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Editorial on the Research Topic

Mechanisms and Strategies of Arthropod Adaptation to the Chemical Environment

As one of the most successful groups of animals, arthropods have evolved a wide range of adaptive
strategies that allow them to live in almost every habitat on Earth (Ledesma et al., 2020). These
strategies largely involve in the capabilities of coping with the chemical stresses imposed by their
environments, including both biotic and abiotic components, to help them survive and thrive
(Korsloot et al., 2004). While the biotic components can be the hosts, predators, parasitoids, and
competitors of arthropods, pesticides have become an increasingly prominent abiotic factor owing to
their extensive/indispensable use in agricultural and urban environment (Sparks and Nauen, 2015;
Gould et al., 2018). Nevertheless, both biotic and abiotic components have been some of the key
drivers facilitating the evolution of stress management in arthropods, which include perceiving,
processing, and responding to chemical signals at a variety of biological levels (Després et al., 2007;
Vilcinskas, 2013; Liu, 2015; van Leeuwen and Dermauw, 2016; Alyokhin and Chen, 2017). This
Research Topic is dedicated to this topic and the following four papers have advanced our
understanding by examining pertinent hypotheses.

To defend against predators, certain herbivorous arthropods evolve the ability of utilizing toxic
chemical compounds produced by their host plants as molecular weapons, a research field that has
drawn growing attention in recent years (Petschenka and Agrawal, 2016). Instead of metabolizing
them, some arthropods can absorb and accumulate these plant compounds in their body, thereby
making themselves toxic or unpalatable to their predators, a phenomenon termed sequestration
(Nishida, 2002; Beran and Petschenka, 2022). As one of the best-known examples, the horseradish flea
beetle, Phyllotreta armoraciae, a monophagous insect feeding on brassicaceous plants, is able to
sequester host-derived glucosinolates to protect itself against predators (Yang et al., 2020). In this
Research Topic, Yang et al. further showed that the uptake of glucosinolates mainly occurred at the
foregut of P. armoraciae, in contrast to the widely accepted notion that the endodermal midgut is the
tissue for hydrophilic compound absorption. According to authors, and as far as we are aware, this is
the first report that insects may use their foregut to absorb hydrophilic compounds, laying the ground
for understanding the roles foregut may play in insects’ adaptation to the chemical environment.

The metabolism of toxic compounds is another way that arthropods use to survive the natural and
synthetic chemicals (Li et al., 2007). Unlike sequestration whose research is still in its infancy,
xenobiotic metabolism has been extensively studied, and multiple classes of detoxification enzymes
have been identified and functionally characterized, including cytochrome P450 monooxygenases
(P450s), glutathione S-transferases (GSTs), carboxylesterases (CarEs), UDP-glucosyltransferases
(UGTs), sulfotransferases, and ATP-binding cassette (ABC) transporters (Feyereisen 2012; Zhu et al.,
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2014; van Leeuwen and Dermauw, 2016; Nauen et al., 2022). Two
papers in this issue investigated the mechanisms underlying pesticide
detoxifications using the insect pests of public health importance, the
housefly, Musca domestica, and the southern house mosquito, Culex
quinquefasciatus, respectively.While Gong et al. focused on the role of
cytochrome P450 reductase (CPR) as a cofactor of P450s in pesticide
metabolism, You et al. examined the diel rhythmic expression of
several detoxification genes, including those encoding P450s, GSTs,
and CarEs, and discussed how such expression scheme was associated
with pesticide susceptibility in these insects.

RNA interference (RNAi) is a gene silencing mechanism that
arthropods, as many other life forms, have evolved to circumvent
viral infection (Fire et al., 1998; Wilson and Doudna, 2013). This
mechanism has been used to develop the strategies for beneficial
arthropod protection and pest control (Vogel et al., 2019). The
Bayer “SmartStax Pro” maize (Mon87411), the first RNAi
transgenic trait, has been recently deregulated in the US,
China, and Canada, and this RNAi-based biocontrol product
is commercially available to the US farmers, starting 2022 (De
Schutter et al., 2022). By allowing the target arthropod pests to

ingest double-stranded RNA (dsRNA) molecules that function to
silence specific genes, pests are killed or their viability is impaired.
However, the efficacy of RNAi can be affected by many factors
including the instability of dsRNAs prior to their entry into host
cells. The fourth paper by Lei et al. identified and characterized
the sole dsRNase gene in the tawny crazy ant, Nylanderia fulva, to
improve the silencing efficacy for this emerging invasive pest that
spreads rapidly across the southern United States.

Lastly but certainly not least, we are grateful to all authors for
contributing their articles and anonymous reviewers, as well as
editorial staff for their constructive comments and suggestions.
We hope this Research Topic will be of interest to the broad
readership of Frontiers in Physiology.
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