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Abstract: Owing to their merits of simple, fast, sensitive, and low cost, electrochemical biosensors
have been widely used for the diagnosis of infectious diseases. As a critical element, the receptor
determines the selectivity, stability, and accuracy of the electrochemical biosensors. Molecularly
imprinted polymers (MIPs) and surface imprinted polymers (SIPs) have great potential to be robust
artificial receptors. Therefore, extensive studies have been reported to develop MIPs/SIPs for the
detection of infectious diseases with high selectivity and reliability. In this review, we discuss
mechanisms of recognition events between imprinted polymers with different biomarkers, such
as signaling molecules, microbial toxins, viruses, and bacterial and fungal cells. Then, various
preparation methods of MIPs/SIPs for electrochemical biosensors are summarized. Especially, the
methods of electropolymerization and micro-contact imprinting are emphasized. Furthermore,
applications of MIPs/SIPs based electrochemical biosensors for infectious disease detection are
highlighted. At last, challenges and perspectives are discussed.

Keywords: molecularly imprinted polymers (MIPs); surface imprinted polymers (SIPs);
electrochemical biosensor; biomarkers for infectious diseases

1. Introduction

Infectious diseases can be disseminated widely in various ways. They are mainly caused by
pathogenic microorganisms, such as viruses, bacteria, fungi, or parasites. Despite great achievements
in diagnosis, treatment, and prevention, infectious diseases remain a serious global health threat [1,2].
The challenges of controlling infectious diseases include irrational use of antibiotics, an increase
of multidrug-resistant pathogens, the emergence of new pathogenic microorganisms, and rapid
spread owing to globalization and overpopulation [3]. Timely diagnosis and targeted antimicrobial
treatment are important for the successful clinical control of infectious diseases. Current diagnostic
methods for infectious diseases mainly rely on laboratory-based tests including culture, microscopy,
enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) [4]. These
methods are time-consuming, expensive, and required to be operated by a specialist. Biosensors are
ideal alternative methods for timely diagnosis of infectious diseases. They have many merits such as
high sensitivity, quick read-out time, and are easier to be mass fabricated and miniaturized. They also
can be used as point-of-care (POC) devices at a doctor’s office or home because of their simplicity and
affordability. Therefore, extensive research has been published to report ultrasensitive electrochemical
biosensors for infectious disease detection with excellent performance.

Receptors and transducer are the two main components of biosensors. The receptor recognizes
the analyte specifically and the transducer converts the binding activity into a measurable signal
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sensitively. Electrodes are used as a transducer in electrochemical biosensors [5]. Natural receptors
(Figure 1) such as antibodies, DNA, aptamer, phage, lectin, and peptide are used as receptors. They
have a high affinity to their targets, but there are also huge challenges in practical applications because
of their poor durability and repeatability at high temperature, pressure, in organic solvents, and also
low stability in low or high pH solutions. Alternatively, the molecular imprinting technique has been
reported to overcome most of these drawbacks. Molecularly imprinted polymers (MIPs) [6] and surface
imprinted polymers (SIPs) [7,8] have a great potential to be robust artificial receptors (also called plastic
antibodies) [9]. Due to its chemical and physical stability, MIPs/SIPs have provided a new insight
for creating receptors by forming specific cavities for binding analytes in the polymeric matrix. In
contrast to natural receptors, MIPs/SIPs offer an inexpensive, rapid, sensitive, easy-to-use, and highly
selective receptors for sensors, typically for the electrochemical biosensors. Hence, MIPs/SIPs based
electrochemical biosensors have become very attractive for infectious diseases.
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Figure 1. Various receptors for electrochemical biosensors applied in infectious diseases biomarker
detection and size distribution covering all the analytes in this review, including small molecular, toxin
protein, virus, bacteria, and fungal cells as plotted on a nanometer scale chart.

Several related reviews have been reported. Lahcen et al. [10] mainly presented the development of
MIPs modified with nanomaterials for electrochemical biosensors. Good electrical catalytic properties
and excellent conductivity of nanomaterials combined with the comparable selectivity of MIPs endow
them with powerful performance for various kinds of biomarkers. The magnetic nanoparticles, carbon
dots, multi/single-walled carbon nanotubes, and graphene oxides modified MIPs for electrochemical
sensing were highlighted in their review paper. Origins, preparation methods, and applications of
SIPs applied in larger biomarkers were reviewed by Eersels and coworkers [11]. They pointed out that
the measurement of larger biomarkers such as viruses, bacteria, or cells met challenges when using the
classical MIPs concept. SIPs can form binding cavities directly on the surface of cured polymers, thus
making it easier to remove the templates and provide better use in larger biomarkers (Figure 1).

In this review, current trends in the development of MIPs/SIPs based electrochemical biosensors
for rapid assessment of the infectious diseases, as well as future research directions are comprehensively
summarized and discussed. Virus-imprinted polymers (VIPs) [12] for virus detection and cell-imprinted
polymers (CIPs) [13] for bacteria detection are highlighted (Figure 1).

2. Recognition Mechanisms Between Imprinted Polymers with Biomarkers

The size and morphology of cavities are critical factors for specific recognition between MIPs/SIPs
and biomarkers. Besides these, chemical recognition of the biomarkers is important. Three types of
chemical recognition methods have been reported: non-covalent, semi-covalent, and covalent. Because
of its excellent adaptability, the non-covalent recognition that includes hydrogen bonds, hydrophobic,
and electrostatic interactions is the most widely applied for the fabrication of MIPs/SIPs [14,15]. Figure 2
presents various interactions of the template (analyte) and MIPs/SIPs.
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Figure 2. Preparation procedures of molecularly imprinted polymers (MIPs) and surface imprinted
polymers (SIPs) on an electrode and various interactions of template (analyte) and MIPs/SIPs,
(a) electrostatic interactions, (b) reversible covalent bonds, (c) van der Waals or hydrophobic interactions,
(d) metal chelation, and (e) hydrogen bonds.

2.1. Small Molecular Biomarkers

Metabolites and small signaling molecules produced by microorganisms can be used as biomarkers
of infectious diseases. For example, both l- and d-arabitol can be produced by human cells as natural
metabolites. They are normally almost equal amounts in healthy humans’ body fluids. However, only
d-arabitol can be produced by fungi of the Candida family. Hence, excess of d-arabitol in body fluids
can be used as a biomarker for the diagnosis of candidiasis [16,17]. Dabrowski et al. [18] developed
electrochemical sensors based on MIPs for d-arabitol detection in urine samples of patients with
candidiasis. They used 2,2′-bithiophene-5-boronic acid as a functional monomer because weak ester
bonds can be formed by its boronic acid group and vicinal hydroxyl moieties of d -arabitol. The
bithiophene group of 2,2′-bithiophene-5-boronic acid can be polymerized in position 5 of the thiophene
ring (Figure 3A). The crosslinker 3,3′-bithiophene could be polymerized in its 2, 2′, 5, and 5′ four
positions. The oxidation peak of the crosslinker and functional monomer was at ~1.45 V and ~1.10 V
respectively with silver as a pseudo reference electrode. Hence, 0.50~1.20 V was used to induce the
initiated polymerization to create a cation radical. Then the crosslinker 3,3′-bithiophene passively
participated in the electropolymerization as an acceptor of the cation radical attack (Figure 3A).

N-acyl-homoserine-lactones (AHLs) are important signal molecules of gram-negative bacteria.
They participate in the quorum sensing (QS) system to induce and regulate the expression
of virulence [19,20]. Jiang et al. [21] used methacrylic acid (MAA) as a monomer and
2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) as an analog template to construct the magnetic
molecularly imprinted polymers (MMIPs) which have the capability to selectively recognize AHLs.
The hydrogen bond and the delicate binding microcavities are the main contributors to the specificity
(Figure 3B).

2.2. Toxins and other Protein Biomarkers

Microbial toxins produced by microorganisms, including bacteria and fungi, are of high molecular
weight and have antigenic properties. They can promote infectious diseases by directly damaging host
tissues and disabling the immune system. Hence, the fast detection of microbial toxins is critical for
the diagnosis of infectious diseases. Most of the microbial toxins are protein. For protein biomarkers, a
simple way to improve the affinity of the target protein for its rebinding position is to locate specific
charges at its specific rebinding site. A positively charged monomer, quaternary ammonium salt,
holding a vinyl bond and an aromatic ring (VBTC), was used to assemble the MIPs for bovine serum
albumin (BSA) which holds a negative charge under analytical conditions (pH 7.4, isoelectric point
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is 5.4). It promoted the ionic interaction between BSA and the MIPs [22]. π–π interaction was used
to recognize toxic protein aflatoxin B1 by the p-aminothiophenol-based MIPs. The sensitivity of
the imprinted sensor was 11 times greater than that of the non-imprinted sensor by applying the
π-donor/π-acceptor interaction [23].Sensors 2020, 20, x FOR PEER REVIEW 4 of 14 
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formulas of methacrylic acid (MAA) and 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF). Reproduced
from [21]—Published by Elsevier B.V.

2.3. Virus

Creating virus-affinity MIPs/SIPs by imprinting techniques has great potential for the diagnosis of
virus-related diseases. The most direct and simple method to prepare virus recognition sites is surface
virus-imprinting. The viruses can be identified by their morphology and surface properties easily.
Some molecules of the virus capsid are demonstrated to play a vital role in the chemical recognition
between MIPs/SIPs and viruses [24]. Bai and Spivak developed a hydrogel-based SIP to recognize the
Apple Stem Pitting Virus (ASPV). For preparing virus SIPs in the molecular-scale, the perhydro gel
solution was fabricated by incubation of the impure ASPV extract with polymerizable ASPV-specific
aptamers. Their results proved the need for aptamer preorganization by using the ASPV template,
which illustrated the significance of the recognition mechanism for imprinting ASPV-specific sites
(Figure 4A). Multivalent interactions of ASPV and aptamers-hydrogel based SIPs induce to evident
visible volume-shrinking changes on the rebinding of the virus [25].

2.4. Bacterial and Fungal Cells

Direct bacteria imprinting and generation of recognition sites on polymeric matrices have
demonstrated to be practicable [26]. It belongs to one type of cell-imprinted polymers. The recognition
mechanism can give credit to the diversity of bacteria cells in shape (e.g., round-shaped Staphylococcus
aureus and the rod-shaped Escherichia coli (E. coli)), the uniform size of the same bacteria and the relatively
rigid cell wall, which enable size and shape-dependent physical space matching. More importantly,
chemical recognition based on the multiple interactions between the cell surface and MIPs/SIPs
is essential to recognizing bacteria cells. Ren and Zare [27] developed the bacteria cell-imprinted
polydimethylsiloxane (PDMS) to investigate the role of chemical recognition (Figure 4B). The results
showed that cell imprinted PDMS with methylsilane groups results in a cavity, thus losing much
of its ability to capture the imprinted bacteria, although the shapes of the imprints were shown to
be hardly affected which was proved by atomic force field microscopy. Hence, employing suitable
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functional groups or monomers to form efficient chemical interactions between MIPs/SIPs and the
bacterial cell surface is a more important factor for cell-imprinting. Other studies also revealed that
chemical recognition plays a dominant role in bacteria recognition. Phenylboronic acid (PBA) groups
can significantly improve bacteria affinity of the MIPs with controllable bacteria recognition due to the
reversibility between PBA and cis-diol groups of glycan chains presented on the bacterial surface [28].
Besides PBA groups, carbohydrate polymers like chitosan, which exhibits affinity for various bacteria
strains, were also applied to create excellent MIPs matrices with high bacteria affinity [29].
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Figure 4. (A) Preparation process for virus sensitive super-aptamer hydrogels MIPs. Reproduced
from [25]—Published by John Wiley and Sons. (B) Schematic diagram of cell-imprinted polymers for
bacteria cells. Reproduced from [30]—Published by The Royal Society of Chemistry and [27]—Published
by the American Chemical Society.

The factors influencing yeast cells (Saccharomyces cerevisiae) recognition by SIPs were studied by
means of spectroscopic and microscopy techniques. The results indicated that cell imprinting creates
selective binding sites on the surface of the SIPs layer in the form of binding cavities that match the
cells in shape and size. Furthermore, it demonstrated that the incorporated phospholipids significantly
enhance cell adhesion to the SIPs. The role of phospholipids in the SIP recognition mechanism is
mediated by long-range hydrophobic forces [7].

3. Preparation of MIPs/SIPs for Electrochemical Biosensor

Various methods have been applied for the production of MIPs/SIPs on electrodes to prepare
electrochemical biosensors. Generally, they can be synthesized by three main steps: (i) assembly of
functional monomer and template, (ii) polymerization of monomer-template complex with cross-linkers,
porogen, and initiators under photo-/thermal/electrical conditions, and (iii) template removal to reveal
binding microcavities that are highly specific to the template [31]. Standard free radical polymerization
and sol-gel process are usually used. Free radical polymerization can be further categorized into bulk,
multi-step swelling, suspension, emulsion, seed, and precipitation polymerizations based on their
synthesis methods [32–34]. As a result, the microcavities that resemble the original template molecules
in terms of size, shape, and orientation are generated in the polymer matrix, like the “lock-and-key”.
Morphology of the polymer is determined by various factors, including polymer reaction time, the
amount of pre-polymer, and porogenic solvent.

A broad range of markers associated with infectious diseases such as antibiotics [35],
lipopolysaccharides [36], nucleotides [37], toxin proteins [38,39], virus [40,41], bacteria [42,43], and
fungi [7] cells have been successfully used as templates in synthesizing MIPs/SIPs. Gast et al. [12]
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highlighted synthesis strategies for virus imprinted polymers. Nowadays, double-templates [44,45]
and multi-templates [46] methods have been developed, which makes MIPs/SIPs based-biosensors
able to detect more target analytes in one complex sample.

The choice of a functional monomer is particularly essential to create highly specific microcavities
for the templates. Interestingly, Su et al. [47] used computer-assisted molecular simulation calculations
to select the suitable functional monomer and solvent for the template molecule. MAA is reported as
the functional monomer which can form desirable pore shape and structure [48], meanwhile, it can be
hydrogen bond based acceptor and donor [49]. Other monomers used in MIPs/SIPs synthesis include
sulphonic acids (e.g., 2-acrylamido-2-methylpropane sulphonic acid), carboxylic acids (e.g., acrylic acid,
vinylbenzoic acid), and heteroaromatic bases (e.g., vinylpyridine, vinylimidazole) were summarized by
Choi and coworkers [33]. Typically, electropolymerizable monomers for the preparation of MIPs/SIPs
were highlighted by Crapnell and coworkers [50]. MAA, polyvinylpyrrolidone (PVP), dimethylamino
ethyl methacrylate (DMAEMA), and polyamine (PA) are usually used for bacteria imprinting to
improve the recognition affinity for bacteria [30].

The crosslinker is another important component of MIPs/SIPs. It is responsible for the morphology
and stability of imprinted binding sites. Ethylene glycoldimethacrylate (EGDMA), divinylbenzene
(DVB), and trimethylolpropane trimethacrylate (TRIM) are the most reported cross-linkers [33]. The
most common crosslinker for bacteria imprinting are polydimethylsiloxane (PDMS), polyacrylate,
silica (SiO2), and polyurethane (PU) [30].

Most recently, the combination of nanoparticles with MIPs/SIPs to enhance the performance of
electrochemical biosensors is a popular topic. Noble metal nanoparticles (such as Au, Ag, Pt, Pd,
etc.), metal oxide nanomaterials (such as TiO2, Fe2O3, etc.), and carbon nanomaterials (such as carbon
nanotubes, graphene, etc.) distinctly offer many unique advantages [51].

3.1. Deposition or Spin Coating on Electrodes

Deposition and spin coating are two simple methods for preparing MIPs/SIPs modified electrode.
Tancharoen et al. [52] used spin coating method to prepare a SIPs for Zika virus (ZIKV) detection. In
their procedures, a certain amount of the prepolymer−graphene oxide mixture was coated on a 1 × 1
cm2 gold electrode before spinning at 1000 rpm for 10 s to remove excess prepolymer. Subsequently,
the ZIKV template was dispersed on the composite film and exposed to UV light before keeping in
an oven at 65 ◦C for 15 h to allow polymerization to occur. The proposed SIPs were obtained after
removing the template from the composite polymer by washing in acetic acid and deionized water.

3.2. Assembly by Self-Assembled Monolayers

Self-assembled monolayers (SAMs) can be used to immobilize MIPs nanoparticles onto the gold
surface. Unlike the in-situ synthesis of MIPs/SIPs on an electrode surface, the method dependent on
SAMs includes two steps. Firstly, MIPs nanoparticles need to be prepared, then the MIPs nanoparticles
can be fixed on a SAMs modified electrode by the covalent bond. The solid-phase synthesis method
was used by Tothill’s research group to fabricate the MIPs nanoparticles, then the amine coupling
chemistry was used to fix nano MIPs receptors strongly to the gold chip. The principle of this method
depends on the activation of carboxyl groups on the gold surface by an EDC/NHS mixture which
forms reactive succinimide esters [53,54].

3.3. Electropolymerization or UV Light-Induced Polymerization

Electropolymerization is a simple and convenient deposition technique with a conductive polymer
layer produced on an electrode surface combined with the template. The layer thickness can be
controlled easily. The high-affinity binding sites can be formed by direct doping of templates into
the polymer matrix [50]. Usually, the thickness of the film controlled by the electropolymerization
conditions and can be characterized by electrical impedance spectroscopy (EIS) and cyclic voltammetry
(CV). The charge-transfer resistance of the surface would be increased with the thicknesses added. It is
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mainly because the polymer holds a low-conductive nature. In order to fabricate a layer of effective
MIPs/SIPs, it is critical to control the polymeric film so that it does not cover the whole template so that it
can be removed easily and rebound later. If the MIPs/SIPs are too thin, there are no stable microcavities
formed on the electrode. It also lowers sensitivity/affinity for the template, since a lower number of
binding sites are available. In turn, if the MIPs/SIPs film is too thick, it may entrap the template within
the polymeric matrix, hence make its removal/rebinding more difficult. Imprinted artificial capture
antibodies (cAbs) for Staphylococcus aureus (S. aureus) were fabricated by electropolymerization [55]. By
formation of a Schiff base linkage, S. aureus was fixed on the aldehyde functionalized ITO electrode
surface first. Then, an in-situ electrochemically assisted polycondensation strategy was applied to
deposit a silica film on the electrode surface around the S. aureus. Finally, a calcination treatment was
used to achieve the cAbs. The cAbs with lots of regular cavities were observed after the removal
of the template. The circular shape of the cavities was proven by images of higher magnification.
The AFM image (Figure 5A) revealed that the depths of the cavities were ~160 nm. Apparently, the
pathogen template was imprinted on the ITO surface successfully and the three-dimensional spheroidal
architecture was observed. All the preparation process was also characterized by using electrochemical
methods in the study.
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Figure 5. (A) Schematic preparation procedures for the artificial capture antibodies (cAbs), AFM
images, and the corresponding height profiles of the cAbs. Reproduced from [55]—Published by The
Royal Society of Chemistry. (B) Schematic preparation procedures for graphene oxide doped SIPs
under UV light. Reproduced from [52]—Published by the American Chemical Society.

Tokonami et al. [56] applied a MIPs film consisting of overoxidized polypyrrole (OPPy) to
recognize bacilliform bacteria specifically and rapidly. Polypyrrole (PPy) was synthesized using
electrochemical polymerization combined with dielectrophoresis (DEP) technique. The DEP resulted
in the P. aeruginosa being oriented in one direction, perpendicular to the film surface. The number of
bacteria doped in the film was counted to be 1.8 × 109 cm−2.

UV light-induced polymerization also can be used to prepare MIPs/SIPs on the electrode. It has
been used to prepare SIPs-graphene oxide composites on the electrode for Zika virus (ZIKV) detection
(Figure 5B) [52]. Idil et al. fabricated SIPs under UV-polymerization for E. coli detection [57].

3.4. Micro-Contact Imprinting

The micro-contact imprinting approach is a soft lithography method that involves the conformal
stamping of a template-immobilized layer in a specific pattern on a polymer surface (e.g., PU, PDMS, or
SiO2), so that it is able to form shape-complementary recognition sites for relatively large templates on
the surface. There are three main types of direct micro-contact imprinting methods: stamp imprinting,
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film imprinting, and sacrificial layer method imprinting (Figure 6A) [26]. It can also use an artificial
template to generate the capturing of SIPs. This method is categorized as indirect micro-contact
imprinting methods [58]. The preparation procedures are shown in Figure 6B. Stamp imprinting
method was first used by Dickert et al. [59,60] to prepare SIPs to detect whole yeast cells. Recently, the
micro-contact imprinting methods were considered as the most promising branch of MIPs/SIPs.
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4. Applications in Clinical Assays

4.1. Detection of Infectious Diseases Caused by Bacteria

Infectious diseases caused by bacteria are common in our life. MIPs/SIPs based electrochemical
biosensors have been used as rapid diagnostic tools for these diseases. As a branch of MIPs/SIPs, CIPs
are special for cell biomarkers. CIPs based electrochemical biosensor were reported for Staphylococcus
epidermidis (S. epidermidis) detection [28]. 3-aminophenylboronic acid was used as a functional
monomer for the electrochemical fabrication of the CIPs. EIS signal was shown to respond linearly to
concentrations of S. epidermidis in the range of 103–107 cfu mL−1. MIPs fabricated by polyphenol was
used as an artificial receptor for the detection of flagellar filaments from Proteus mirabilis by Khan and
coworkers [61]. EIS and square wave voltammetry (SWV) were applied to measure the interaction of
flagellar filaments with the MIPs that was fixed on their home-made paper-printed electrodes. Their
results showed that the limit of detection (LOD) for the flagellar filaments was as low as 0.6 ng/mL.

4.2. Detection of Infectious Diseases Caused by Viruses

MIPs/SIPs based biosensors have wide applications for the detection of virus in medical diagnostics.
Malik and coworkers [62] summarized the state-of-the-art application of MIPs for virus detection.
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The detection performance for influenza, Dengue virus, Japanese encephalitis virus (JEV), human
immunodeficiency virus (HIV), hepatitis A virus, hepatitis B virus, adenovirus, and picornaviruses were
discussed. However, the studies cited in their review paper mainly used quartz crystal microbalance
(QCM), surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and resonance
light scattering (RLS) as transducers. In this section, the MIPs/SIPs based electrochemical biosensors
for virus detection are emphasized.

Human papillomavirus (HPV) is a group of more than 200 related viruses, some of which are
spread through anal or vaginal sex. Long-lasting or chronic infections caused by HPV can induce
cancer. Cai and coworkers [63] presented a MIPs based nano-sensor to detect human papillomavirus
derived E7 protein. Analysis of EIS data revealed that the detection of E7 protein can be as low as sub
pg L-1 levels. Notably, the human papillomavirus E6 protein (type-16) was not recognized by the E7
imprinted polymers. It shows outstanding specificity.

As a member of the Flaviviridae virus family, Zika virus usually infects human beings and
typically causes a skin rash, conjunctivitis, red eyes, malaise, muscle and joint pain, headache, or mild
fever. Recently, Tancharoen et al. [52] developed an electrochemical sensor based on SIPs and graphene
oxide composite for Zika virus detection. The sensor was applied to detect virus in both PBS solutions
and serum. In the PBS solution, LOD was found to be 2 × 10−2 PFU/mL in the presence of the dengue
virus. For serum samples, dilution steps were added to reduce the background signal. The LOD found
to be 2 × 10−3 in 10% serum samples and 5 × 10−2 PFU/mL (10~250 RNA copies/mL) in 1% serum
samples. Generally, the lowest LOD in real samples should be 6000 (~104) particles (or ~10−3 PFU) per
mL. This performance is sufficient for Zika virus detection in practical applications.

Acquired immune deficiency syndrome (AIDS) is a severe infectious disease caused by HIV. HIV
is a member of retroviruses, it is disseminated mainly by contaminated blood transfusions, unprotected
sex, and others. Ma et al. [64] developed an electrochemical biosensor based on multi-walled carbon
nanotubes modified MIPs for the detection of HIV-p24. They proved that MIPs have a specific
recognition capacity for HIV-p24. The linear range was found to be from 1.0 × 10−4 ng cm−3 to 2.0
ng/cm−3. The LOD was tested to be 0.083 pg/cm3. The reported biosensor showed excellent selectivity
and stability. It was successfully used for the detection of HIV-p24 in a human serum sample.

5. Conclusion and Look into the Future

Molecular imprinting is an attractive technology used to create selective recognition sites within
a polymer network. MIPs/SIPs as tailor-made biomimetic materials have the obvious priority over
other recognition elements. The major advantages are their robustness, long-term stability, and
cost-effectiveness, which cannot be obtained by fragile biomolecules. In this review, applications
of MIPs and SIPs based electrochemical biosensors are focused on, especially in the detection of
infectious diseases. Recognition mechanisms, preparation methods, and application performance
of MIPs/SIPs were discussed. Although tremendous progress has been achieved, there still exist
several challenges. The most important one is that the sensitivity (Table 1) and selectivity need further
improvement since MIPs/SIPs do not always possess properties comparable to antibodies. In this case,
more functional monomers are worth exploring to promote chemical recognition. Another strategy
is using nanopatterned electrodes as the transducer. The design and application of nanopatterned
electrodes could promote MIPs/SIPs to generate more effective cavities with excellent spatial matching
effect. Moreover, in the era of artificial intelligence, using machine learning to design MIPs/SIPs and
improve the recognizing ability of MIPs/SIPs based electrochemical biosensors is very promising.
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Table 1. Analytical performance of MIPs/SIPs based electrochemical biosensors for infectious diseases.

Analytes Preparation Methods of MIPs/SIPs Device/Indicator Label/Label Free Method LOD LR Ref.

N-acyl-homoserine-lactones (AHLs) MMIPs: Fe3O4@
SiO2-MIP

MGCE/
[Fe(CN)6]3−/4− Label free DPV 10−10 M 2.5 × 10−9–10−7 M [21]

Bacterial surface proteins 3-aminophenol electropolymerization SPEs-SWCNTs/
[Fe(CN)6]3−/4− Label free EIS 0.60 nM NR [65]

Bacterial flagellar filaments Phenol electropolymerization PPE/[Fe(CN)6]3−/4− Label free SWV 0.6 ng mL−1 0.01–100 µg mL−1 [61]

Staphylococcus epidermidis 3-APBA electropolymerization GE//[Fe(CN)6]3−/4− Label free EIS NR 103–107 CFU mL−1 [28]

E. coli O157:H7 PDA-SIPs N-GQDs Label ECL 8 CFU mL−1 10–107 CFU mL−1 [66]

E. coli UV-polymerization NR Label free Capacitance 70 CFU mL−1 1.0 × 102–1.0 × 107 CFU mL−1 [57]

Bacillus cereus spores Pyrrole electropolymerization CPE/[Fe(CN)6]3−/4− Label free CV 102 CFU mL−1 102–105 CFU mL−1 [67]

Zika virus Prepolymer-GO composites under UV light SPGE//[Fe(CN)6]3−/4− Label free CV/EIS ∼10−3 PFU 10−3–102 PFU mL−1 [52]

HIV-1 gene Directly electropolymerization of
phenylenediamine ITO electrode/EsNCs Label ECL 0.3 fM 3.0 fM–0.3 nM [37]

HIV-p24
polymerization using AAM as functional
monomer, MBA as crosslinking agent and

APS as initiator.
GCE DPV 0.083 pg mL−1 1.0 × 10−4–2 ng mL−1 [64]

Aflatoxin B1 PATP-AuNPs electropolymerization GE/[Fe(CN)6]3−/4− Label free LSV 3 fM 3.2 fM–3.2 µM [23]

3-APBA: 3-aminophenylboronic acid. AAM: acrylamide. APS: ammonium persulfate. CPE: carbon paste electrode. CV: cyclic voltammetry. ECL: electrochemiluminescence.
EsNCs: Europium sulfide nanocrystals. GCE: glassy carbon electrode. GE: gold electrode. LOD: limit of detection. LR: linear range. LSV: linear sweep voltammetry. MBA:
N,N′-methylenebisacrylamide. N-GQDs: nitrogen-doped graphene quantum dots (N-GQDs). NR: not reported. PDA: polydopamine. PPE: paper-printed electrodes. SIPs: surface
imprinted polymers. SPGE: screen-printed gold electrode.
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Until now, few studies explored the recognition mechanism of MIPs/SIPs and larger bioparticles
(viruses and bacteria). Research on the exact mechanisms behind target recognition should be
emphasized because that can lead to an in-depth understanding, which will eventually help in designing
MIPs/SIPs and electrochemical biosensors with even higher selectivity, sensitivity, and accuracy.
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