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Abstract: This article proposes a normalization multi-layer perception (NMLP) geometry classifier to
autonomously determine the optimal four femtocell evolved Node Bs (FeNBs), which can use time
difference of arrival (TDOA) to measure the location of the macrocell user equipment (MUE) with
the lowest GDOP value. The iterative geometry training (IGT) algorithm is designed to obtain the
training data for the NMLP geometry classifier. The architecture of the proposed NMLP geometry
classifier is realized in the server of the cloud computing platform, to identify the optimal geometry
disposition of four FeNBs for positioning the MUE located between two buildings. Six by six neurons
are chosen for two hidden layers, in order to shorten the convergent time. The feasibility of the
proposed method is demonstrated by means of numerical simulations. In addition, the simulation
results also show that the proposed method is particularly suitable for the application of the MUE
positioning with a huge number of FeNBs. Finally, three quadrilateral optimum geometry disposition
decision criteria are analyzed for the validation of the simulation results.

Keywords: femtocell positioning network; optimum geometry disposition decision criteria;
normalization multi layer perception; iterative geometry training algorithm; time difference of
arrival; cloud computing platform

1. Introduction

The latest Long Term Evolution-Advanced (LTE-A) standard anticipates the increasing use of
small cells (known as femtocells) to provide the geo-location information required to meet the emerging
communication and networking needs of future smart city applications [1,2]. An overview of the LTE
positioning methods is provided in [3], which includes the analysis of previous indoor localization
methods. The aim of the paper [3] is focused on the investigation of the floor detection techniques in
indoor environments. Based on the massive multiple-input multiple-output (MIMO) antennas and the
millimeter wave communication technologies, the small cell concept will appear on the fifth generation
(5G) cellular networks [4]. To realize the seamless coverage, a larger number of small cells have to be
densely deployed in Heterogeneous network (HetNet) scenarios. This trend results in an attractive
technological study of LTE outdoor localization. In providing location-specific services, the location of
the moving macrocell user equipment (MUE) must be known with a high degree of accuracy. Then,
the FeNBs can steer the digital beam-forming (DBF) to suppress the interfering signal generated from
the uplink transmission of the outdoor MUE. Additionally, it could allow the call of the MUE to be
handed to the indoor FeNBs, thereby improving the system efficiency.

MUE localization is conventionally performed using a standalone GNSS/GPS system [5].
However, such systems not only incur a high battery consumption, but may also lack the precision
required to provide true location-specific services. In some cases (e.g., indoor environments or built-up
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urban areas), the GPS signal may be intermittent or too weak to perform localization. Notably, the GPS
measurements obtained using the MUE cannot be directly used for localization purposes in femtocell
networks, since they cannot be transmitted in real time to the femtocell evolved Node Bs (FeNBs) [6].
Various methods have been suggested for improving the MUE localization performance in wireless
networks [7,8]. Thus, in a more recent 3GPP specification (Release 11) [9], it is proposed that MUE
positioning be performed by the radio access net-work (RAN) itself, rather than the MUE.

Existing MUE positioning methods, including those based on time difference of arrival (TDOA),
direction of arrival (DOA), or hybrid TDOA / DOA measurements, generally utilize a Gauss-Newton
Interpolation (GNI) algorithm to estimate the location of the MUE in two-dimensional (2D) space [8,10].
Multi-station TDOA positioning systems use optical communications to send the received signal of
each FeNB to a reference FeNB, which then uses this information to calculate the TDOA between itself
and each transmitting FeNB. Such systems have the advantages of a high accuracy and low system
complexity. Furthermore, the common channel error among the different FeNBs is easily eliminated,
and thus, the synchronization problem becomes trivial.

TDOA positioning systems require at least four FeNBs to locate the moving MUE in
three-dimensional (3D) space. However, the accuracy of the localization results depends on the
geometry disposition of the selected FeNBs. The geometric dilution of precision (GDOP) contour map
of four stations is simulated in [11]. It shows that the square distribution shape provides the best
coverage area, the lozenge shape is the second best, the other irregular quadrilateral (IQ) shapes are the
third best, and the straight line has the worst coverage area. Still, to the best of the author’s knowledge,
there is no other optimization approach provided to autonomously determine the optimum geometry
disposition of four FeNBs. Accordingly, the present study proposes a normalization multi layer
perception (NMLP) geometry classifier to autonomously determine the optimal four FeNBs with a
lower GDOP value and an iterative geometry training (IGT) algorithm to obtain the training data for the
NMLP geometry classifier. The most well-known neural network is the MLP architecture [12], which is
widely used for solving problems related to the classification of the different patterns. Normalizing the
inputs can make training faster and reduce the chances of getting stuck in local optima with the exact
same outputs that the MLP had before [13]. Having obtained the optimal set of FeNBs, the position
of the MUE is estimated using the TDOA method and updated using a tracking filter (such as an
extended Kalman filter or an adaptive α-β-γ filter [14], which will not be included in this article), as
soon as the MUE transmission cannot be continuously received.

In addition, three optimum geometry disposition decision criteria are analyzed for the square,
lozenge, and other quadrilateral shape of the four FeNBs for positioning the moving MUE when
two or more of the same quadrilateral shapes are determined. The derived analytical expressions are
generally applicable to geometries where the MUE is surrounded by the selected FeNBs. A comparison
of the analytical results with simulations using the typical geometries of outdoor positioning systems
shows good agreement.

The structure of the paper is described as follows. Section 2 presents the femtocell positioning
network model. The architecture of the NMLP geometry classifier and the IGT procedure for generating
the training data are described in Section 3. In Section 4, three optimum geometry disposition decision
criteria are also considered, to determine the optimum shape of four FeNBs in the square, lozenge, and
irregular quadrilateral, respectively. In Section 5, the performance of the proposed NMLP geometry
classifier is simulated in the outdoor geo-location scenario. It consists of 16 FeNBs located in two
adjacent multi-floor buildings. Finally, Section 6 concludes the paper.

2. Femtocell Positioning Network Model

The scenarios under study include the combination of a macro cell with femtocells in outdoor
environments, which are operated at the same frequency band. It is assumed that the interference
coordination and smart digital beam forming techniques may be needed to solve the problems
of co-channel interference and signal attenuations. Figure 1 shows an illustrative femtocell
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network consisting of multiple FeNBs deployed throughout two adjacent multi-floor buildings. An
assumption is made that the FeNBs are connected to a cloud-computing platform through the Internet.
Moreover, the coordinates of each FeNB and the training data are pre-stored in the database of the
cloud-computing platform. The training data of the NMLP geometry classifier are determined using
an IGT algorithm based on the TDOA measurements obtained by each FeNB and the GDOP metric.
The architecture of the NMLP geometry classifier is realized in the server of the cloud-computing
platform to perform the searching of the optimal set of FeNBs for positioning purposes.
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Figure 1. Outdoor geo-location scenario between two multi-floor buildings.

The uplink transmissions from the MUE are conventionally handled using the Single
Carrier-frequency division multiple access (SC-FDMA) scheme [15]. Moreover, the signals transmitted
from the MUE are detected by digital time delay estimation (TDE) receivers [16], utilizing a digital
cross-correlation technique in the frequency domain. In the multi-FeNB TDOA positioning system
proposed in this study, the received signal of each FeNB is sent through the Internet to a reference
FeNB, which calculates the TDOA between itself and each FeNB such that the position of the MUE can
be further derived.

Assume that the moving MUE emits an SC-FDMA signal s[n] in 3D space. The received signal at
the reference FeNB (FeNB0) thus has the form:

x0[n] = s0[n] + w0[n], n ∈ [0, M− 1] (1)

where w0[n] is the discrete white Gaussian noise at FeNB0; and the variable n is defined as the sampling
instant. The received signals at three other arbitrarily-chosen FeNBs are given by:

xi[n]= si[n− Di0] + wi[n]
n ∈ [0, M− 1], i = 1, 2, 3

(2)

where wi[n] is the discrete white Gaussian noise at FeNBi. The discrete time delay between FeNBi and
FeNB0 is estimated as:

l̂i = Di0, i = 1, 2, 3 (3)

Four-FeNB TDOA localization schemes calculate the possible MUE location based on the TDOA
measurements of three FeNB receiver pairs lying on separate hyperbola [10]. In other words, the MUE
location is obtained by solving three hyperbolic equations, i.e.:
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ri,0 =
√
(x̂− x0)

2 + (ŷ− y0)
2 + (ẑ− z0)

2

−
√
(x̂− xi)

2 + (ŷ− yi)
2 + (ẑ− zi)

2; i = 1, 2, 3
(4)

where (xi, yi, zi) and (x0, y0, z0) are the coordinates of the ith and reference FeNBs, respectively; and
(x̂, ŷ, ẑ) is the estimated MUE location. In addition, ri,0 is the differential distance between the MUE
and the master FeNB, and the MUE and FeNBi, respectively, and is obtained from the measured time
delay between FeNBi and FeNB0 as:

ri,0 = cDi0
M fs

+ eri,0 = cτ̂i,0 + eri,0 = c(τ̂i − τ̂0) + eri,0

i = 1, 2, 3
(5)

where M is the size of the FFT, τ̂i,0 is the analog time delay between FeNBi and FeNB0, and fs is the
sampling frequency of the analog-to-digital converter. Finally, eri,0 is the measurement error with
standard deviation σei .

The accuracy of range-based positioning location (PL) systems depends on the geometric
relationship between the locations of the FeNBs and the location of the MUE, since errors arising
from channel or hardware perturbations in the TDOA estimates are transformed into geographic
position errors in the hyperbolic solution [10]. The positioning accuracy of different geometric FeNB
configurations can be evaluated using the GDOP parameter, which is defined as the ratio of the root
mean square (RMS) position error to the RMS ranging error. The GDOP for an unbiased estimator and
a 3D hyperbolic system are given by [10]:

GDOP =
1√
N

N

∑
n=1

√
(x− x̂n)

2 + (y− ŷn)
2 + (z− ẑn)

2

σei

(6)

where N is the number of measurements; σei is the standard deviation of the measurement error
eri,0 ; and (x, y, z) and (x̂n, ŷn, ẑn) are the true location and the nth estimated location of the MUE,
respectively. To calculate the GDOP, it is necessary to know the positions of the FeNBs around the
moving MUE. A symbol table is shown in Table 1, which is used to keep track of the symbols and
notations used in the paper.

Table 1. Symbol table.

eri,0 Measurement error
σei Standard deviation of the measurement error

wi[n] Discrete white Gaussian noise
ri,0 The differential distance between the MUE and the master FeNB, and the MUE and FeNBi
τ̂i,0 Analog time delay between FeNBi and FeNB0
fs Sampling frequency of the analog-to-digital converter

W(s)
nm(q) Weight
µ0 Learning rate
c Light velocity
G The variance of the linear optimum unbiased estimator divided by the variance of measurement noise
ε Measurement error
R Sphere radius
T Transpose of the matrix
Nc Total number of correct classifications
P Total number of 4 FeNBs within the sphere
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3. Principle of NMLP Geometry Classifier

The architecture of the NMLP geometry classifier is shown in Figure 2. It consists of input
data normalization, data scaling, an input layer, two hidden layers, and an output layer. The input
vectors include: →

si0si1 = (xi1 − xi0, yi1 − yi0, zi1 − zi0)
→

si0si2 = (xi2 − xi0, yi2 − yi0, zi2 − zi0)
→

si0si3 = (xi3 − xi0, yi3 − yi0, zi3 − zi0)
→

si1si3 = (xi3 − xi1, yi3 − yi1, zi3 − zi1)

(7)

where the coordinates of P set of the four FeNBs are Si = si0(x0, y0, z0)si1(x1, y1, z1)si2(x2, y2, z2)

si3(x3, y3, z3); i = 1, 2, ..., P., where sij is the jth component of the ith input vector and P is the total
number of four FeNBs in the coverage range of the target MUE. Note that each component in a vector
of a quadrilateral is constituted by four FeNBs. The data normalization is obtained by:

→
Si0Si1

′
=

→
Si0Si1
Li,max

= ((xi1 − xi0)
′, (yi1 − yi0)

′, (zi1 − zi0)
′) = (di1, di2, di3)

→
Si0Si2

′
=

→
Si0Si2
Li,max

= ((xi2 − xi0)
′, (yi2 − yi0)

′, (zi2 − zi0)
′) = (di4, di5, di6)

→
Si0Si3

′
=

→
Si0Si3
Li,max

= ((xi3 − xi0)
′, (yi3 − yi0)

′, (zi3 − zi0)
′) = (di7, di8, di9)

→
Si1Si3

′
=

→
Si1Si3
Li,max

= ((xi3 − xi1)
′, (yi3 − yi1)

′, (zi3 − zi1)
′) = (di10, di11, di12)

(8)

where Lmax = maximum of{‖ →si0si1‖, ‖
→

si1si2‖, ‖
→

si2si3‖, ‖
→

si3si0‖}.

Sensors 2017, 17, 817 5 of 17 

 

T Transpose of the matrix 
cN  Total number of correct classifications 

P Total number of 4 FeNBs within the sphere 

3. Principle of NMLP Geometry Classifier 

The architecture of the NMLP geometry classifier is shown in Figure 2. It consists of input data 
normalization, data scaling, an input layer, two hidden layers, and an output layer. The input 
vectors include: 

0 1 1 0 1 0 1 0

0 2 2 0 2 0 2 0

0 3 3 0 3 0 3 0

1 3 3 1 3 1 3 1

( , , )

( , , )

( , , )

( , , )

i i i i i i i i

i i i i i i i i

i i i i i i i i

i i i i i i i i

s s x x y y z z

s s x x y y z z

s s x x y y z z

s s x x y y z z

   

   

   

   








 

(7)

where the coordinates of P set of the four FeNBs are 
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3( , , ) ( , , ) ( , , ) ( , , );   = 1, 2,..., .i i i i iS s x y z s x y z s x y z s x y z i P , where ijs  is the jth component of 

the ith input vector and P is the total number of four FeNBs in the coverage range of the target MUE. 
Note that each component in a vector of a quadrilateral is constituted by four FeNBs. The data 
normalization is obtained by: 

' ' ' '0 1
0 1 1 0 1 0 1 0 1 2 3

,max

' ' ' '0 2
0 2 2 0 2 0 2 0 4 5 6

,max

'
0 3

0 3
,max

(( ) , ( ) , ( ) ) ( , , )

(( ) , ( ) , ( ) ) ( , , )

((

i i
i i i i i i i i i i i

i

i i
i i i i i i i i i i i

i

i i
i i

i

S S
S S x x y y z z d d d

L

S S
S S x x y y z z d d d

L

S S
S S x

L

     

     

 








' ' '
3 0 3 0 3 0 7 8 9

' ' ' '1 3
1 3 3 1 3 1 3 1 10 11 12

,max

) , ( ) , ( ) ) ( , , )

(( ) , ( ) , ( ) ) ( , , )

i i i i i i i i i

i i
i i i i i i i i i i i

i

x y y z z d d d

S S
S S x x y y z z d d d

L

   

     



 

(8)

where max 0 1 1 2 2 3 3 0maximum of{ , , , }.i i i i i i i iL s s s s s s s s
   

 

 
Figure 2. Architecture of the NMLP geometry classifier. 

The scaled input and output data are required for the MLP, in order to provide the correct value 
for an activation function. The linear scaling of data is the transformation from the original data 
variability within the interval ,min ,max[ , ]q qd d  to the interval [0.1, 0.99], and can be performed using 

the Formula [10]: 
' '

,min

,max ,min

( )( )
,  1,..., ; 1,...,iq q

iq
q q

d d b a
q Q i P

d d


 
  


 (9)

Figure 2. Architecture of the NMLP geometry classifier.

The scaled input and output data are required for the MLP, in order to provide the correct value
for an activation function. The linear scaling of data is the transformation from the original data
variability within the interval [dq,min, dq,max] to the interval [0.1, 0.99], and can be performed using the
Formula [10]:

ηiq =
(diq − dq,min)(b′ − a′)

dq,max − dq,min
, q = 1, ..., Q; i = 1, ..., P (9)

where [a′, b′] = [0.1, 0.99]. diq is the original length of the ith input component at the qth neuron of the
input layer. The MLP network of the geometry classifier is composed of 12 (Q) inputs, which represent
12 features of the NMLP geometry classifier.

The sigmoid activation function [12] used is non-linear, differentiable, and is defined by:

y(an(k)) = 1/(1 + e−αan(k)) (10)
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the neuron outputs of last layer where ml = 5 is the total number of neurons in the last layer.
Given the scaled training data: D = {(Si1(k), Di1(k)), ..., (Siml (k), Diml (k))} where Siq(k), Diq(k) are

the given input and the desired output at the kth iteration.
The weight matrices are updated by:

W(s)
nm(q + 1) = W(s)

nm(q) + µ(s)(q)
→

δ
(s)
n (q) ·

→
x(s−1)

out,n (q) (11)

where the learning rate is given by:

µ(v) = µ0/(1 + (k/t)) (100 < t < 500) (12)

For the hidden layer:

→
δ
(s)
j (q) = (

ns+1
Σ

h=1

→
δ
(s+1)
h (q) ·

→
w(s+1)

hj (q))g(
→

v(s)j (q)) (13)

For the output layer:

→
δ
(s)
j (q) = (

→
doutput(q)−

→
x(s)out,j(q))g(

→
v(s)j (q)) (14)

During the training, the network weights are adjusted in order to reduce the mean square error
(MSE) obtained by [12]

MSE =

ml
Σ

q=1
(siq − diq)

2

ml
(15)

The performance of the NMLP geometry classifier will be evaluated in terms of the percentages
for correct classification. It is defined on the difference between the desired output and the estimated
output of the NMLP geometry classifier. The classification accuracy is defined as [12]:

classification accuracy =
Nc

P
× 100% (16)

where Nc is the total number of correct classifications and P is the total number of four FeNBs within
the sphere.

The flowchart of the IGT algorithm is shown in Figure 3, which is used to generate the training
data for the NMLP geometry classifier. As shown in Figure 3, the IGT algorithm comprises five steps.
In the first step, four FeNBs are chosen such that the distance between each pair of FeNBs is less than
the pre-specified diameter of a sphere (expressed in meters). In other words, four FeNBs are selected
such that the following equations are satisfied:√

(xi − x0)
2 + (yi − y0)

2 + (zi − z0)
2 ≤ 2R , i = 1, 2, 3√

(xi − xi+1)
2 + (yi − yi+1)

2 + (zi − zi+1)
2 ≤ 2R , i = 1, 2√

(xi − xi+2)
2 + (yi − yi+2)

2 + (zi − zi+2)
2 ≤ 2R , i = 1

(17)

where (xi, yi, zi)
Ti = 0, 1, 2, 3 are the coordinates of the four FeNBs; R is the sphere radius; and T

denotes the transpose of the matrix. In the second step, the selected set of FeNBs is updated as
required, to ensure that all four FeNBs are located on the same plane. Note that the sufficient condition
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for such a case occurs when the parallelepiped volume constructed by the three vectors
→

s0s1,
→

s0s2,
→

s0s3

is equal to zero. In other words:

∥∥∥∥∥
x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0

∥∥∥∥∥ = 0 (18)

where the FeNB located at coordinates (x0, y0, z0)
T is chosen as the reference station. In the third

step, the geometry disposition of the four FeNBs is evaluated to ensure that the FeNBs form either a
square or a lozenge shape. In this case, the sufficient condition is taken as two of the vectors having a
perpendicular orientation to one another. In other words, the inner product of the two vectors is equal
to zero, i.e.:

−→
s0s2 ·

−→
s1s3 = 0 (19)
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In the fourth step, a check is made to confirm that the four FeNBs are not located on a straight-line.
If four FeNBs are located on a straight-line, this increases the radius, and if not, then the shape is

an IQ. In general, two vectors are parallel if their outer product is equal to zero. Thus, the four FeNBs
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are not located on a straight-line if A ∪ B ∪ C is valid, where A, B, and C are defined, respectively,
as follows:

A :
−→
s0s1 ×

−→
s0s2 6= 0

B :
−→
s0s1 ×

−→
s0s3 6= 0

C :
−→
s0s2 ×

−→
s0s3 6= 0

(20)

If the conditions associated with Steps 1, 2, and 3 are satisfied, the optimal four-FeNB disposition
has a low GDOP. Otherwise, if the conditions associated with Steps 1, 2, and 4 are satisfied, the
acceptable four-FeNB configuration is determined with a higher GDOP. A lower GDOP represents a
better localization result. As soon as either case is satisfied, the coordinates of the moving MUE are
estimated using the TDOA method. Finally, in the fifth step, a check is made to confirm that the four
FeNBs and MUE are located within the designated sphere, i.e.:

(xi − x̂)2+(yi − ŷ)2 + (zi − ẑ)2

≤ [200 + (r− 1)× 20]2 = R2

i = 0, 1, 2, 3 , r = 1, 2, 3, · · ·
(21)

where the coverage radius R of the MUE is initiated with 200 m and increased with the increment of
20 m.

4. Optimum Geometry Disposition Decision Criteria

It was noted that the optimum quadrilateral shapes, consisting of four FeNBs, can be selected to
measure the location of the moving MUE. The square is the best, the lozenge is next, and the IQ is the
worst. When two or more of the same quadrilateral shapes are selected, the following three optimum
geometry disposition decision criteria are considered, to determine the best accuracy of the TDOA
positioning measures. The GDOP formulas of three optimum geometry disposition decision criteria
are derived. Since the location of four FeNBs is fixed, the quadrilateral shape of the FeNBs does not
change due to the movement of the MUE. Therefore, in order to simplify the proof of selecting the
optimum shapes of four FeNBs, three different criteria are proved in the two dimensional space, and
the results are still valid in the three dimensional space.

Criterion 1: Square optimum geometry disposition decision criterion depends on the distance
between the MUE and the square center. When the distance is shorter, the positioning accuracy
is better.

Let the distance from the MUE to the ith FeNB be given by [11]:

ri,TDOA =

√
(x− xi)

2 + (y− yi)
2, i = 0, 1, 2, 3 (22)

The differential distance is obtained from subtracting two TDOA measurements between FeNBi
and FeNB0.

∆ri,TDOA = ri,TDOA − r0,TDOA, i = 1, 2, 3 (23)

The TDOA measurements for three pairs of FeNBs are given as:

ti − t0 =
∆ri,TDOA

c
+

(εi − ε0)

c
i = 1, 2, 3 (24)

where c is the light velocity and the measurement error is expressed as:

ε =


ε0

ε1

ε2

ε3

 (25)
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It is assumed that the errors in all actual measurements are random, independent, and have an
identical root mean square (RMS) value σ2

r .

E[εi] = ε

E
[
εiε j
]
= 0

E
[
ε2

i
]
= σ2

r + ε2, i = 0, 1, 2, 3

σ2
r = E

[
(εi − E[εi])

2
]
= E

[
ε2

i
]
− ε2

(26)

The TDOA measurement errors for three pairs of FeNBs can be expressed as the matrix form.

 (ε1 − ε0)

(ε2 − ε0)

(ε3 − ε0)

 =

 −1 1 0 0
−1 0 1 0
−1 0 0 1




ε0

ε1

ε2

ε3

 = Aε (27)

The error covariance matrix is:

Q = E
[
(Aε)(Aε)T

]
= AE

[
εεT]AT = (σr

2 + ε2)AAT

= (σ2
r + ε2)

 2 1 1
1 2 1
1 1 2

 (28)

The partial derivatives of the noise free measurement Equations (23) with respect to the unknown
MUE coordinates (x, y) are given as:

d∆ri = (
x− xi

ri,TDOA
− x− x0

r0,TDOA
)dx + (

y− yi
ri,TDOA

− y− y0

r0,TDOA
)dy; i = 1, 2, 3 (29)

The matrix is expressed as:

 d∆r1,TDOA
d∆r2,TDOA
d∆r3,TDOA

 =


x−x1

r1,TDOA
− x− x0

ro,TDOA
+

y− y1

r1,TDOA
− y− y0

ro,TDOA
x−x2

r2,TDOA
− x− x0

ro,TDOA
+

y− y2

r2,TDOA
− y− y0

ro,TDOA
x−x3

r3,TDOA
− x− x0

ro,TDOA
+

y− y3

r3,TDOA
− y− y0

ro,TDOA


[

dx
dy

]
(30)

where:

H =


x− x1

r1,TDOA
− x− x0

ro,TDOA
x− x2

r2,TDOA
− x− x0

ro,TDOA
x− x3

r3,TDOA
− x− x0

ro,TDOA

y− y1

r1,TDOA
− y− y0

ro,TDOA
y− y2

r2,TDOA
− y− y0

ro,TDOA
y− y3

r3,TDOA
− y− y0

ro,TDOA

 (31)

When the error covariance matrix is not diagonal, as in Equation (28), the GDOP will be given by:

GDOP =
√

trace(G) (32)

where the matrix G is the variance of the linear optimum unbiased estimator divided by the variance
of measurement noise [17].

G =
1

σr2 (HTQ−1H)
−1

(33)
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For the simplification of proving the square optimum geometry disposition decision criterion, the
coordinates of FeNB0 (1, 0), FeNB1 (0, 1), FeNB2 (−1, 0), FeNB3 (0, −1), and MUE (x, y) are substituted
into Equation (29), to yield:

H =



x√
x2 + (y− 1)2

− x− 1√
(x− 1)2 + y2

x + 1√
(x + 1)2 + y2

− x− 1√
(x− 1)2 + y2

x√
x2 + (y + 1)2

− x− 1√
(x− 1)2 + y2

y− 1√
x2 + (y− 1)2

− y√
(x− 1)2 + y2

y√
(x + 1)2 + y2

− y√
(x− 1)2 + y2

y + 1√
x2 + (y + 1)2

− y√
(x− 1)2 + y2


(34)

When the MUE moves from (1, 0) to (0.1, 0), the GDOPs for different average TDOA position
measurement errors (0, 1, 2, 3, 4 m) are computed and these are shown in Figure 4. It shows that the
GDOP decreases with the distance between the MUE and the square center. The GDOP also decreases
with the average TDOA position measurement error.
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Criterion 2: Lozenge optimum geometry disposition decision criterion depends on the
complementary angle difference (CAD), which is the difference between two complementary angles
of a lozenge shape. When the CAD of the lozenge optimum geometry disposition is smaller, the
positioning accuracy is better.

For simplification, the GDOP formula is derived by substituting the coordinates of FeNB0 (1, 0),
FeNB2 (−1, 0), FeNB1 (0, N), FeNB3(0, −N), and MUE (0.1, 0) into Equation (31), to yield:

H =


1

10
√

N2 + 0.01
+ 1

2
1

10
√

N2 + 0.01
+ 1

−N√
N2 + 0.01

0
N√

N2 + 0.01

 (35)
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Substituting Equations (28) and (35) into Equation (33) yields:

G =


(5 + ε2)(N2 + 0.01)

200N2 + 3
0

0
(5 + ε2)(N2 + 0.01)

10N2

 (36)

Then the GDOP of lozenge shape is expressed as:

GDOP = G1,1 + G2,2

=
(ε2 + 5)(N2 + 0.01)

200N2 + 3
+

(ε2 + 5)(N2 + 0.01)
10N2

(37)

The CAD formula is derived as:

CAD = 2(arccos(
1√

1 + N2
)− arccos(

N√
1 + N2

)) (38)

Figure 5 is generated from Equations (37) and (38), where N varies from 0 to 1 and σ2
r = 5. It shows

that the GDOP decreases with the CAD. The GDOP also decreases with the average TDOA position
measurement error. When N = 1, CAD = 0◦. This is the square shape, which has a smaller GDOP
value than the lozenge shape. When N = 0, CAD = 180◦. This is the straight line, which has the largest
GDOP value.
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Criterion 3: Irregular-quadrilateral optimum geometry disposition decision criterion depends on
the distance between the diagonal intersection and the center of the IQ. When the distance is shorter,
the positioning accuracy of the IQ optimum geometry disposition is better.

For simplification, the GDOP formula is derived by substituting the coordinates of FeNB0 (0.5, 0),
FeNB1 (0, y1), FeNB2 (−0.5, 0), FeNB3 (0, −1), and MUE (0.1, 0) into Equation (31), to yield:

H =


1

10
√

y1
2 + 0.01

+ 9
4

4.083
2.3495

−y1√
y1

2 + 0.01
0

0.995

 (39)
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Figure 6 is generated from Equations (28), (32), (33), and (39), where y1 varies from 0 to 1. It shows
that the GDOP decreases with the distance between the diagonal intersection and the center of the
quadrilateral and the average TDOA position measurement error.
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5. Simulations

In performing the simulations, it was assumed that the time delay between FeNBi and FeNB0

was successfully measured with a detection probability of Pd = 0.9, while the false alarm probability
was equal to PFA = 10−4. Moreover, the signal-to-noise ratio (SNR) of the TDE receivers with a linear
optimum filter was assumed to be −13 dB over the Rayleigh channels, with Pd = 0.9 and PFA = 10−4.
The simulations considered the outdoor geo-location scenario shown in Figure 1, consisting of 16
FeNBs located in adjacent multi-floor buildings. The total number of four FeNBs in the coverage
range of the target MUE is P = 1820. Moreover, the moving MUE was assumed to be located between
two buildings and positioned at the boundary of a macrocell network. The coordinates of the MUE
trajectory are (60, 0, 0), (60, 10, 0), (60, 20, 0), (60, 30, 0), (60, 40, 0), (60, 50, 0), (60, 60, 0), (60, 70, 0),
(60, 80, 0), and (60, 90, 0). In simulations, the SC-FDMA signal was considered as it is used by LTE
MUE as an uplink access scheme [7,15]. The SC-FDMA waveforms are specified with bandwidth
10 MHz, subcarrier spacing 15 KHz, FFT/IFFT size 1024, and preamble length 320. The sixteen FeNBs
in accordance with their coordinate information are shown in Table 2. (Note that the coordinates are
expressed in units of meters.) Any four FeNBs constituted a quadrilateral group. Moreover, the MUE
is assumed to be moving between two adjacent buildings. The simulation tool is Matlab. After the
simulations, the performance of the proposed NMLP geometry classifier using the multi-station TDOA
MUE localization scheme was numerically evaluated.

Table 2. Coordinates of sixteen FeNBs.

FeNB1: (0, 0, 30) FeNB5: (0, 0, 40)
FeNB2: (0, 120, 30) FeNB6: (0, 120, 60)
FeNB3: (120, 0, 30) FeNB7: (120, 0, 20)
FeNB4: (120, 120, 30) FeNB8: (120, 120, 40)
FeNB9: (0, 60, 5) FeNB13: (0, 0, 20)
FeNB10: (0, 60, 60) FeNB14: (0, 15, 30)
FeNB11: (120, 0, 0) FeNB15: (0, 30, 40)
FeNB12: (120, 100, 60) FeNB16: (0, 45, 50)
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The simulations are performed as follows. First, the IGT algorithm is used to calculate the training
data of all quadrilateral FeNBs. Then, the NMLP geometry classifier is trained to determine the optimal
shape by searching all of the quadrilateral sets of FeNBs within the detection range of the MUE signal.
The weight matrices of MLP networks for the first, second, and third layers are W(2)

nm, W(3)
nm, and W(4)

nm,
respectively. The matrix dimensions are 12 × 6, 6 × 6 and 6 × 5, respectively. The desired outputs
obtained from the training results are classified as five different shapes, which include [0.99, 0.01,
0.01, 0.01, 0.01], [0.01, 0.99, 0.01, 0.01, 0.01], [0.01, 0.01, 0.99, 0.01, 0.01], [0.01, 0.01, 0.01, 0.99, 0.01],
and [0.01, 0.01, 0.01, 0.01, 0. 99] for the square, lozenge, IQ, straight-line, and non-planar shapes,
respectively. Finally, the optimum geometry disposition decision criteria are used to determine the
best accuracy of the TDOA positioning measures.

Figure 7 shows that the MLP network using six by six neurons for the hidden layers has the
shortest convergence time. It achieved a classification accuracy of 98.0659%. Figure 8 shows that the
NMLP geometry classifier can improve the convergent time, and the classification accuracy achieved
was 98.0330%. Table 3 shows the estimated NMLP network outputs of five neurons for five different
shapes. The estimated NMLP geometry classifier outputs are [0.9418, 0.0186, 0.0587, 0.0145, 0.0173],
[0.0504, 0.8951, 0.0751, 0.0291, 0.0912], [0.0124, 0.0186, 0.9427, 0.0624, 0.0174], [0.0107, 0.0181, 0.0114,
0.9755, 0.0130], and [0.0178, 0.0136, 0.0584, 0.0175, 0.9581] which are classified as square, lozenge, IQ,
straight-line, and non-planar shapes, respectively.
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Table 3. Estimated NMLP output for different geometries.

Neuron 1
Output

Neuron 2
Output

Neuron 3
Output

Neuron 4
Output

Neuron 5
Output

square 0.9418 0.0186 0.0587 0.0145 0.0173
lozenge 0.0504 0.8951 0.0751 0.0291 0.0912

IQ 0.0124 0.0186 0.9427 0.0624 0.0174
straight line 0.0107 0.0181 0.0114 0.9755 0.0130
not co-plane 0.0178 0.0136 0.0584 0.0175 0.9581
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Figure 8. MSE comparison between NMLP and MLP networks for six by six neurons in the first and
second layers.

The classification results after training are shown in Table 4, which shows the number of geometry
classifications for three cases. For all FeNBs, a unique square geometry is selected by the proposed
NMLP geometry classifier to estimate the current MUE position obtained using the TDOA scheme.
Here, the TDOA measurement error of each FeNB is assumed to be Gaussian distributed with a mean
of zero and a standard deviation of σei = 5 m. Moreover, the true coordinates of the MUE are assumed
to be (60, 50, 0). The GDOP value is calculated as 1.533 m. For the case not including FeNB4 in the
adjacent multi-floor buildings, P reduces to 1465, and two lozenge geometry groups are selected by the
proposed NMLP geometry classifier. The CAD of the first lozenge geometry group is 0.8◦ and the CAD
of the second lozenge group is 3.1◦. The GDOP value of the former group is 2.012 m and the GDOP
value of the latter group is 2.432 m. Then, four FeNBs of a lozenge geometry with a GDOP value of
2.012 m are determined by the proposed NMLP geometry classifier. The decision criterion 2 is verified.
The positioning accuracy is better when the CAD of the lozenge optimum geometry disposition is
smaller. The TDOA measurement error of the lozenge geometry group is larger than the square
geometry group if the FeNB4 is not deployed in the adjacent multi-floor buildings. For the case not
including FeNB4 and FeNB8 in the adjacent multi-floor buildings, P reduces to 1001, and all of the
square and lozenge geometry groups will be removed. In accordance with the IQ optimum geometry
disposition decision criterion, the IQ group with the minimum GDOP value of 4.354 will be selected
from 263 IQ groups.

Table 4. Number of geometry classifications.

Square Lozenge IQ Straight Line Not Co-Plane

all FeNBs 1 6 217 4 1593
FeNB 4 not included 0 2 139 4 1220
FeNB4,8 not included 0 0 263 5 733

When the MUE moves from the position (60, 0, 0) to (60, 90, 0), the trajectory of the moving
path is shown in Figure 1. The proposed NMLP geometry classifier determines the first three best
shapes for the three cases. The GDOP values of the first three best quadrilateral shapes for all FeNBs
are listed in Table 5, which shows that the GDOP of the square geometry group is smaller when the
distance between the MUE and the square center is shorter. The GDOP of the square geometry group is
smaller than the lozenge geometry. When two lozenge geometry groups are selected by the proposed
NMLP geometry classifier, the GDOP for the CAD of 0.8◦ is smaller than the CAD of 3.1◦. In this
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case, the former is determined. Both decision criteria 1 and 2 are verified by the simulation results
of Table 5. Table 6 shows the GDOP values of the first three best quadrilateral shapes for the case
not including FeNB4 in the adjacent multi-floor buildings. It shows that the GDOP of the lozenge
geometry group is smaller than the IQ geometry. The GDOP values of the first three best quadrilateral
shapes for the case not including FeNB4 and FeNB8 in the adjacent multi-floor buildings are shown in
Table 7, which demonstrates that the GDOP values are smaller when the distance between the diagonal
intersection and the center of the IQ is shorter. The decision criterion 3 is verified. When four FeNBs
with coordinates (0, 0, 50), (0, 180, 50), (180, 0, 50), and (180, 180, 50) are added into the buildings,
the total number of four FenBs in the coverage range of the target MUE increases to P = 4845. The
simulation results show that the GDOP value is calculated as 1.053 m and the classification accuracy
achieved is 97.196%.

Table 5. GDOP of the first three best shapes for all FeNBs.

MUE Trajectory
CAD Square (0◦ CAD)

(Distance of MUE to Square Center)
Lozenge

(0.8◦ CAD)
Lozenge

(3.1◦ CAD)

(60, 0, 0) 8.114 (67.082 m) 10.901 12.648
(60, 10, 0) 6.359 (58.31 m) 7.506 9.796
(60, 20, 0) 4.781 (50 m) 6.905 7.203
(60, 30, 0) 3.203 (42.426 m) 4.631 5.049
(60, 40, 0) 1.806 (36.056 m) 2.564 3.593
(60, 50, 0) 1.533 (31.623 m) 2.012 2.432
(60, 60, 0) 1.053 (30 m) 1.435 1.915
(60, 70, 0) 1.546 (31.623 m) 2.216 2.609
(60, 80, 0) 2.371 (36.056 m) 2.651 3.140
(60, 90, 0) 2.689 (42.426 m) 3.206 3.710

Table 6. GDOP of the first three best shapes not including FeNB4.

MUE Trajectory
CAD Lozenge

(0.8◦ CAD)
Lozenge

(3.1◦ CAD)
IQ (0 m)

(60, 0, 0) 10.901 12.648 13.703
(60, 10, 0) 7.506 9.796 11.27
(60, 20, 0) 6.905 7.203 9.656
(60, 30, 0) 4.631 5.049 6.157
(60, 40, 0) 2.564 3.593 4.658
(60, 50, 0) 2.012 2.432 3.604
(60, 60, 0) 1.435 1.915 2.161
(60, 70, 0) 2.216 2.609 2.958
(60, 80, 0) 2.651 3.140 3.411
(60, 90, 0) 3.206 3.710 3.907

Table 7. GDOP of the first three best shapes not including FeNB4, FeNB8.

MUE Trajectory
Distance

IQ (0 m) IQ (8.75 m) IQ (15.052 m)

(60, 0, 0) 15.474 16.466 17.476
(60, 10, 0) 12.862 14.911 16.143
(60, 20, 0) 10.781 11.168 12.569
(60, 30, 0) 6.656 7.114 7.572
(60, 40, 0) 5.005 6.436 6.632
(60, 50, 0) 4.354 5.444 6.733
(60, 60, 0) 3.015 4.064 6.256
(60, 70, 0) 3.482 3.924 4.719
(60, 80, 0) 3.815 4.327 6.191
(60, 90, 0) 3.252 5.235 5.592
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6. Conclusions

This paper proposes a novel NMLP geometry classifier and IGT algorithm for autonomously
reducing the positioning error of four-FeNB TDOA measurements. Three optimum geometry
disposition decision criteria are analyzed for the square, lozenge, and other IQ shape of the four
FeNBs, for positioning the moving MUE. The derived analytical expressions are generally applicable
to geometries where the MUE is surrounded by the selected FeNBs. The simulation results have
confirmed that the proposed NMLP geometry classifier and optimum geometry disposition decision
criteria can provide accurate outdoor geo-location information on the MUE for indoor femtocells to
support its quality of services in HetNet. A comparison of the analytical results with simulations using
the typical geometries of outdoor positioning systems shows good agreement.

The computational burden is mainly caused by the offline IGT algorithm simulations pertaining
to the construction of the training data. Once the initial learning of the NMLP is finished using the
collected training data to optimize network weights based on the NMLP network outputs of five
neurons for five different shapes, the additional computation overhead in NMLP is light. Since the
operations of the NMLP geometry classification are executed in the server, it is assumed that the
computation ability of the server is powerful enough to determine the optimal geometry disposition
for femtocell positioning networks. The information regarding the training data that governs the
NMLP geometry classification operation of femtocell positioning networks is stored in a database. As
soon as a new operation condition occurs, the new training data is generated from the simulation and
included in the database to rerun the IGT training procedure of Figure 3. The simulation results show
that the proposed method is particularly suitable for the application of MUE positioning with a huge
number of FeNBs.

How to optimally determine four FeNBs to position the UE in indoor scenarios is another hot
research topic in current telecommunication industries and academics. The proposed NMLP geometry
classifier and IGT algorithm will be applied to the study of indoor femtocell positioning networks.
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