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Background
Diffuse optical tomography (DOT) has attracted widespread interest in recent years due 
to its non-invasive [1, 2] and sensitive [3] properties, which offers huge clinical poten-
tial. This biomedical imaging modality presents lower radiation risk than those meth-
ods using X-ray [3] and has extensive applications including optical mammography and 
functional brain imaging [1, 4]. DOT reconstructs the spatial distribution of the optical 
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properties such as absorption coefficients, which provide useful functional information 
about blood volume and oxygenation. However, the reconstructed images of DOT often 
suffer from the low spatial resolution and are significantly affected by measurement 
noise because the inverse problem of DOT is highly ill-posed [1–5]. The inverse problem 
of DOT is both undetermined because the available measurements are far fewer than 
the unknown variables to be reconstructed and ill-conditioned because of the domi-
nance of scattering during the propagation of light in human tissues.

To alleviate this ill-posedness, researchers introduced various useful prior information to 
regularize the DOT inverse problem. The first introduced prior information is smoothness 
constrain incorporated in the well-established Tikhonov regularization method, which to 
some extent improved the reconstruction image. The involved optimization problem can 
be effectively solved because its objective function is differentiable. However, the recon-
structed image of this method is often over-smoothed, due to the incorporated smoothness 
constraint, discouraging sharp edges in the reconstructed images. The second important 
prior information, used to alleviate the ill-posedness, is that the real solution is sparse. Its 
corresponding regularization term is based on the Lp-norm (0 ≤ p ≤ 1) instead of L2-norm. 
These sparsity regularization methods can facilitate the recovery of the sharp edges and 
are robust with noise [4, 5]. This is based on the clinical fact that the breast tumor usu-
ally accounts for a small part of the overall breast, and the remaining part is healthy [2, 4]. 
Thus, the changes of the optical coefficients, which can be caused by the regional blood 
blow changes or the early stage of breast cancers are expected to be localized. That is to say, 
the original reconstruction problem itself is sparse. Up to now, researchers have devised a 
variety of sparsity regularization methods using different Lp (0 ≤ p ≤ 1)-norms [6, 7]. For 
example, in case of L1-norm, Amir Beck et al. proposed a practical method named FISTA 
[8] using the gradient information; Figueiredo et  al. proposed a method called GPSR [9] 
to split the L1-norm into two parts, from which the gradient is easy to obtain. To use Lp 
(0 < p < 1)-norm regularization, several approaches [4, 10, 11] were proposed to obtain the 
optimal solution with the help of majorization-minimization framework. When p = 0, a 
well-established smooth L0-norm based regularization method [4, 12] was designed, which 
had proven to be effective. The total variation methods of special sparsity regularization [13] 
also improved the reconstruction image by using the L1-norm of the difference of neighbor-
ing pixels rather than that of the vector in the reconstructed image as the constraint term.

However, image reconstruction using these algorithms is a rather lengthy process. Their 
objective functions are essentially non-differentiable, unlike those of the Tikhonov method, 
making it impossible to use their gradient information directly to minimize them. More 
specifically, using these algorithms requires more computational work and time seeing as 
the full gradient information cannot be easily obtained to guide the optimization process.

In this paper, a new kind of non-negative prior information is introduced for the first 
time, designing regularization methods with differentiable objective functions for L1-
norm, Lp (0 < p < 1)-norm and L0-norm. These regularization methods not only make 
full use of the gradient information of the objective functions, like the Tikhonov method, 
but also retain the advantages of the sparsity regularizations in improving image quality. 
To investigate the performances of these proposed methods, the methods with the non-
negative constraint and those without the non-negative constraint are compared, using 
numerical simulation and phantom experiments.
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Methods
The non‑negative prior information

This work assumes that scattering coefficients are both known and spatially constant. 
Utilizing the finite element formulation to discretize the photon propagation model, 
the reconstruction of the absorption coefficients in DOT can be simplified into a linear 
equation with the following form:

where δŴ ∈ RNm is the measurement vector with the number of measurements 
Nm · J ∈ RNm×Nn is the Jacobian matrix with the number of nodes Nn in the finite element 
method. δµa ∈ RNn refers to the perturbation of absorption coefficients. n ∈ RNm is the addi-
tive noise introduced unavoidably during the measurement or the error in the computation.

The common regularization methods, using different prior information to solve the 
above linear equation, can be summarized with an optimization problem as follows

where the first term 12 ||Jδµa − δŴ||22 is the fidelity term and the second term �
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the regularization term. The regularization parameter, λ, is a non-negative value balanc-
ing between the data fitting and Lp-norm penalty (0 ≤ p ≤ 1). When p = 2, Eq. (2) is the 
well-known Tikhonov method. Equation (2) represents a variety of sparsity regulariza-
tion methods, when 0 ≤ p ≤ 1. The fidelity term is differentiable but the regularization 
term is non-differentiable when 0 ≤ p ≤ 1, making it impossible to effectively minimize 
the objective function using the full gradient information.

To optimize Eq.  (2) more efficiently and more precisely, a new kind of non-negative 
prior information is incorporated to constrain the solution. Specially speaking, from 
the viewpoint of physiology, the abnormal absorption coefficients caused by the breast 
tumor with angiogenesis must have bigger absorption coefficients than those of the 
normal region because the tumor has more hemoglobin [5]. Thus the changes of the 
absorption coefficients compared with the normal region are non-negative; that is to say, 
δµa ≥ 0 can be used as an inequality constraint. This is the non-negative prior informa-
tion, which will play important role in designing differentiable objective functions for 
sparsity regularization methods and reconstructing images of higher quality.

L1‑norm regularized reconstruction scheme with the non‑negative constraint

When p = 1, the regularization term can be made differentiable by introducing the non-
negative constraint. Specifically speaking, knowing δµa ≥ 0 in advance, Eq.  (2) can be 
simplified into the following simple problem

The objective function f(δμa) in (3) is differentiable, making it possible to optimize 
(3) using full one-order gradient information. The gradient of the objective function 
is g = JT ∗ (Jδµa − δŴ)+�1Nn, where 1Nn = [1, 1, . . . , 1]T ∈ RNn×1. The constraint 

(1)δŴ = Jδµa + n,

(2)δµ∗
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δµa ≥ 0 is a bound constraint, for which the gradient projection method [9] is particu-
larly effective, further simplifying the optimization process. Before exhibiting in detail 
the full algorithm, the projection of any arbitrary vector δµa onto the feasible region 
[L,U] is defined as follows: the ith component is given by

The piecewise linear path δµa(t) starting from the initial point and obtained by projecting 
the steepest descent direction at δµ0

a onto the feasible region is thus given by

where g = ∇f(δµ0
a) and t is the stepsize. δµa ≥ 0 is a bound constraint; that is to 

say, the upper bound is U = [∞,∞, . . . ,∞]T ∈ RNn×1 and the lower bound is 
L = [0, 0, . . . , 0]T ∈ RNn×1. This process is simple and requires less amount of computation, 
making it suitable for solving large-scale problems where the dimensions are very large.

The detailed gradient projection method for L1-norm regularized reconstruction scheme 
with non-negative constraint is shown below, according to the optimization theory. Here-
inafter, this method will be referred to as the NL1 (Non-Negative L1) method for short.

(4)P(δµa,L,U)i =







Li if δµai < Li
δUai if δµai ∈ [Li,Ui]
Ui if δµai > Ui

.

(5)δµa(t) = P(δµ0
a
− tg,L,U),
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Lp‑norm regularized reconstruction scheme with the non‑negative constraint

In the case of 0 < p < 1, the gradient of the regularization term is different from that 
of the L1-norm. Taking advantage of the non-negative prior information, the proposed 
objective function is

In this scenario, the gradient of the objective function is 
g = JT ∗ (Jδµa − δŴ)+�

∑Nn
i=1

1

δµ
1−p
ai +C

, where C is a small positive constant that provides 
stability by ensuring that the zero components of δμa do not prohibit a nonzero estimate 
in the next step. Like the NL1 method algorithm, the NLp (Non-Negative L1) algorithm 
is designed by replacing the gradient term with g = JT ∗ (Jδµa − δŴ)+�

∑Nn
i=1

1

δµ
1−p
ai +C

 . 
The remaining part of this algorithm is the same as that of the NL1 algorithm. In this 
paper, the values of p and C are fixed at 1/2 and 1e-6, respectively.

L0‑norm regularized reconstruction scheme with the non‑negative constraint

For p = 0, i.e., the NL0 (Non-Negative L0) method, the optimization problem is NP-hard, 
and cannot be solved efficiently. Incorporating the non-negative prior information and 
the approximate L0-norm, the proposed complete objective function is as follows

The parameter σ controls the degree of approximation. For smaller values of σ, the reg-
ularization term is more approximate to L0-norm and is more difficult to be minimized 
[12]. After ignoring constant terms, Eq. (7) can be rewritten as

The introduction of the non-negative prior information makes it easy to calculate the 
gradient as

The whole algorithm for the NL0 (Non-Negative L0) is presented as follows using the 
pseudo code: 
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Numerical and phantom experiments
To evaluate the performances of the proposed regularization methods, several numeri-
cal and phantom experiments are conducted. Their reconstructed results are evaluated 
and then compared with those of the conventional regularization methods based on the 
same norm.

Conditions

As illustrated in Fig.  1, a 2-D circular breast-sized turbid medium with the radius of 
R  =  40  mm is used for the investigations. Two circular tumor-emulating regions of 
6-mm radius (Target #1 and Target #2) are embedded into the background medium 
symmetrical to the Y-axis, and have higher absorption coefficients. Depending on the 
purposes of the experiments, the center-to-center separation (CCS) between the two 
targets can be varied. In both the numerical and phantom experiments for the spatial 
resolution evaluation, the targets are located at (x = ±11 mm, y = 0 mm), (x = ±13 mm, 
y = 0 mm) and (x = ±15 mm, y = 0 mm), i.e., CCS = 22, 26 and 30 mm, respectively. In 
the experiments for the quantitativeness and gray resolution assessments, the targets are 
fixed at (x, y) = (x = ±20 mm, y = 0 mm), corresponding to CCS = 40 mm.

The optical properties of healthy and diseased breast tissues have been extensively 
investigated using both in  vitro and in  vivo methods [14]. Most investigations have 
measured the absorption and (reduced) scattering coefficients of healthy breast tissues 
in the range of 0.002–0.008 mm−1 and 0.6–1.3 mm−1, respectively, in the near-infrared 
wavelength range. The in vivo measurements reported by Tromberg et al. indicate that 
some tumors exhibit 1.25 to threefold higher absorption than normal breast tissue [15]. 
Overall, most evidence suggests that the ratio between the absorption for healthy and 
diseased tissues are of the order of a factor of 2 [14]. In this paper, to simulate the clinical 
cases, the absorption and (reduced) scattering coefficients of the background medium 

Fig. 1  Structural schematic diagram of the medium. In both the numerical and phantom experiments for 
the spatial resolution evaluation, the CCS is set to 22, 26, and 30 mm, respectively. For the quantitativeness 
and gray resolution analysis, the CCS is fixed at 40 mm
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are set to 0.004 and 1 mm−1, respectively. For the target regions, the absorption coef-
ficients vary with the purposes of the experiments while the scattering coefficients are 
the same as that of the background: for the spatial resolution, the absorption coefficient 
of the targets are set as 0.008 mm−1; for the quantitativeness, both the two targets have 
the same absorption coefficients of 0.005, 0.006 mm, and 0.008 mm−1, mimicking the 
tumors with contrasts of 1.25, 1.5 and 2.0, respectively. For the grayscale resolution, 
the two targets have different absorption coefficients, paired as (0.0072, 0.0088 mm−1), 
(0.0064, 0.0096 mm−1) and (0.0056, 0.0104 mm−1), corresponding to a grayscale differ-
ence of 10, 20 and 30%. It is worth noting that the same experimental setup, including 
the geometry and optical coefficients, are also used in the phantom experiments, facili-
tating the mutual collation between the numerical and phantom experiments.

Thirty-two source positions (red regions) evenly located one mean transport length 
inside the boundary are illuminated by the continuous-wave source one by one. For each 
illumination, except the 15 detectors nearest to the source position, the remaining 17 
detectors evenly located on the surface of the medium are used to measure the intensi-
ties of the reemitted light, leading to a total of 32 × 17 measurements.

Four metrics are adopted to objectively select the optimal regularization parameters 
based on the reconstruction image quality [16]. First, the root mean square error (RMSE) 
is defined to measure the difference between the reconstructed and the true values

where μa(r) and μa
tr(r) are the reconstructed and true absorption images at position r, 

respectively. Second, the area ratio (AR) is defined to measures the ratio of the recon-
structed target area to the true one

where Atr and Atg denotes the true and reconstructed target regions, respectively, with 
the latter defined as the voxels with their values higher than one half of the maximum of 
the reconstructed values, and|·| is the operator for area calculation. Third, the contrast-
to-noise ratio (CNR) is defined to assess how the targets can be distinguished from the 
background

where w = |Atg|/|Atg|(|Atg| + |Abg|) with Abg representing the background region, ‘Mean’ 
and ‘Var’ operators for mean and variance calculations, respectively. Finally, to globally 
assess the reconstruction image quality, a total error (TE) is defined as follows:

(10)RMSE =

√

||µa(r)− µtr
a (r)||22

||µtr
a (r)||22

,

(11)AR =
|Atg|
|Atr|

,

(12)CNR =
Meanr∈Atg [µa(r)] −Meanr∈Abg [µa(r)]

√

wVarr∈Atg [µa(r)] + (1− w)Varr∈Abg [µa(r)]
,

(13)TE = eRMSE+absolute(AR)/CNR,
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When optimizing the regularization parameter λ, TE is calculated as a function of the 
regularization parameter, λ. The λ producing the smallest TE is selected because it pro-
vides the best balance across the above 3 metrics.

For enforcing evaluation of the method performances, three further metrics, namely 
SR, AC and GR, are defined to quantitate the spatial resolution, quantitativeness and 
grayscale discerning ability of the reconstructed images, respectively [17] 

where μa(x) is the profile of the absorption image along the X-axis, i.e., 
μa(x) = μa(r)|r=(x,0).

Generally speaking, better image reconstruction can be identified by: smaller RMSE, 
TE, and SR values; a larger CNR value; an AR value closer to 1; and AC and GR values 
closer to the true values.

Numerical experiments

To more closely simulate the real case, we assume that the main noises in the meas-
urements are Gaussian noise [4–6]. Gaussian of different levels are added to the pure 
simulated measurements. The signal-to-noise ratio (SNR) of the detecting location 
with the weakest light is set to SNRmin =  20 and 30  dB, respectively. The best signal-
to-noise ratio for a number of photons, N, reaching the detector in a given time inter-
val is SNR =

√
N  [18]. So, the SNRs for the other detecting locations are set according 

to SNR = SNRmin
√
I/Imin, with I and Imin being the intensities of the current detecting 

locations and the one with the weakest light, respectively. Different meshes are adopted 
in the forward and inverse problems to avoid tricky problems. Specifically, a fine mesh 
with 12,290 nodes and 24,098 triangle elements and a coarse mesh with 4526 nodes and 
8762 triangle elements are used for the forward and inverse calculations, respectively. 
To comprehensively analyze and compare the methods, we repeat each experiment 10 
times and plot the average value and 95% confidence interval of the different metrics.

Spatial resolution

Before demonstrating the reconstructed results, we first illustrate an example about the 
process to select the optimal regularization parameter λ for the NLp (p = 1/2) method 
in the spatial resolution experiments with a fixed CCS = 22 mm. This process consists 
of two steps. The first step is to find a rough range of optimal λ utilizing the generalized 
L-curve, shown in Fig. 2a. It traces, for a specific pair of J and δΓ , the optimal tradeoff in 
the space covered by the L2-norm of residual and the Lp-norm of the regularized solu-
tion. Like the L-curve of the Tikhonov regularization method, by locating the comer of 
the generalized L-curve, an approximation to the optimal regularization parameter can 

(14)SR =
µa(x)|x=0 −minx[µa(x)]

maxx[µa(x)] −minx[µa(x)]
,

(15)AC =
maxx[µa(x)]
minx[µa(x)]

,

(16)GR =
maxx≥0[µa(x)] −maxx≤0[µa(x)]
maxx≥0[µa(x)] +maxx≤0[µa(x)]

,
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be obtained [19]. The corner is located in the range of [1e-17 1e-14] (The red region). In 
the second step, more regularization parameters in this rough range are investigated and 
their normalized metrics are plotted in Fig. 2b. From Fig. 2b, it is clear that AR decreases 
gradually as λ increases when λ ≤ 1e − 15, but decreases dramatically when λ ≥ 1e − 15. 
This indicates that too large a λ excessively localizes the targets so that the reconstructed 
targets are much smaller than the real ones. The RMSE decreases gradually in the whole 
range investigated, indicating that the difference between the reconstructed results and 
the true ones becomes smaller. The CNR increases as λ increases, meaning that the 
reconstructed targets are easier to be distinguished from the background. Most impor-
tantly, the TE, valuing the reconstruction error in total, first decreases slowly and then 
increases rapidly. In summary, λ = 5e − 16 corresponding to the smallest TE, is selected 
as the optimal regularization parameter. It is worth noting that the reconstruction is un-
sensitive to the change of λ when λ ≤ 1e − 15. So, the method is robust with the regular-
ization parameter λ smaller than 1e−15. For all the following experiments, this method 
to select the optimal regularization parameter is used.

Figure 3a shows the column diagram of the metrics of the reconstructed images using 
different regularization methods. The first, second, and third columns present the met-
rics of the methods based on the L1-norm, L1/2-norm, and L0-norm respectively. Dif-
ferent rows contain different metrics labeled on the left side. The left and right parts 
contain the metrics for SNRmin = 20 dB and SNRmin = 30 dB, respectively. All the follow-
ing figures presenting the metrics are likewise presented. Form Fig. 3a, we can observe 
that, excepting AR, all metrics of the non-negative methods are better than or compara-
ble to those of the conventional methods based on the same norm. From the confidence 
intervals of the metrics, we can see that the non-negative methods are more robust with 
the noise.

Furthermore, to more clearly and directly demonstrate the results, we plot the recon-
structed images for the cases of CCS = 22 mm in Fig. 3b. These are the most difficult 
cases to separate the two nearest targets and the best cases to highlight the differences 
of spatial resolution abilities between different methods. The first and second columns 
present the images reconstructed using the non-negative methods and the conven-
tional methods without the non-negative constraint, respectively. The third column 
contains the profiles of the reconstructed absorption coefficients along the X-axis. 
The first, second, and third rows contain the results corresponding to the L1, L1/2 and 

Fig. 2  Selection of the optimal regularization parameter: a the generalized L-curve and the red rough range 
of the optimal λ; b comparison of the normalized metrics including RMSE, AR, CNR and TE. The optimal regu-
larization parameter is λ = 5e − 16, as highlighted by the dotted vertical line
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L0-norm, respectively. To facilitate the comparison between the methods with and with-
out the non-negative prior information, all the images are shown using the same color-
map. The profiles for the same norm-based regularization methods are plotted in the 
same subfigures. The left and right parts contain the metrics for SNRmin = 20 dB and 
SNRmin = 30 dB, respectively. All the following figures presenting the images are like-
wise presented. From Fig. 3b, it is clear that the targets reconstructed using the proposed 
methods have smaller sizes and are better separated than those of the conventional 
methods based on the same norm. At the same time, the results of the non-negative 
regularization methods have less artifacts than those of the conventional methods. This 
validates the bigger CNR of the non-negative regularization methods compared to those 
of the conventional methods. This is because the proposed methods better suppress 
the influences of the noise and of the difference in the meshes used in the forward and 
inverse problems. Figure 3a, b jointly demonstrate that the non-negative regularization 
methods have better spatial resolution while retaining better RMSE and CNR.

L1

L1/2

L0

Non-Negative Conventional Non-Negative ConventionalProfile Profile

Real ConventionalNon-Negative

10-3
10-3

L1

L1/2

L0

Real ConventionalNon-Negative

a

b

Fig. 3  Numerical experiments for the spatial resolution analysis with absorption coefficients being 
0.008 mm−1: a the evaluation metrics of CCS = 22, 26, and 30 mm, respectively, at SNRmin = 20 dB (left) 
and SNRmin = 30 dB (right); b the reconstructed images of CCS = 22 mm, at SNRmin = 20 dB (left) and 
SNRmin = 30 dB (right)
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Quantitativeness

To focus on studying the quantitativeness of the methods, the CCS is fixed at 40 mm, 
which is far enough for the methods to separate the two targets. The metrics of the 
reconstructed images using different regularization methods are shown in Fig.  4a. 
Excepting the AR, all metrics of the non-negative methods are better than those of the 
conventional methods based on the same norm.

Furthermore, to more clearly and directly demonstrate the results, we plot the recon-
structed images for the cases of AC = 1.25 in Fig. 4b. These are the most difficult cases 
to distinguish the targets from the background, due to the low contrast, and the best 
cases to highlight the difference of quantitativeness between different methods. From 
Fig.  4b, we observe that the images of the non-negative regularization methods have 
less artifacts and are better distinguished from the background than those of the con-
ventional methods based on the same norm. Figure 4a, b jointly demonstrate that the 

L1

L1/2

L0

Non-Negative Conventional Non-Negative ConventionalProfile Profile
Real Non-Negative Conventional Real Non-Negative Conventional

L1

L1/2

L0

a

b

Fig. 4  Numerical experiments for the quantitativeness analysis with CCS = 40 mm: a the evaluation metrics 
with absorption coefficients being 0.005, 0.006, and 0.008 mm−1, respectively, at SNRmin = 20 dB (left) and 
SNRmin = 30 dB (right); b the reconstructed images with absorption coefficients being 0.005 mm−1, at 
SNRmin = 20 dB (left) and SNRmin = 30 dB (right)



Page 13 of 19Wang et al. BioMed Eng OnLine  (2017) 16:32 

non-negative regularization methods have better quantitativeness abilities while retain-
ing better RMSE and CNR.

Grayscale resolution

The metrics of the reconstructed images using different regularization methods are plot-
ted in Fig. 5a. Figure 5a shows that all the metrics, except the AR, of the reconstructed 
images of the non-negative methods are better than those of their conventional methods 
based on the same norm.

Furthermore, to more clearly and directly demonstrate the results, we plot the recon-
structed images for the cases with a GR being 10% in Fig. 5b. These are the most difficult 
cases to reconstruct the small grayscale difference, and the best cases to highlight the dif-
ference of grayscale resolution between different methods. It is easy to find that targets 
reconstructed using the non-negative methods have less artifacts and closer grayscale 

L1

L1/2

L0

Non-Negative Conventional Non-Negative ConventionalProfile Profile

Real Non-Negative Conventional Real Non-Negative Conventional

L1

L1/2

L0

a

b

Fig. 5  Numerical experiments for the grayscale resolution analysis of CCS = 40 mm: a the metrics with 
absorption coefficients paired as (0.0072, 0.0088 mm−1), (0.0064, 0.0096 mm−1), and (0.0056, 0.0104 mm−1), 
respectively, at SNRmin = 20 dB (left) and SNRmin = 30 dB (right); b The reconstructed images of absorption 
coefficients paired as (0.0072, 0.0088 mm−1), at SNRmin = 20 dB (left) and SNRmin = 30 dB (right)
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difference to the real values. Figure 5a, b jointly demonstrate that the non-negative regu-
larization methods have better grayscale resolution ability while retaining better RMSE 
and CNR.

Execution time

To compare the speed of the proposed methods, all the involved methods are investi-
gated in the same numerical experiments. During the previous numerical experiments, 
analyzing the spatial resolution for the case of CCS =  20  mm, the execution time for 
all methods are recorded. In these experiments, the stopping criteria are the same, as 
shown in the algorithms of NL1, NL1/2 and NL0. The same computer, Interl(R) Core(TM) 
i7-4790 CPU @3.60 GHz, is used in all these experiments. The execution time averaged 
over 10 repeated experiments and the 95% confidence interval are listed in Fig.  6a, b. 
From Fig. 6a, b, we can see that the non-negative regularization methods not only obtain 
images with better quality but also require shorter time than the conventional methods 
based on the same norm.

Phantom experiment

To further investigate the methods proposed in this paper, a continuous wave system 
[20] is used to conduct phantom experiments. A cylindrical polyoxymethylene phantom 
with the same cross section as that of the numerical experiments is adopted. The cross 
section of this phantom is discretized into a mesh with 4526 nodes and 8762 triangle ele-
ments, identical to that of the numerical scenario. The detailed structure of this phantom 
is shown in Fig. 7a. The phantom photo and optode arrangement are shown in Fig. 7b. 
Via the time domain system [21], the absorption and (reduced) scattering coefficients of 
this phantom at a wavelength of 675 nm are measured as 0.004 and 1 mm−1, identical to 
those of the background regions in numerical simulations. As described in the Condi-
tion section, the same experiments as those of the numerical experiments are conducted 
for the following phantom experiments. It is worth noting that we just conduct these 

Fig. 6  Comparisons of the execution time required by different regularization methods for the spatial resolu-
tion analysis with CCS = 22 mm: a the numerical experiments with SNRmin = 20 dB; b the numerical experi-
ments with SNRmin = 30 dB; c the phantom experiments
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phantom experiments once time and do not consider the experiments with different lev-
els of noises.

Along the boundary of cylindrical phantom, 32 optodes with a coaxial structure of 
source and detector are placed equidistantly from one another (as shown in Fig. 7b). A 
steady state laser operating at a wavelength of 675 nm stimulates the phantom bound-
ary through a 32:1 mechanical optical switch. Meanwhile, the reemitted light on the 
phantom boundary is collected and sent to 4 photomultiplier tubes (PMT) through four 
8:1 mechanical optical switches. Then the single electron responses from the PMTs are 
detected and accumulated by the field programmable gate array (FPGA). The total num-
ber accumulated in 250  ms is used as the intensity of the light on the detecting loca-
tions on the phantom boundary. It is worth noting that the light of the locations near 
the sources is so strong that it possibly induces the stack effect, making the measure-
ment imprecise. Therefore, only the remaining opposite 17 measurements farthest away 
from the sources are used. A total of 32 × 17 = 544 measurements, equal to that in the 
numerical experiments, are then used to reconstruct the spatial distribution of absorp-
tion coefficients.

All phantom experiments are conducted according to the following process. First, 
the holes embedded in the phantom are filled with the mixed solution having absorp-
tion and (reduced) scattering coefficients of 0.004 and 1 mm−1, identical to those of the 
healthy breast tissue. One of the optical fibers works as a light source and the remain-
ing opposite 17 optical fibers are used to measure the light intensity reemitted from the 
surface of the phantom. Then, the remaining optical fibers work as the light source one 
by one, and the corresponding light intensities are measured. The mixed solution in the 
target holes is then replaced with the mixed solution with larger absorption coefficients, 
mimicking the breast tumors of different absorption contrasts. Repeating the meas-
urement process, another 544 measurements are obtained and then are utilized in the 
reconstruction process.

Spatial resolution analysis

The metrics of the reconstructed images are plotted in Fig.  8a. This figure shows 
that, excepting the AR, the metrics of the reconstructed images of the non-negative 

a b

Fig. 7  The phantom and optode arrangement: (a)The sketch of the phantom; (b) The phantom photo and 
optode arrangement
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regularization methods are better than those of the conventional methods without the 
non-negative constraint based on the same norm.

Furthermore, to more clearly and directly demonstrate the results, we plot the recon-
structed images for the cases of CCS = 22 mm in Fig. 8b. These are the most difficult 
cases to separate the two nearest targets and the best cases to highlight the differences of 
spatial resolution abilities between different methods. Figure 8b tells us that the images 
of the non-negative regularization methods have less artifacts and the two targets are 
better separated than those of the conventional methods. Figure  8a, b jointly demon-
strate that the non-negative regularization methods have better spatial resolution ability 
while retaining better RMSE and CNR.

Quantitativeness

We plot the metrics of the images reconstructed using the different methods in Fig. 9a. 
It is clear that, the metrics, except the AR, of the reconstructed images of non-negative 
methods are better than those of the conventional methods based on the same norm.

Furthermore, to more clearly and directly demonstrate the results, we plot the recon-
structed images for the cases of AC = 1.25 in Fig. 9b. These are the most difficult cases to 
distinguish the targets from the background, due to the low contrast, and the best cases 
to highlight the difference of quantitativeness between different methods. From Fig. 9b, 
we observe that the images of the non-negative regularization methods have less arti-
facts and are better distinguished from the background than those of the conventional 
methods. Figure 9a, b jointly demonstrate that the non-negative regularization methods 
have better quantitativeness ability while retaining better RMSE and CNR.

Grayscale resolution

Figure  10a contains the metrics of the images reconstructed using the different regu-
larization methods. From this figure, it is clear that the metrics, except the AR, of the 

Non-Negative Conventional Profile

Real Non-Negative Conventional

L1

L1/2

L0

a b

Fig. 8  The phantom experiments for the spatial resolution analysis with absorption coefficients being 
0.008 mm−1: a their evaluation metrics with CCS = 22, 26, and 30 mm, respectively; b the reconstructed 
images with CCS = 22 mm
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non-negative regularization methods are better than those of the conventional regulari-
zation methods based on the same norm.

Furthermore, to more clearly and directly demonstrate the results, we present the 
reconstructed images for the cases of a grayscale difference of 10% in Fig.  10b. These 
are the most difficult cases to reconstruct the small grayscale difference, and the best 
cases to highlight the difference of grayscale resolution between different methods. Fig-
ure 10b shows that the targets reconstructed using the non-negative methods have less 
artifacts and closer grayscale difference to the real values than those of the conventional 
methods. Figure 10a, b jointly demonstrate that the non-negative regularization meth-
ods have better grayscale resolution abilities while retaining better RMSE and CNR.

Non-Negative Conventional Profile

Real Non-Negative Conventional

L1

L1/2

L0

a b

Fig. 9  The phantom experiments for the quantitativeness analysis with CCS = 40 mm: a the metrics with 
absorption coefficients being 0.005, 0.006, and 0.008 mm−1, respectively; b The reconstructed images with 
absorption coefficients being 0.005 mm−1

Non-Negative Conventional Profile

Real Non-Negative Conventional

L1

L1/2

L0

a b

Fig. 10  Phantom experiments for the grayscale resolution analysis with CCS = 40 mm: a the metrics with 
absorption coefficients paired as (0.0072, 0.0088 mm−1), (0.0064, 0.0096 mm−1), and (0.0056, 0.0104 mm−1), 
respectively; b the reconstructed images with absorption coefficients paired as (0.0072, 0.0088 mm−1)
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Execution time

The same stopping criteria and computer as those of the numerical simulation experi-
ments are also adopted. Execution time of all the regularization methods for the phan-
tom experiments analyzing spatial resolution for CCS  =  22  mm are recorded and 
presented in Fig. 6c. It is obvious that the non-negative regularization methods require 
less time to obtain the optical solution than those of the conventional regularization 
methods based on the same norm.

Discussion and conclusion
Though the investigations described in this paper are implemented on the continu-
ous wave breast diffuse optical tomography, they can easily be extended to diffuse 
fluorescence tomography, because they share the same sparse and non-negative prior 
information.

The gradient projection methods described above can be replaced with a logarithmic 
barrier method. For the L1-norm, the involved unconstrained optimization problem is as 
follows:

where ξ is referred to as the barrier parameter. The gradient of the objective function 
is JT (Jδµa − δŴ)+ �1Nn − 1

ξ
1

δµa+C, which is easy to compute. However, it requires too 
much time to find an appropriate barrier parameter ξ, making it unpractical. This loga-
rithmic barrier method also applies to the non-negative Lp-norm (0  <  p  <  1) and L0-
norm based regularization methods, but they also require much time to find the suitable 
barrier parameter.

In conclusion, we propose several new regularized methods based on L1-norm, Lp-
norm (0 < p < 1) and approximate L0-norm with non-negative prior information. Both 
numerical and phantom experiments demonstrate that, excepting AR, all metrics are 
improved by these proposed methods. Furthermore, the proposed methods require less 
time than those of the conventional methods based on the same norm.
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