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Purpose: The objective of this study was to determine the clinical distribution, in vitro antifungal susceptibility and underlying 
resistance mechanisms of Aspergillus fumigatus (A. fumigatus) isolates from the General Hospital of Ningxia Medical University 
between November 2021 and May 2023.
Methods: Antifungal susceptibility testing was performed using the Sensititre YeastOne YO10, and isolates with high minimal 
inhibitory concentrations (MICs) were further confirmed using the standard broth microdilution assays established by the Clinical and 
Laboratory Standards Institute (CLSI) M38-third edition. Whole-Genome Resequencing and RT-qPCR in azole-resistant A. fumigatus 
strains were performed to investigate the underlying resistance mechanisms.
Results: Overall, a total of 276 A. fumigatus isolates were identified from various clinical departments, showing an increasing trend in 
the number of isolates over the past 3 years. Two azole-resistant A. fumigatus strains (0.72%) were observed, one of which showed 
overexpression of cyp51A, cyp51B, cdr1B, MDR1/2, artR, srbA, erg24A, and erg4B, but no cyp51A mutation. However, the other strain 
harbored two alterations in the cyp51A sequences (L98H/S297T). Therefore, we first described two azole-resistant clinical 
A. fumigatus strains in Ningxia, China, and reported one azole-resistant strain that has the L98H/S297T mutations in the cyp51A 
gene without any tandem repeat (TR) sequences in the promoter region.
Conclusions: This study emphasizes the importance of enhancing attention and surveillance of azole-resistant A. fumigatus, 
particularly those with non-TR point mutations of cyp51A or non-cyp51A mutations, in order to gain a better understanding of their 
prevalence and spread in the region.
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Introduction
Aspergillus fumigatus (A. fumigatus) is the most common Aspergillus species that can cause various serious diseases such as life- 
threatening invasive aspergillosis (IA) in immunocompromised individuals with hematopoietic stem cells and solid organ 
transplantation, acute leukemia, and receiving immunotherapy with/without corticosteroids.1–3 Non-invasive infections in 
immunocompetent patients with underlying pulmonary conditions can lead to chronic pulmonary aspergillosis (CPA), and 
others can suffer from allergic bronchopulmonary aspergillosis (ABPA), fungal asthma, and Aspergillus bronchitis.4–6 

A. fumigatus has been identified as a critical priority fungal pathogen in the first-ever fungal priority pathogen list released by 
the World Health Organization (WHO) (https://www.who.int/publications/i/item/9789240060241). Recently, there has been 
a rise in reported cases of IA in patients with influenza7 and coronavirus disease 2019 (COVID-19).8,9 According to existing 
reports, the prevalence of aspergillosis varies across different provinces in China. A study conducted by Linna Huang et al found 

Infection and Drug Resistance 2024:17 427–439                                                              427
© 2024 Kang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Infection and Drug Resistance                                                              Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 6 October 2023
Accepted: 18 January 2024
Published: 2 February 2024

http://orcid.org/0009-0001-0639-2354
https://www.who.int/publications/i/item/9789240060241
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


that 29.3% of patients with viral pneumonia in Beijing from December 2022 to February 2023 also had IA.10 A retrospective 
cohort study revealed that between August 2016 and December 2019, a total of 617 adult viral pneumonia patients were admitted 
to six hospitals in China, with 14.7% patients being diagnosed with IPA.11 In Nanjing, among clinically suspected patients, 26.6% 
of patients were ultimately diagnosed with invasive pulmonary aspergillosis (IPA),12 which is lower compared to Shanghai, 
where 58.5% of patients were diagnosed with IPA.13 However, there is currently a lack of epidemiological statistics regarding 
A. fumigatus infection in Ningxia and its surrounding areas.

Treatment for A. fumigatus has heavily relied on three classes of antifungal drugs: azoles, polyenes, and echinocandins.3 

However, the extensive use of azoles such as itraconazole (ITC), voriconazole (VRC), posaconazole (POS), and isavuconazole 
(ISV) over the past decades has led to the worldwide emergence of azole resistance in A. fumigatus. This increase in resistance, 
both environmentally and clinically, may be responsible for the failure of aspergillosis treatment and the consequent high 
mortality rates.14,15

Azole resistance in A. fumigatus is primarily caused by alterations to the sterol biosynthesis pathway, resulting from point 
mutations of cyp51A and the insertion of tandem repeats (TR) in the promoter region of cyp51A (such as TR34/L98H and 
TR46/Y121F/T289A).16–18 However, there are increasing reports of A. fumigatus strains that are resistant to clinical azoles 
despite lacking cyp51A modifications.19,20 Extensive research has been conducted on strains with multiple mutations in hmg1 
and hmg2, which encode the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. These mutations have 
provided valuable insights into the mechanism of azole drug resistance in A. fumigatus.20–25

Several attempts have been made to correlate the mutations in hapE, which encodes one of the three subunits of the 
CCAAT box binding complex (CBC), with azole resistance. Interestingly, a new study investigated the combination of 
hapEP88L and hmg1F262del mutations as potential contributors to azole resistance.26–28 In addition to these mutations, other 
candidate genes such as crd1B, MDR1, MDR2, and erg6 have also been extensively studied and are believed to play a role in 
non-cyp51A azole resistance.1 The growing number of resistant strains and the continuous emergence of new resistance 
mechanisms have aroused great concern worldwide.14,29

The epidemiology of aspergillus-disease in Ningxia has not been previously reported, according to an extensive literature 
search available on PubMed. A. fumigatus infection in China exhibits regional differences.30 General Hospital of Ningxia Medical 
University, the largest tertiary hospital in Ningxia with approximately 3500 beds, serves both local patients and those from 
surrounding areas. We believe that our hospital may be regionally representative to some extent. Furthermore, Ningxia, located in 
northwest China, has a unique geographical climate and lacks research on A. fumigatus infection and drug resistance. Therefore, 
our study focused on assessing clinical A. fumigatus isolates collected from the General Hospital of Ningxia Medical University 
from November 2021 to May 2023. We aim to evaluate the susceptibility of these isolates to different antifungal agents and to 
investigate potential resistance mechanisms, including cyp51A mutations and expression of genes related to azole-resistance.

Materials and Methods
A. fumigatus Strains and Molecular Identification
A. fumigatus isolates were obtained from individual patients hospitalized in the General Hospital of Ningxia Medical University 
between November 2021 and May 2023. Af293 was kindly donated by Professor Wei Liu of Peking University First Hospital. 
The fungal isolates were subcultured on sabouraud dextrose agar (SDA) at 25°C for 1 week. Morphological identification was 
performed based on macro and microscopic features, followed by matrix-assisted laser desorption ionization-time-of-flight mass 
spectrometry (MALDI-TOF MS, bioMerieux, France). Molecular identification was performed by amplifying the β-tubulin gene 
(benA) and calmodulin gene (CaM) as previously described,31,32 and the resulting PCR products were sequenced at Tsingke 
Biotechnology (Beijing, China). The obtained sequences were compared to reference sequences in GenBank. This study was 
approved by Medical Science Research Ethics Committee IRB of the General Hospital of Ningxia Medical University (2020989 
approved on 09 October 2020). Written informed consent was obtained from all study participants (consent for research).

Antifungal Susceptibility Testing
The Sensititre YeastOne YO10 (Thermo Scientific, Cleveland, OH, United States) was used for antifungal susceptibility testing 
(AFST) with nine antifungals: anidulafungin (AND), micafungin (MFG), caspofungin (CAS), 5-flucytosine (5-FC), 
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posaconazole (POS), voriconazole (VRC), itraconazole (ITC), fluconazole (FLC), amphotericin B (AMB). The values of 
minimal inhibitory concentration (MIC) and minimum effective concentration (MEC) were determined according to the 
manufacturer’s instructions. Briefly, conidia were collected from the SDA plates and adjusted to a McFarland standard of 0.5. 
A 100 µL conidial suspension was added to RPMI-1640 medium to achieve a final working concentration of 0.4–5×104 CFU/ 
mL. 96-well plates with 100 µL working solution in each well were incubated at 35°C for 24–48 h. The minimum inhibitory 
concentration (MIC) values of POS, VCZ, ITC, and AMB were determined to be the lowest concentrations that produced 100% 
inhibition, indicated by the first blue or purple well after 48 h of incubation. The minimum effective concentration (MEC) values 
were determined as the lowest concentrations of AND, MFG, and CAS that produced a morphological change to small, rounded, 
compact hyphal forms compared to the growth control well after 24 h of incubation. The standard broth microdilution assays 
were performed in accordance with CLSI M38 third edition33 to determine the isolates with MIC value(s) of VRC≥2 µg/mL or 
ITC>1 µg/mL base on YeastOne results. For CLSI methodology, the concentration ranges of antifungal agents were as follows: 
VRC, ITC, POS (0.031–16 µg/mL), CAS, and MFG (0.015–8 µg/mL). The antifungal drugs were purchased from Meilunbio, 
China. Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258 were used as quality controls. The epidemiological 
cut-offs (ECVs) of AMB (2 µg/mL), CAS (0.5 µg/mL), ITC (2 µg/mL), and the clinical breakpoint of VRC (≥2 µg/mL) referred 
to CLSI-M59 were used to define the isolates as wild type (WT)/Susceptible (S) or non-WT/Resistant (R).34 MIC50 and MIC90 
values were determined based on concentrations that inhibited 50% and 90% of the isolates, respectively. The calculation method 
used in this study can be referenced from the literature guide “Reference Method for Broth Dilution Antifungal Susceptibility 
Testing of Filamentous Fungi; Approved Standard Second Edition, M38-A2”.

Whole-Genome Resequencing for Azole-Resistant A. fumigatus
In this study, a total of 276 strains of A. fumigatus from Ningxia were labeled as NYDZY 1 to NYDZY 276. Among these strains, 
NYDZY 162 and NYDZY 247 were identified as being resistant to azole. For the genome resequencing of NYDZY 162 and 
NYDZY 247, high-purity genomic DNA was extracted using QIAamp DNA Mini Kit (Qiagen). DNA qualification, library 
construction, and resequencing were executed at DNBSEQ platform.35 High-throughput DNA sequencing (pair-end sequencing) 
was performed on Pacbio platform, with a read length of 300 bp at each end and an average of 3 Gb sequencing data for each 
library.

Determination of Azole-Resistance Related Genes Expression Levels by RT-qPCR
The expression levels of cyp51A, cyp51B, cdr1b, atrR, atrF, srbA, erg4A/4B/24A/25A, and MDR1/2/3/4 were determined by 
real-time qPCR. Briefly, conidia (1.0×106 cells/mL) were collected from SDA plates and incubated at 35°C and 200 rpm for 
48 h in 5 mL Sabouraud liquid medium. After centrifugation, the culture supernatant was discarded, mycelia were 
harvested, and they were washed twice with sterile distilled water. RNA extraction was performed using the RNAsimple 
Total RNA Kit (TIANGEN, Biotech, China) following the manufacturer’s instructions. The concentration of RNA was 
determined using NanoDrop spectrophotometer (ThermoFisher), and cDNA was synthesized using a PrimeScript RT 
Master Mix kit (TaKaRa Biotechnology, China) according to the manufacturer’s instructions. qPCR was conducted with 
specific primers (Table 1) using LightCycler 480 SYBR green I master mix (Roche). Af293 was used as susceptible control. 
The difference in gene expression was calculated using the 2-ΔΔCT method. Each sample was performed in triplicate.

Statistical Analysis
Statistical differences between multiple groups were performed by a one-way analysis of variance (ANOVA) followed by 
Tukey’s multiple comparisons tests, using GraphPad Prism 8.0 software. Data were presented as medians or means ± 
standard deviation. P < 0.05 was considered statistically significant.

Results
Fungal Isolates
A total of 276 strains identified as A. fumigatus using morphological and molecular methods and MALDI-TOF MS were 
collected in this study. The number of A. fumigatus isolates during the first 5 months of 2023 was 192, which is 3.4 times 
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higher than the number during the same period of 2022. Notably, there was a significant increase in January and March of 
2023 (Figure 1A). The A. fumigatus were collected from patients mainly distributed in department of respiratory (n=119, 
43.12%), emergency department (n=49, 17.75%), intensive care medicine (ICU) (n=22, 7.97%), cardiology (n=12, 
4.35%), geriatric (n=9, 3.26%), nephrology (n=7, 2.54%), hematology (n=7, 2.54%), and infection (n=6, 2.17%) 
(Figure 1B). In terms of specimen types, over 50% of the A. fumigatus isolates (n=246, 89.13%) were recovered from 
sputum, 9.78% (n=27) were from bronchoalveolar lavage fluid (BALF), 0.72% (n = 2) were from wounds, 0.37% (n = 1) 
were from puncture fluid (Figure 1C).

Antifungal Susceptibility Testing and Detection of cyp51A
The MIC50, MIC90, range, ECVs, and categories are summarized in Table 2. Among the A. fumigatus isolates, 49.28% 
(n=136) exhibited high MIC values of 5-FC (>64 µg/mL), while more than 50% of isolates (n=232, 84.06%) demon-
strated higher MIC values for FLC (≥256 µg/mL). These findings suggest the inherent resistance of A. fumigatus to these 
antifungal agents. All strains were wild type (WT) to AMB, with MIC values ranging from 0.25 to 2 µg/mL, and both 
MIC50 and MIC90 = 1 µg/mL. The MIC values of CAS for three strains (NYDZY 39, NYDZY 65, NYDZY 200) were 8 
μg/mL, 8 μg/mL, 4 μg/mL, respectively, which are categorized as Non-WT. However, all three strains showed low MIC 
values for VRC, ITC, and POS. Two isolates of A. fumigatus (NYDZY 162, NYDZY 247) exhibited higher MIC values 

Table 1 Sequence Information of the qPCR Primers Used in This Study

Primer Name Sequence(5’to3’) Reference

cyp51A-F GGTGCCGATGCTATGGCTTACGGC [36]
cyp51A-R GGTTCTGTTCGGTTCCAAAGCCG
cyp51B-F GGGTCTCATCGCGTTCATTCTCGACG
cyp51B-R GATACAGCGAGGATGGATAGTAGTCC
atrR-F GAGTCTTTACTGCGTCTTTCTGG
atrR-R GAGCCGCTTGCATGATACCGG
srbA-F GTCCACCCCCGGCATTGGTGGG
srbA-R GGCAACGTCCGTACTTGATTGG
erg3-F GGATATTGTTCTTGAGATCTGGG
erg3-R CTGGTAATGAGACCGTCGAGGAG
erg24A-F GGCACCAAGAAAGGATTTCGAAG
erg24A-R GAATACAAACGCGCCGAGAGGG
erg25A-F GGACTCGCTCAATTCGTCCTATCCGC
erg25A-R GAGAGATGAGGTTGCTGCTGAGC
cdr1B-F GTCTCTTCTAGGGACGATAAATCC
cdr1B-R CGACCCTGGCGATTTCTCCTTCC
atrF-F TGCCCAGAGAAATCGACAAC [37]

atrF-R CCACCTCGTCGCAGATAGTC
MDR1-F GCTCTTCCCTTGTTCACAATTC
MDR1-R CGGCAATACCGAGATACACA
MDR2-F TGCCACATTCTTTAGCTCCAC
MDR2-R AAGACCGAACATGCTTGACC
MDR3-F GATGCATCCTGCAAAGTACG
MDR3-R AGGCTCCTTGGTGCTTGAC
MDR4-F CACTGAACGCAACTCCTGAA
MDR4-R TCTTTCTGGCTTCCTCCTCA
GAPDH1-F GCCTCTTAAGGGTATCCTGACCTA
GAPDH1-R TACCAGCTCACCAACTTCACGA
erg4A-F GTTCTTCGCTATTTCCTGG [38]

erg4A-R GCGGTTGATATCTCGTCTC
erg4B-F AGACTTTCCCTCAGCTCCC
erg4B-R CCAGTTCAAGGCGAAATAA
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of >16 μg/mL for ITC and 2 μg/mL for POS. In the case of VRC, NYDZY 162 exhibited high MIC values of 8 μg/mL, 
while NYDZY 247 showed values of 4 μg/mL, indicating azole resistance. The distribution of VRC, ITZ, and POS MICs 
for clinical A. fumigatus isolates is shown in Figure 2. The MIC/MEC values of VRC, ITC, POS, CAS, MFG, and AMB 
against two azole-resistant isolates, determined by YeastOne YO10 and CLSI methods, are summarized in Table 3. Both 
methods showed high categorical agreement. Compared to the CLSI method, NYDZY 162 exhibited one-dilution higher 

Figure 1 Distribution of the 276 A. fumigatus isolates from November 2021-May 2023: (A) Number of A. fumigatus isolates by month of detection; (B) Distribution by 
department type; (C) Distribution by specimen type.

Table 2 Susceptibility Profiles of 276 A. Fumigatus Isolates

Antifungal MIC50  
(μg/mL)

MIC90  
(μg/mL)

Range  
(μg/mL)

ECVs  
(μg/mL)

BP  
(μg/mL)

Wild Type / 
Susceptible (%)a

Non-Wild Type / 
Resistance (%)a

AND ≤0.015 0.03 ≤0.015–8 - - - -

MFG ≤0.008 0.03 ≤0.008–8 - - - -

CAS 0.06 0.12 ≤0.008->0.25 0.5 - 276 (100.00) 0
5-FC >64 >64 0.06->64 IR - - -

POS 0.25 0.25 0.03–2 - - - -

VRC 0.25 0.5 0.06–8 1 ≥2 274 (99.28) 2(0.72)
ITC 0.25 0.5 ≤0.015->16 1 - 274 (99.28) 2(0.72)

FLC >256 >256 64->256 IR - - -

AMB 1 1 0.25–2 2 - 276 (100.00) 0

Notes: aBreakpoints are used to define isolates as susceptible or resistant, without established BP, The ECV is used to define the isolates as wild type or non-wild type. 
Abbreviations: AND, anidulafungin; MFG, micafungin; CAS, caspofungin; 5-FC, 5-fluorocytosine; POS, posaconazole; VRC, voriconazole; ITC, itraconazole; FLC, 
Fluconazole; AMB, amphotericin B; ECVs, epidemiological cut-offs; BP, clinical breakpoint; ECV, not defined; IR, intrinsic resistance.
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MIC values of VRC and one-dilution lower MIC values of AMB. Sequencing results revealed no mutations in the 
cyp51A coding and promoter region in NYDZY 162, but amid acid substitution was observed in NYDZY 247.

The Expression Levels of Azole-Resistance Related Genes
RT-PCR results revealed that A. fumigatus clinical isolates (NYDZY 162) resistant to triazoles showed increased expression 
of cyp51A (P < 0.05), cdr1B (P < 0.0001), MDR1 (P < 0.0001), MDR2 (P < 0.01), artR (P < 0.01), srbA (P < 0.001), erg24A 
(P < 0.01), and erg4B (P < 0.01) compared to the wild-type Af293. However, there was no significant difference in the 
expression of these genes in NYDZY 247 (P > 0.05). On the contrary, NYDZY 247 exhibited significantly lower levels of 
erg24A (P < 0.001) and erg4B (P < 0.05) expression compared to both Af293 and NYDZY 162. Additionally, the 
expression levels of genes MDR3 (P < 0.0001, P < 0.0001), erg25A (P < 0.01, P < 0.001), and erg4A (P < 0.0001, 
P < 0.0001) significantly decreased in both NYDZY 162 and NYDZY 247 (Figure 3).

The Clinical Profiles of Patients with Azole-Resistant A. fumigatum
NYDZY 162 was isolated from the sputum of a severe COVID-19 patient (Case 1) who also had non-Hodgkin’s 
lymphoma, diabetes, hypertension, arrhythmia, and other conditions. Chest CT scans revealed images of lungs with 
abnormal infiltrates, reticular and linear opacities, pleural thickening, and the accumulation of lung lesions on both sides. 
After receiving treatment with voriconazole and ceftazidime, the patient’s condition improved significantly, leading to his 
discharge. NYDZY 247 was isolated from the sputum of a patient (Case 2) with novel coronavirus pneumonia who also 
had co-infection with bacteria and fungi during the acute exacerbation stage of chronic obstructive pulmonary disease. 
This patient had a history of old pulmonary tuberculosis, old bronchial tuberculosis, pulmonary hypertension, and other 
diseases. The chest CT scan results showed the accumulation of lung lesions on both sides, and features like reticular and 
linear opacities, nodule, pleural thickening, and pleural effusion. The condition of this patient improved after treatment 
with voriconazole, carbofenozin, imipenem/cilastatin, cefoperazone/sulbactam. The clinical profiles of patients with 

Figure 2 MICs’ distributions of antifungals tested for 276 clinical A. fumigatus isolates with YeastOne YO10. (A) voriconazole; (B) itraconazole; (C) posaconazole. 
Abbreviations: S, susceptible; I, intermediate; R, resistant; ECV, epidemiological cut-offs.

Table 3 The MIC/MEC Values (µg/mL) of Different Antifungals Against Two A. Fumigatus Isolates as 
Determined by the YeastOne YO10 and CLSI Methods

Strain Methods VRC ITC POS CAS MFG AMB

NYDZY 162 Yeastone YO10 8 >16 2 0.06 0.008 1

CLSI method 8 >16 2 0.06 0.008 2

NYDZY 247 Yeastone YO10 4 >16 2 0.06 0.06 2
CLSI method 4 >16 2 0.06 0.03 2

Abbreviations: VRC, voriconazole; ITC, itraconazole; POS, posaconazole; CAS, caspofungin; MFG, micafungin; AMB, ampho-
tericin B; CLSI, Clinical and Laboratory Standards Institute.
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azole-resistant A. fumigatus was shown in Table 4. It is worth noting that the serum galactomannan (GM) tests were 
negative in both patients infected with azole-resistant A. fumigatus strains.

Discussion
A. fumigatus is a globally prevalent environmental mold that can cause a variety of human diseases, leading to notable 
mortality. Around 3,000,000 cases of chronic pulmonary aspergillosis (CPA) and invasive aspergillosis (IA) are reported 
worldwide annually.39,40 Moreover, the extensive use of triazole antifungals has resulted in the emergence of azole- 
resistant A. fumigatus, which poses significant clinical and economic challenges.41–44 Our study conducted in Ningxia 
province, China, observed an increase in the number of identified A. fumigatus strains from 2021 to 2023. Additionally, 
we discovered two azole-resistant strains during our research. These findings highlight a concerning trend of A. fumigatus 
infection in the area.

In our study, we collected a total of 276 strains of A. fumigatus. Among these, 192 strains were collected in 2023, 
which represents a more than 2.5 times increase compared to the previous year. This significant rise in isolates was 
strongly correlated with the surge in the number of COVID-19 infected patients following the lifting of epidemic control 
restrictions. This is similar to studies conducted in other provinces in China.45 It has been reported worldwide that there 
is a high incidence of COVID-19-Associated Pulmonary Aspergillosis (CAPA) among critically ill COVID-19 
patients,46–49 which is believed to be caused by severe immunomodulation and lymphocyte depletion resulting from 
the virus and the subsequent use of immune-suppressive drugs.50 The most common methods used for diagnosing CAPA 
include recovering Aspergillus spp. in culture media of bronchoalveolar fluid (BALF) and tracheal aspirate, as well as 
detecting conventional GM from BALF, tracheal aspirate, and serum specimens.51 However, in our study, diagnosing and 
confirming CAPA in two patients with isolated azole-resistant A. fumigatus remains challenging due to the patients’ 
serious underlying conditions, the overlap of clinical manifestations and imaging findings between COVID-19 and 
CAPA, the limited use of bronchoscopies to avoid the risk of virus transmission, and the imperfect sensitivity of serum 
GM.1,52,53 Fortunately, both patients recovered and were discharged after receiving treatment with voriconazole and 
antibacterials, highlighting the importance of combination therapy and appropriate dosage for severe infections. But other 
researchers have indicated that patients infected with azole-resistant strains have a higher mortality rate compared to 
those infected with sensitive strains.1,54 A 5-year retrospective cohort study showed a 21% higher day-42 mortality in 
azole-resistant invasive aspergillosis compared with wild-type infections cases.55 In another multicentre retrospective 
study, it was also observed that the mortality rate at 6 and 12 weeks was higher in haematology patients with 
voriconazole-resistant cases compared to those with susceptible cases.56 Therefore, it is an urgent issue to monitor 
drug resistance in clinical isolates and unravel the molecular mechanisms underlying azole resistance.

In addition to patients with associated diseases, strains with azole-resistance have also been identified in patients with 
no previous history of antifungal treatment.57,58 Furthermore, environmental isolates have been found to develop azole- 
resistance due to the use of fungicides. Molecular epidemiological studies have demonstrated that people can acquire 
infections from their immediate surroundings.59 The emergence of these resistant A. fumigatus in both natural and 

Figure 3 RT-qPCR of azole-resistance related genes’ expression (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 in one-way ANOVA with Tukey’s multiple comparison). 
Abbreviation: ns, non-significant.
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Table 4 The Clinical Profile and Examinations of Patients Infected by Resistant A. Fumigatus

Case 
No.

Age/ 
Gender

Clinical 
Specimen

Clinical Profile Strain cyp51A 
Mutation

Clinical 
Diagnosis

Underlying Condition Antibacterial 
Treatment

Chest 
Computed 

Tomography

Laboratory Data Outcome

Case 1 74/male Sputum Novel 
coronavirus 

pneumonia

Non-Hodgkin’s lymphoma, 
diabetes, hypertension, arrhythmia

Voriconazole 400mg 
q12h, Ceftazidime 2g 

q12h;

Bilateral lung 
lesions, Non- 

specific infiltration, 

reticular and linear 
opacities, pleural 

thickening

CRP, mg/L: 8.9 
ALB, g/L: 30.3 

WBC, 109/L:5.23 

Neu%: 55.6 
LYM%: 34.2 

HB, g/L: 149 

PLT, 109/L: 67 
Serum GM: 0.235

Survived NYDZY 
162

No

Case 2 79/ 

female

Sputum Novel 

coronavirus 
pneumonia

Chronic obstructive pulmonary 

disease with acute exacerbation, 
atelectasis, old pulmonary 

tuberculosis, old bronchial 

tuberculosis, pulmonary 
hypertension

Voriconazole 400mg 

q12h, Carbofenozin 
50mg qd, Imipenem/ 

cilastatin 3g q8h, 

Cefoperazone/ 
sulbactam 6g q12h;

Bilateral lung 

lesions, reticular 
and linear opacities, 

nodule, pleural 

thickening, pleural 
effusion

CRP, mg/L:16.7 

ALB, g/L 33.51 
WBC, 109/L: 15.88 

Neu%: 85.3 

LYM%, %: 7.7 
HB, g/L: 138 

PLT, 109/L: 216 

Serum GM: 0.291

Survived NYDZY 

247

L98H/ 

S297T

Abbreviations: CRP, C-Reactive Protein; ALB, Albumin; WBC, White blood cell count; Neu%, Neutrophil percentage; LYM%, lymphocyte percentage; HB, hemoglobin; PLT, platelet; Serum-GM, Serum galactomannan.
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clinical settings has led to an expansion of the population of patients at risk, which has generated well-founded concerns 
in the face of limited treatment options.

The prevalence of azole-resistant Aspergillus species varies geographically. Our study found that 2 out of 276 samples 
(0.72%) were resistant to VRC and non-wild type for ITC, which is lower compared to Beijing (4.3%),60 Shanghai 
(3.57–7.02%),61,62 and Anhui (5.79%)63 in China. In a separate study conducted in China, A. fumigatus isolates were 
collected from various regions, revealing a 4.4% frequency of azole resistance.30 However, when compared to several 
other countries, the rates of azole-non-wild type A. fumigatus were found to be higher in Europe (9.5%) and North 
America (9.1%) than in Latin America and the Asia-Pacific region (5.3%) over a 5-year surveillance period.42

Azole resistance in A. fumigatus is primarily linked to mutations in cyp51A and overexpression of cyp51A, as well as 
overexpression of efflux pumps. Point mutations in the coding gene in cyp51A combined with tandem repeats in the 
promoter region have been frequently observed, such as TR34/L98H, which means that the sequence of tandem repeats 
34 times, followed by the presence of the amino acid substitution from leucine (L) to histidine (H) at position 98. 
Mechanically, tandem repeats within the promoter region of cyp51A is associated with overexpression of cyp51A and the 
L98H substitution decreases hydrogen bonding between residue 98 and the polar side chains of neighboring residues, 
thereby preventing the triazole from fitting into the binding pocket.64,65 Additionally, strains carrying a TR46 allele in 
conjunction with Y121F and T289A exchanges were also currently the most prevalent isolates worldwide.1 The 
sequencing analysis results in our study revealed that NYDZY 247 carried L98H/S297T mutations in the cyp51A gene 
without the presence of TR in the promoter region (TR34 and TR46), which was quite different from other previous 
studies where the occurrence of such amino acid substitution was always accompanied by TR variations.66–69 The mRNA 
level of cyp51A did not show any increase in NYDZY 247, which could be explained by the presence of non-TR 
mutations in cyp51A. Other single nucleotide polymorphisms (SNPs), such as G54, M220, and G448, in the cyp51A gene 
have been linked to drug resistance.29 These polymorphisms are frequently observed in patients with chronic pulmonary 
aspergillosis, invasive aspergillosis bronchitis, aspergilloma, and chronic cavitary pulmonary aspergillosis (CCPA) who 
have undergone long-term treatment with azole antifungals and have been associated with several clinical treatment 
failures.37,70–72 The specific amino acid substitution in the cyp51A sequence without tandem repeats determines the 
alteration in the interaction between 14α-demethylase and the azole drugs, leading to different patterns of azole cross- 
resistance.73 Therefore, Non-TR mutation of cyp51A in A. fumigatus can still lead to drug resistance and have significant 
clinical consequences, which highlights the importance of closely monitoring such mutations.

Findings from several groups have shown that the transcription factors AtrR and SrbA play a significant role in azole 
resistance in A. fumigatus. These factors co-regulate the expressions of cyp51A and efflux transporter cdr1B,36,74,75 which 
aligns with our main finding that NYDZY 247 exhibited co-upregulation of these genes. Moreover, several clinical azole- 
resistant A. fumigatus isolates have shown high levels of cyp51B expression, even in the absence of cyp51A mutations,76,77 

similar to what has been observed in NYDZY 162. Recent evidence suggests that cyp51B may act as a backup system when 
cyp51A expression is compromised.78 Consistent with the results of other studies, our findings also showed higher levels of 
cyp51A and cdr1B expression in the azole-resistant strain NYDZY 162. However, there were some observed differences: 
NYDZY 162 exhibited a greater increase in cdr1B expression compared to cyp51A, whereas other studies reported a >500- 
fold induction of cyp51A and only a modest change in cdr1B expression (>5-fold).79 These results imply that the increased 
expression of the efflux transporter gene in NYDZY 162 may be the primary cause of drug resistance.

Although antifungal susceptibility testing of A. fumigatus is not routinely performed in most clinical laboratories, 
regular assessment of it can be helpful in guiding clinical management and understanding changes in drug resistance. 
Prior to our study, no reports had been made regarding azole-resistant A. fumigatus in Ningxia. Although we only 
identified two azole-resistant strains, this finding represents the first occurrence in the entire northwest region of China. 
Given the increasing trend in the number of A. fumigatus isolates from 2022 to 2023, it is likely that more azole-resistant 
strains will be found in the future. Moreover, we report a novel resistance mechanism in one of the azole-resistant strains, 
which involves the non-TR L98H/S297T mutations of the cyp51A gene. However, it should be noted that our investiga-
tion is not exhaustive, and further research will be conducted to delve into the underlying mechanisms in our future work.
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Conclusions
This study, for the first time, revealed a prevalence of azole resistance in A. fumigatus at 0.72% in Ningxia province of 
China. Among the isolates, NYDZY 162 and NYDZY 247 exhibited the same azole resistance phenotype with different 
resistance mechanisms. NYDZY 162 exhibited overexpression of cyp51A without any mutations, while NYDZY 247 
showed non-TR point mutations (L98H/S297T) in cyp51A that have not been previously reported. Our study emphasized 
the severity of A. fumigus spread in the region and the emergence of azole resistance. Therefore, it is crucial to 
consistently enhance the surveillance of antifungal susceptibility in clinical strains and implement effective measures 
to eliminate transmission and nosocomial infections, which may be helpful to prevent further exacerbation of clinical 
azole resistance.
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