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Introduction. Radiomics could be potential imaging biomarkers by capturing and analyzing the features. Children and adolescents
with CHD have worse neurodevelopmental and functional outcomes compared with their peers. Early diagnosis and intervention
are the necessity to improve neurological outcomes in CHD patients. Methods. School-aged TOF patients and their healthy peers
were recruited for MRI and neurodevelopmental assessment. LASSO regression was used for dimension reduction. ROC curve
graph showed the performance of the model. Results. Six related features were finally selected for modeling. The final model
AUC was 0.750. The radiomics features can be potential significant predictors for neurodevelopmental diagnoses. Conclusion.
The radiomics on the conventional MRI can help predict the neurodevelopment of school-aged children and provide parents
with rehabilitation advice as early as possible.

1. Introduction

Radiomics, a rapidly emerging field of medical image, could be
potential imaging biomarkers by capturing and analyzing the
features, such as shape and heterogeneity [1]. Radiomics fea-
tures along with demographic, histologic, genomic, and prote-
omic data can discover and solve lots of clinical problems [2].
Radiomics focuses on phenotypic signatures in neurological
and neuropsychiatric disorders [3] and can assist in the diag-
nosis of neoplastic and nonneoplastic disorders in the brain.
The guideline from the European Association of Neuro-
Oncology (EANO) has added radiogenomics as a diagnosis
and treatment of adult glioma [4]. Besides, a recent study
showed that the patients with attention deficit hyperactivity
disorder (ADHD) can be separated from healthy control sub-
jects by cerebral radiomics-based classification models [5]. A
study on preterm infants also suggested that texture analysis
of deep medullary veins (DMVs) on susceptibility-weighted

imaging (SWI) can be potentially used for identifying ischemic
injury [6]. However, few studies addressed the cerebral radio-
mics changes in congenital heart disease (CHD) children
whose neurodevelopment was paid increasing attention
recently [7, 8].

Children and adolescents with CHD have worse neurode-
velopmental and functional outcomes compared with their
peers, although the development of the patients’ life support
and operative techniques contributed to higher levels of over-
all survival [9]. In particular, children with complex CHD
were vulnerable to neurological disorders [10]. Except the
cerebral developmental delayed in many infants with CHD,
brain injuries such as decreased cerebral blood flow (ischemia)
and included (punctate) white matter injury, periventricular
leukomalacia, and stroke are always reported [11]. Meanwhile,
those CHD patients often have difficulties with social cogni-
tion and executive functioning while their neurodevelopmen-
tal scales were within the normal ranges in the early period
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[10, 12, 13]. Therefore, early diagnosis and intervention are the
necessity to improve neurological outcomes in CHD patients.

Since the past century, researchers have tried to find differ-
ence between the CHD patients and healthy peer group byMRI
[14, 15]. At first, brain injury was confirmed in patients after
surgery [16]. Then, studies reported structural brain abnormal-
ities appearing before surgical intervention [17, 18]. Not only
that, more studies centered on the predictive skill of MRI for
neurodevelopmental outcomes or the correlation effects of
them were published during the recent last decade [19–26].

However, it is important to realize that the problem is
that these results rely on specific imaging techniques. It is
worth thinking about how to predict the neurodevelopment
and function of school-aged children and how to provide
parents with rehabilitation advice as early as possible.

2. Materials and Methods

2.1. Enrolled Patients. This study was approved by the
Research Ethic Committee of Children’s Hospital of Nanjing
Medical University and performed in accordance with the
code of ethics of the Declaration of Helsinki for experiments
involving humans. All data were anonymous during the pro-
cessing. From November 2015 to June 2016, we recruited 9
school-aged TOF patients from the Children’s Hospital of
Nanjing Medical University who had undergone corrected
surgery before. Nine healthy controls were matched to
TOF patients in terms of age, gender, and education. All par-
ticipants are not diagnosed as hereditary syndromes or any
diseases of the central nervous system, and informed consent
was acquired from the children and the children’s legal
guardians. None of them had contraindications to MRI.

2.2. MRI Data Acquisition and Preprocessing. MRI data were
acquired from all participants using a 1.5T MRI machine
(Siemens Magnetom Avanto, Erlangen, Germany) with a
standard 12-channel head coil. T1-weighted MRI data were
obtained using the following parameters: TR = 1900ms, TE
= 2:48ms, TI = 900ms, imagematrix = 256 × 256 × 176,
and voxel resolution = 1 × 1 × 1mm3.

The scanning time was 6min. All participants were pre-
vented from scanner noise by sponge plugs and requested to
lie awake quietly with their eyes closed and avoid thinking.
During the scans, the subject’s head was braced with foam
padding to minimize movement artifacts.

The original DICOM data were converted to the format
of NIfTI file format by using MRIcron (https://www.nitrc
.org/projects/mricron). This modification was accomplished
using the following steps [7]: (1) removal of data from the
first 10 time points, (2) correction of slice timing, (3) correc-
tion of head movements and exclusion of cases that head
movement exceeded 1mm of translation or 1° of rotation
about the x, y, or z axis, (4) spatial registration and linear
detrending, (5) low-frequency filtering (0.01–0.08Hz), and
(6) half-maximum ðFWHMÞ = 4 × 4 × 4mm3.

2.3. Radiomics Feature Extraction and Selection. We selected
the region of interest (ROI) in the brain of all patients using
3D slicer (version 4.8.0; http://www.slicer.org). The feature

extraction was performed with the open-source Pyradiomics
package (http://www.radiomics.io/pyradiomics.html). For
T1WI [27], 851 radiomics features (18 first-order features,
14 shape-based features, 75 textural features, and 744
transform-based features) were extracted from each ROI.
The least absolute shrinkage and selection operator (LASSO)
logistic regression algorithm, with penalty parameter tuning
conducted by 10-fold cross-validation, was used to select
CHD-related features. The workflow for this procedure is
shown in Figure 1.

2.4. Neurodevelopmental Outcomes and Clinical Factors’
Selection. The neurodevelopmental abilities of children were
evaluated by theWechsler Intelligence Scale for Children–Chi-
nese revised edition (WISC-CR). The WISC-CR, commonly
accepted for use in this population [28], is composed of 6
verbal and 6 performance subscales. The full-scale intelligence
quotient (FSIQ) is derived from verbal intelligence quotient
(VIQ) and performance intelligence quotient (PIQ) calculated
by these 12 domains. Clinical variables including birth history
were collected from the electronic medical records.

2.5. Statistical Analysis. Clinical characteristics of the sub-
jects were described as the mean ± SD. The two-sample t
-test and the nonparametric Mann–Whitney U test (U) were
considered significant when p < 0:05 in the process of
dimensionality reduction. The χ2 test was used to compare
the sex distributions between the groups. The LASSO linear
regression was performed for the final model. The diagnostic
performance of established models was evaluated by receiver
operator characteristic (ROC) curves.

These above analyses were performed in SPSS (version
26, https://www.ibm.com/analytics/spss-statistics-software)
or R software (version 4.1.0, http://www.r-project.org).

3. Results

3.1. Characteristics and Neurodevelopmental Outcomes. The
demographic characteristics and the intelligence score of
the TOF and HC groups are shown in Table 1. No signifi-
cant difference was observed in age, gender, or years of edu-
cation. Although the mean FSIQ of these children with TOF
was within the range of normal intelligence, it was lower
than the mean FSIQ of the HC group and of statistically sig-
nificant differences. Table 2 shows the clinical characteristics
and neurodevelopment assessment of the TOF patients.
Likewise, there was no significant difference observed in
age, gender, or years of education.

3.2. Radiomics Analysis. Of the 851 extracted features, 393 fea-
tures (15 first-order features, 8 shape-based features, 28 textural
features, and 342 transform-based features) with high repro-
ducibility were selected for subsequent analysis (Figure 2). Six
related features shown in Table 3 were finally selected.

3.3. Performance and Validation of the Established Model. At
first, including all the selected features in a logistic regression
model resulted in overfitting. Separate regressions were con-
ducted for each feature. All the six features were shown high
confidence for distinguishment by ROC analysis. Correlations
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were calculated using the Spearman correlation. No significant
correlations were observed with wavelet-HHH first-order
skewness (Figure 3).

Next, two features with zero coefficients were included to
the new logistic regression model. Two models of them were
shown overfitting. Two had no statistical significance. The
other predicted effects are shown in Figure 4 and Table 4.

Finally, wavelet-HHH first-order skewness and original
first-order interquartile range were included to the final
model. The AUC value of FSIQ greater than or equal to
100 based on the radiomics was 0.75 (Figure 5).

4. Discussion

This was the first using radiomics to investigate the MRI of
children with CHD and predict the neurodevelopmental
outcome.

MRI was an efficient method to identify brain regions in
some cohort of preterm children [29–31]. It is also one of
the most efficient tools for clinicians and researchers to evalu-
ate the developing brain [32, 33]. About half of the children
with CHD were found to have abnormalities in MRI before
surgery [34–37], while most of them have been reported no
abnormal neonatal MRI findings [38]. Moreover, mild ische-
mic lesions shown on MRI in the neonatal periods completely
disappeared 4 to 6 months after surgery [16]. However, more
and more studies confirm that the adolescents and adults suf-
fer from frequent neurodevelopmental challenges, including
cognitive, motor, language, psychosocial, social, and commu-
nication impairments [13, 23, 39, 40]. Experts interrogate the
association between brain abnormalities and function, such
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Figure 1: Workflow of necessary steps in this study. ROI was delineated on T1WI. Radiomics features including first-order statistics, shape-
based features, textural features, and wavelet transforms were extracted. LASSO regression was used for feature selection. The performance
of established models was evaluated by ROC curves and Spearman analysis. ROI: region of interest; LASSO: least absolute shrinkage and
selection operator; ROC: receiver operator characteristic.

Table 1: Characteristics of the study population.

Variables TOF (n = 9) HC (n = 9) p value

Age (year) 9:55 ± 1:04 9:75 ± 0:65 0.699

Sex (male/female) 5/4 6/3 0.730

Education (year) 2:16 ± 1:22 2:35 ± 0:43 0.438

VIQ 94:00 ± 13:85 122:00 ± 9:14 0.004

PIQ 96:00 ± 17:00 104:20 ± 12:76 0.364

FSIQ 94:33 ± 15:09 115:40 ± 10:21 0.019

Mean ± SD. TOF: tetralogy of Fallot; HC: healthy children; VIQ: verbal
intelligence quotient; PIQ: performance intelligence quotient; FSIQ: full-
scale intelligence quotient. Bold values represent that the results have
statistical significance.

Table 2: Characteristics of the patients.

Variables FSIQ ≥ 100 FSIQ < 100 p value

Age (year) 9:45 ± 1:17 9:67 ± 1:01 0.905

Sex (male/female) 3/2 2/2 1.000

Education (year) 2:28 ± 1:34 2:00 ± 1:24 1.000

VIQ 104:20 ± 8:87 81:25 ± 4:03 0.016

PIQ 107:80 ± 7:53 81:25 ± 13:15 0.016

Age of surgery (year) 1:97 ± 1:70 1:94 ± 2:25 1.000

Hospital stays (day) 17:00 ± 3:46 19:33 ± 8:62 0.629

Mean ± SD. VIQ: verbal intelligence quotient; PIQ: performance intelligence
quotient; FSIQ: full-scale intelligence quotient. Bold values represent that
the results have statistical significance.
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as brain volume [41, 42], hemispheric sulcal patterns [43–45],
and white matter microstructure.

It is worth noting that some of the preterm children hav-
ing no cerebral palsy on normal scans were observed to have
poor motor outcomes [46]. For these specific children, a pre-
vious study found that a radiomics approach predicts poor
psychomotor outcome at a corrected age of 12 months
[27], which indicated that radiomics has a significant effect
on the predictive value of neurodevelopmental assessment.

Previous studies suggested that some structural brain
abnormalities such as the focal and multifocal lesions [23],
white matter injury, reduced brain volume, and thinner cortex
could be detected by T1WI. With the rapid advances in mod-
ern imaging techniques and application, a variety of new
image sequences (Flair (fluid attenuated inversion recovery),
SWI, DTI (diffusion tensor imaging), fsMRI (fast magnetic
resonance imaging), DWI (diffusion-weighted imaging), DKI
(diffusion kurtosis imaging), PWI (perfusion imaging), MRS
(magnetic resonance spectroscopy), DCE- (dynamic con-
trast-enhanced-) MR, and BLOD-fMRI (blood oxygenation
level-dependent-functional magnetic resonance imaging))

were validly noninvasive diagnostic test for patients with
CHD [7, 44]. However, those new image sequences required
high costs, high-end equipment, and specific professionals;
and neuroimaging was still unable to accurately predict neuro-
development in children affected by CHD. Deeper analyses on
the conventional MRI seemed to be more economical and
have wider applicability.

In this study, we chose the radiomics biomarkers from
whole-brain MRI due to the lack of a well-recognized mask
for children. Contrary to the diagnosis of imaging, the anal-
ysis of radiomics is severely affected by masks which auto-
matically delineate ROIs [47, 48]. We trade off the
assignment of brain regions to achieve higher concordance
within its problem domain. However, delineating the outline
of the brain regions has implications for investigating the
potential mechanisms of pathogenesis.

Considering the limit cases, we selected the statistically
significant radiomics feature between the patients with
TOF and the healthy control for dimensionality reduction.
The smaller cohort size caused overfitting in the model built
by binary logistic regression analysis. Many major features
were significantly more relevant if obtained from wavelet-
transformed images [49].

As shown in many other studies, patients with TOF were
usually tested as low-normal intelligence quotient (IQ). Most
of them were not diagnosed as intellectual impairment by
neuropsychological testing [43, 50]. This agreed with our
results. However, some investigators have previously found
that patients with low-normal IQ have higher possibility in
progressing to abnormal neurodevelopment [51–53]. Con-
sidering these current studies and clinical reality, we pre-
ferred 100 rather than 80 as the cut-off of FSIQ. During
the selection of features, the data of healthy control was
applied for primary screening due to the richness of radio-
mics features and the small sample sizes compared with
the usual ones.
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Figure 2: Selections of radiomics features. (a) Optimal λ value was determined by the LASSO model using 10-fold cross-validation via
minimum criteria. The binomial deviance curves were plotted versus log ðλÞ. (b) LASSO coefficient profiles of the 6 selected features
were presented.

Table 3: List of radiomics features to classify neurodevelopment in
TOF and HC groups.

Image type Feature type Radiomics feature

Original First order Interquartile range

Wavelet-LLH First order Kurtosis

Wavelet-LHL GLSZM Small area high gray level emphasis

Wavelet-HLH NGTDM Complexity

Wavelet-HHL GLSZM Small area high gray level emphasis

Wavelet-
HHH

First order Skewness

H: high-pass filter; L: low-pass filter; GLSZM: gray level size zone matrix;
NGTDM: neighborhood gray-tone difference matrix.
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Figure 3: The performance of established models was evaluated by ROC curves and Spearman analysis. ROC: receiver operator
characteristic.
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Figure 4: The performance of established models was evaluated by ROC curve. ROC: receiver operator characteristic.

Table 4: Summary of LASSO logistic regression.

Estimate Std. error z value Pr > zj jð Þ
(Intercept) 82.213 36.13 2.276 0.0229

Original first-order interquartile range 9.148 10.075 0.908 0.3639

Wavelet-HHH first-order skewness -273.718 122.651 -2.232 0.0256

H: high-pass filter. Bold values represent that the results have statistical significance.
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Additional studies are necessary to find more imaging
biomarkers and radiomics evidence. In order to translate
biomarkers into clinical practice, rigorous technical, biolog-
ical, and clinical validation is needed [49]. The new guide-
lines and standards are set by the European Imaging
Biomarkers Alliance (EIBALL) and Quantitative Imaging
Biomarkers Alliance (QIBA), which standardize the proce-
dure of case inclusion, MRI protocols, feature extraction,
and so on [1, 2], although it is established for neuro-oncol-
ogy, so as in neuroimaging.

This study has a number of limitations. First, the limited
number of cases in this study prevents robust confidence
from our analysis. Radiomics data are mineable that usually
rely on sufficiently large datasets. Considering the uncom-
mon disease entity, the cases are adequate to offer initial
screening efforts and the overall modeling. Second, the
MRI is used to anticipate future neural development in
majority of studies targeting CHD patients. We failed to
make regular telephone or mail contact with these partici-
pants. In other following studies, we will try to interrogate
the prediction of conventional MRI for late neural develop-
ment. Finally, our models have not yet been externally vali-
dated, and thus, the generalizability of the models to other
populations remains unknown. Most published studies on
radiomics have the same shortcomings [1].

5. Conclusion

The radiomics on the conventional MRI can help predict the
neurodevelopment of school-aged children and provide par-
ents with rehabilitation advice as early as possible. More-
over, the radiomics signature may work as an independent
prognostic factor for diagnoses of brain development-
related disorders.
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