central foveal area 0.16 0.04 0.23 0.06 0.1 0.3

ONL to EZ volume 0.09 0.25 0.16 0.20 0.02 0.81

EZ to RPE central foveal area 0.03 0.64 -0.167 0.18 0.21 0.03

EZ to RPE volume 0.05 .52 -0.09 0.46 0.17 0.07

ONL to RPE central foveal area 0.15 0.04 0.15 0.23 0.17 .08

ONL to RPE volume 0.09 0.23 0.10 0.40 0.08 0.40

En face Ellipsoid Zone mapping Attenuation (<20 um) -0.48 0.000000001 -0.45 0.00013 -0.43 <0.001

Loss (0 micron) 0.06 .43 -0.001 0.99 0.10 0.31

https://doi.org/10.1371/journal.pone.0203324.t003
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Outer retinal thickness trended to increase from quartile 1 to quartile 4. There was no statisti-

cal difference between the four quartiles. There was no clear relationship between any of the

area of volumetric measurements in the outer retina and quartiles. Moreover, percentage of

EZ attenuation tended to be higher in quartile 1 and 2, and over 50% decreased in quartile 3

and 4. This difference was very statistically significant (P<0.001). (Table 4).

Visual acuity. When compared against VA, none of the metrics in the general cohort,

male or female cohorts were significantly correlated.

Spherical equivalent. When comparing SE to the various metrics, the nasal ONL/HFL to

RPE and central ONL/HFL to RPE were weakly positively correlated with spherical equivalent

(r = 0.16, p = 0.03; and r = 0.25, P<0.001, respectively). These correlations also existed in the

female cohort.

Discussion

Pathological changes in the retina, and in particular, the outer retina and ellipsoid zone are

linked to visual decline. [3, 6, 7] Comparing these changes to age is instrumental in delineating

pathology from normal aging processes. The segmentation methods described in this paper

have been validated in previous studies, and provide an accurate, reproducible measurement

tool for various retinal metrics. [8] While previous publications have published on total retinal

thickness and inner retina thickness, few have published on outer retinal metrics. [24, 26]

The measurements for total retinal thickness with this automated segmentation technique

closely mirror previous studies. [27, 31] Bressler et al, using status OCT, found an average CST

of 209 um in males and 194 um in females; this is very close to our measurements of 204.06

um and 198.3 um, in males and females, respectively. [31] Moreover, they found no significant

difference in measurements between non-diabetics and diabetic patients with no retinopathy.

All four of the diabetic patients included in our study had no retinopathy ever recorded. Simi-

larly, Kashani et al published on average male and female foveal thickness measuring 201.8 um

and 186.9 um, respectively. Overall, we found that the total retinal thickness and inner retinal

layers, defined as from the ILM to the outer boundary of the OPL, almost always had a negative

correlation with age, with a stronger relationship existing when examining the inner retina

alone. This correlation between age and total retinal thickness and inner retinal thickness has

been reported previously. [26, 28, 38, 43, 44] Reports have highlighted, in particular, the

decline of the retinal nerve fiber layer contributing to the decrease in total retinal thickness.

[38, 44, 45] The trend towards thicker nasal juxtafoveal measurements reflects the thicker

nerve fiber layer anatomically, and has been reflected in the literature as well. [26]

Outer retinal thickness, measured by our segmentation techniques of the outer nuclear

layer to the RPE, always increased with age, albeit with a weak correlation factor in certain

metrics. Tong et al examined the ONL/HFL layer in particular with directional OCT and also

found a general trend towards thicker measurements with increased age. [24] Interestingly,

Ooto et al concluded that the outer fovea does not decrease with age, as opposed to their inner

retinal measurements, which generally did show a negative relationship to age. [26] One

important difference to note is that the OPL and ONL/HFL measurements were combined in

that report. However, in concordance with both these works, we found a general positive

Fig 3. Statistically significant retinal parameters in comparison to age. (A) Temporal total retinal thickness showed a slightly negative correlation with

age. (B) Central inner retinal thickness decreased moderately with age, while (C) nasal retinal thickness decreased slightly with age. (D) Similar to central

retinal thickeness, temporal retinal thickness decreased moderately with age as well. (E) and (F) Central outer retinal thickness and temporal outer retinal

thickness, respectively are both slightly negatively correlated with age. (G) and (H) ONL to EZ central foveal area and ONL to RPE central foveal area,

respectively, both slightly increased with age. (I) EZ attenuation was strongly negatively correlated with age.

https://doi.org/10.1371/journal.pone.0203324.g003
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correlation with the outer retinal layers and age, instead of a decrease with age as we found in

the inner retinal layers.

In particular, the EZ has garnered attention as a possible surrogate for visual acuity or reti-

nal function.[1–4, 6–8, 10–19, 40, 46] Currently, the EZ, present as the second to last hyperre-

flective band on OCT, is thought to correspond to the ellipsoid portion of the inner segments.

[22, 23] Establishing a normal eye dataset for these metrics is imperative to compare to future

trials for interventional medications and to monitor disease progression, such as in conditions

that primarily effect the EZ (e.g., ocriplasmin maculopathy, hydroxychloroquine retinopathy,

macular telangiectasia.) [9, 47] Many studies in the past have focused on binary assessment:

assessing for presence or disruption. [10, 40] Some studies have attempted to evaluate EZ

reflectivity or compare reflectivity to the ELM, but failed to establish quantifiable parameters

for the expected ellipsoid values.[1–4] Birch et al and Hood et al established outer segment

thickness values in a small groups of patients, but did not correlate these with age. [13, 14, 19]

Table 4. Assessment of inner and outer retinal layer metrics on the cirrus HD-OCT platform in normal eyes. Comparison across quartiles.

Metric Quartile 1 (Age 10–30)

Average (standard

deviation, range)

Quartile 2 (Age 31–50)

Average (standard

deviation, range)

Quartile 3 (Age 51–70)

Average (standard

deviation, range)

Quartile 4 (Age 71–85)

Average (standard

deviation, range)

P value

Total Retina (ILM-RPE) Central thickness 203.38 (20.57, 166.2 to

263.9)

201.65 (16.23, 158.4 to

230.7)

199.16 (19.53, 161.2 to

264)

198.156 (20.57, 164.2 to

236.5)

0.63

Juxtafoveal nasal

thickness

330.83 (19.3, 285.4 to

373.5)

330.89 (14.93, 304.9 to

365.7)

324.25 (20.88, 267.8 to

397.1)

323.2 (17.78, 275.6 to

350)

0.14

Juxtafoveal temporal

thickness

312.04 (16.78, 279.6 to

353.9)

312.14 (13.96, 291.3 to

342.1)

303.50 (18.28, 261.9 to

383.3)

305.3 (21.1, 250.9 to

338.2)

0.03

Inner Retina

(ILM-OPL)

Central thickness 29.38 (13.5, 7.8 to 62.6) 23.79 (13.99, 3.9 to 66.5) 17.9 (12.44, 0.9 to 78.2) 14.5 (8.82, 0 to 41.1) <0.001

Juxtafoveal nasal

thickness

210.23 (21.52, 176 to

260)

206.64 (20.25, 168.1 to

254.2)

194.24 (24.59, 140.8 to

287.7)

199.1 (24.4, 138.8 to

230.7)

0.003

Juxtafoveal temporal

thickness

182.58 (14.84, 142.7 to

213.1)

180.40 (21.09, 148.3 to

234.6)

168.97 (15.77, 134.9 to

205.3)

167.81 (21.81, 103.6 to

205.3)

<0.001

Outer Retina (ONL/

HFL-RPE)

Central thickness 174 (17.9, 129.1 to 209.2) 177.86 (16.64, 134.9 to

205.3)

181.28 (18.02, 125.2 to

228.8)

183.65 (22.08, 136.9 to

220.9)

0.13

Juxtafoveal nasal

thickness

120.6 (19.47, 84 to 166.2) 124.25 (17.47, 88 to

154.4)

130.01 (17.7, 86 to 164.2) 124.10 (18.33, 86 to

160.3)

0.07

Juxtafoveal temporal

thickness

129.46 (11.38, 103.6 to

150.5)

131.73 (16.63, 84.1 to

162.2)

134.53 (16.95, 99.7 to

172.1)

137.50 (19.78, 69.1 to

166.2)

0.2

Ellipsoid Zone Central thickness 50.22 (6.44, 41.1 to 62.6) 52.46 (6.26, 43 to 68.4) 50.38 (5.89, 37.1 to 66.5) 49.0 (4.75, 39.1 to 58.7) 0.14

Juxtafoveal nasal

thickness

33.80 (6.63, 19.6 to 48.9) 35.29 (5.10, 25.4 to 46.9) 35.48 (5.02, 27.4 to 46.9) 34.8 (5.4, 25.4 to 48.9) 0.48

Juxtafoveal temporal

thickness

32.32 (5.52, 23.5 to 48.9) 33.61 (6.0, 21.5 to 48.9) 33.89 (5.57, 21.5 to 58.7) 33.54 (4.32, 25.4 to 43) 0.54

Area and Volume

measurements

ONL to EZ central

foveal area

0.54 (0.05, 0.43 to 0.63) 0.54 (0.04, 0.45 to 0.63) 0.56 (0.06, 0.455 to 0.73) 0.56 (0.04, 0.46 to 0.63) 0.10

ONL to EZ volume 2.84 (0.2, 2.42 to 3.36) 2.86 (0.20, 2.45 to 26) 2.89 (0.27 (2.4 to 3.58) 2.91 (0.16, 2.54 to 3.17) 0.55

EZ to RPE central

foveal area

0.20 (0.03, 0.16 to 0.31) 0.21 (0.02, 0.16 to 0.28) 0.21 (0.02, 0.16 to 0.3) 0.21 (0.01, 0.17 to 0.23) 0.70

EZ to RPE volume 1.20 (0.14, 1.0 to 1.68) 1.19 (0.09, 1.04 to 1.38) 1.21 (0.10, 0.98 to 1.6) 1.19 (0.07, 0.96 to 1.31) 0.65

ONL to RPE central

foveal area

0.75 (0.05, 0.62 to 0.87) 0.75 (0.05, 0.6 to 0.86) 0.77 (0.06, 0.65 to 0.96) 0.77 (0.04, 0.67 to 0.84) 0.09

ONL to RPE volume 4.04 (0.25, 3.6 to 4.84) 4.05 (0.26, 3.6 to 4.65) 4.10 (0.31, 3.53 to 4.8) 4.11 (0.19, 3.66 to 4.40) 0.55

En face Ellipsoid Zone

mapping

Attenuation (20 um) 1.58 (1.44, 0.04 to 4.93) 1.08 (1.29, 0.018 to 4.67) 0.44 (0.65, 0.01 to 3.8) 0.47 (0.47, 0.01 to 1.71) <0.001

Loss (0 um) 0.10 (0.11, 0 to 0.42) 0.13 (0.21, 0 to 28) 0.12 (0.12, 0 to 0.62) 0.13 (0.12, 0 to 0.41) 0.75

https://doi.org/10.1371/journal.pone.0203324.t004

Outer retinal assessment in normal eyes

PLOS ONE | https://doi.org/10.1371/journal.pone.0203324 October 4, 2018 11 / 16

https://doi.org/10.1371/journal.pone.0203324.t004
https://doi.org/10.1371/journal.pone.0203324


Our study provides an in-depth assessment of outer retinal metrics across a large study group

and age-range. Not only does this study provide linear measurements, but utilizing a novel

software platform this report provides volumetric and en face assessments.

There has been no clear consensus in the literature on the normal ellipsoid zone changes

associated with aging. [48–50] One report examines the anatomical development of the

human fovea, and details how the foveal cone diameter decreases markedly after birth, with

development of the cone outer and basal axon processes up to at least four year of age. [48]

The authors conclude that outer segment length and cone packing density are still approxi-

mately half of that as adults, even at age four, meaning that younger adults may have shorter

cone outer segments. These factors may play into the slight correlation between increasing

thickness in our patients with age. In another report, the normal human retina is histologically

examined in various decades (from the 2nd to the 9th), and found that the foveal cone density

had a surprisingly large range, with a variation of 25–40% in cone density per each age group.

They also did not find a relationship between age advancement and foveal cone decline, sug-

gesting foveal cone density does not significantly decline with age. Even more interestingly,

they found a similar cone foveal density in a donor at age 95 to a 19 year old patient.[50]

Overall in our study, the EZ measurements were very similar between the two groups, with-

out significant difference between males and females. Additionally, we found that no definite

trend in ellipsoid zone thickness when compared to age. These small differences may from the

previously described expected high variability.

Similarly, we found that the overall parameters for area and volume were homogenous

across the age group and between males and females. We did find a significant negative corre-

lation between age and percentage of EZ attenuation. This may be from poorer cooperation in

younger patients resulting in less reliable scans (e.g., artifact). More likely, this may be due to

other anatomical factors, such as increased vessel shadowing in younger patients due to larger

vessel caliber, causing perceived EZ attenuation by the software. [51, 52] It could also be

related to previously mentioned delayed development of cone outer segments as compared to

adults. However, overall the percentage remained quite small of attenuation or total

attenuation.

We also found that males tended to have higher thickness measurements as compared to

females in terms of total retinal thickness, inner retinal thickness and outer retinal thickness. A

trend towards higher measurements in males has been reflected in many previous works. [31,

33, 39, 45] We did not see a trend towards thicker measurements in males when examining

the ellipsoid zone metrics; this may be from relatively small micron changes between the two

groups.

This work is not without its limitations. Previous works have commented on a racial impact

on retinal layer thickness; in particular, African Americans tend to have thinner measurements

than Caucasian counterparts. [27, 29, 32] As this was a retrospective study racial information

was unavailable for analysis. Furthermore, the analysis based on spherical equivalent is difficult

to extrapolate, as spherical equivalents were used from the date of OCT, which may not accu-

rately depict their original spherical equivalent, if they had cataract surgery. Additionally, the

wide range of refractive error undoubtedly impacts the magnification error, and Cirrus soft-

ware does not take into account this magnification. Various other factors, including head tilt

when taking the OCT, and measuring exact fixation were not accounted for, which may skew

the results. These results can only be extrapolated to the Cirrus software as well, as this was

used for the data collection. Moreover, various systemic conditions, such as heart disease and

hypertension have been linked to retinal thickness parameters, but these medical records were

not available for every patient, limiting our ability to assess their impact on the retina.
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The results of this work may be able to serve as a benchmark for comparative assessment in

outer retinal evaluation of pathologic conditions. [42] The lack of clear relationship between

age and ellipsoid parameters supports previously published data and removes a possible con-

founding factor in later analyses examining large age ranges. This extensive dataset may serve

as an important comparative cohort for future studies in various disease conditions impacting

the outer retina.
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