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Abstract

Purpose: To investigate a method to classify tissues types for synthetic CT genera-

tion using MRI for treatment planning in abdominal radiotherapy.

Methods: An institutional review board approved volunteer study was performed

on a 3T MRI scanner. In‐phase, fat and water images were acquired for five volun-

teers with breath‐hold using an mDixon pulse sequence. A method to classify differ-

ent tissue types for synthetic CT generation in the abdomen was developed. Three

tissue clusters (fat, high‐density tissue, and spine/air/lungs) were generated using a

fuzzy‐c means clustering algorithm. The third cluster was further segmented into

three sub‐clusters that represented spine, air, and lungs. Therefore, five segments

were automatically generated. To evaluate segmentation accuracy using the method,

the five segments were manually contoured on MRI images as the ground truth, and

the volume ratio, Dice coefficient, and Hausdorff distance metric were calculated.

The dosimetric effect of segmentation accuracy was evaluated on simulated targets

close to air, lungs, and spine using a two‐arc volumetric modulated arc therapy

(VMAT) technique.

Results: The volume ratio of auto‐segmentation to manual segmentation was 0.88–
2.1 for the air segment and 0.72–1.13 for the remaining segments. The range of the

Dice coefficient was 0.24–0.83, 0.84–0.93, 0.94–0.98, 0.93–0.96, and 0.76–0.79 for

air, fat, lungs, high‐density tissue, and spine, respectively. The range of the mean

Hausdorff distance was 3–29.1 mm, 0.5–1.3 mm, 0.4–1 mm, 0.7–1.6 mm, and 1.2–
1.4 mm for air, fat, lungs, high‐density tissue, and spine, respectively. Despite worse

segmentation accuracy in air and spine, the dosimetric effect was 0.2% ± 0.2%, with

a maximum difference of 0.8% for all target locations.

Conclusion: A method to generate synthetic CT in the abdomen was developed,

and segmentation accuracy and its dosimetric effect were evaluated. Our results

demonstrate the potential of using MRI alone for treatment planning in the abdo-

men.
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1 | INTRODUCTION

MR images have better soft tissue contrast than CT images; how-

ever, they are not often used alone in a radiation therapy workflow

since the lack of electron density information precludes heterogene-

ity corrections — a part of the standard of care in treatment plan-

ning. The uncertainties introduced in the registration process of MR

images with CT images affect the accuracy of treatment target delin-

eation, and therefore affect treatment quality. To streamline the

workflow by implementing MRI alone in the planning process, sev-

eral methods have been proposed for generating synthetic CT from

MRI in various body sites. These methods have been reviewed com-

prehensively by Edmund and Nyholm,1 Johnstone et al,2 and

Owrangi et al.3

Previous studies have shown promising results in terms of syn-

thetic CT quality, and demonstrated the potential of using MRI alone

in the workflow for head4–10 and pelvis11–15 radiation therapy.

Despite encouraging results in head and pelvis, few studies investi-

gated the potential of using MRI alone in the abdomen. Bredfeldt

et al16 presented a shape‐aided intensity‐based tissue classification

method using a single imaging sequence to generate synthetic CT and

showed its feasibility for liver stereotactic body radiotherapy (SBRT)

dose calculations. Guerreiro et al17 used an automatic atlas‐based seg-

mentation of tissue classes followed by a voxel‐based MRI intensity

to Hounsfield unit (HU) conversion algorithm and showed its feasibil-

ity in photon and proton dose calculations for treating children with

abdominal tumors. Liu et al18 used a three‐dimensional (3D) cycle‐con-
sistent generative adversarial network (cycle GAN) to generate syn-

thetic CT for liver proton therapy. The methods that require MR to

be registered with CT as a training dataset may be difficult for abdo-

men due to geometric distortions and motion artifacts.

This study aims to investigate the feasibility of a synthetic CT

method using a single MR imaging sequence and to evaluate the

segmentation accuracy of the proposed method and its dosimetric

effect for abdominal radiotherapy. To avoid potential geometric dif-

ferences between CT and MR images in the abdomen due to geo-

metric distortion of the MRI, internal organ motion, and setup

uncertainty, we compared tissue segments generated from the pro-

posed method with manually contoured segments on MR images.

Bulk density assignment using population‐based HUs, shown to be

appropriate by a previous study,19 was applied to these tissue seg-

ments to evaluate the dosimetric effect of segmentation accuracy.

2 | METHODS AND MATERIALS

2.A | Image acquisition

Five volunteers participated in an institutional review board (IRB)‐ap-
proved prospective protocol (Number: 2017‐7745), and underwent

abdominal MRI scans on a flat tabletop (Medibord Ltd, Nottingham,

United Kingdom) customized for a 3T Philips Achieva MRI scanner

(Philips Medical Systems, Cleveland, OH). One volunteer was

scanned in feet first supine position while the others were scanned

in head first supine position. No gadolinium contrast was used for

the volunteer study. MR images were acquired using a 16 channel

SENSE XL torso phased array coil. A 3D mDixon pulse sequence

was employed and in‐phase, fat‐only, and water‐only images were

generated online. Typical scanning parameters included: TR/TE1/TE2/

flip angle = 4 ms/1.38 ms/2.6 ms/10°; FOV = 340/250/240 mm;

matrix = 264 × 156; voxel size = 1.29 × 1.60 × 4 mm; pixel band-

width = 1076 Hz per pixel. Volumetric MR images from this

sequence were acquired in one single breath‐hold of about 16 sec at

the end of inhalation. A respiratory belt was used to monitor breath-

ing for the breath‐hold scans. A vendor‐provided online intensity

correction and spatial distortion correction were utilized.

2.B | Tissue classification for synthetic CT
generation

Our method utilized tissue characteristics present in MR images to

classify tissues and assigned electron density to each tissue type.

The method used a fuzzy c‐means (FCM) clustering algorithm with a

spatial constraint, which was described by Hsu et al20 for synthetic

CT generation in the head. The steps of this method are shown in

Fig. 1. The input image volumes included in‐phase, fat and water MR

images from the single pulse sequence to minimize possible classifi-

cation errors due to image registration and internal organ motion in

the abdomen between image acquisitions from different pulse

sequences. The following sections describe the details in each step

for synthetic CT generation in the abdomen.

2.B.1 | Image preprocessing

All MR images were corrected for residual intensity non‐uniformity

using a commonly applied post‐processing bias‐field correction algo-

rithm (N4itk)21 and implemented in a publicly available image analy-

sis software environment (SLICER 4.6, surgical processing laboratory,

Brigham and Women’s Hospital, Boston, MA). The bias field was

estimated within the volume defined by the skin surface. The N4itk

optimization parameters included: BSpline order of 3, BSpline grid

resolutions of (1, 1, 1), a shrink factor of 4, maximum numbers of

50, 40, and 30 iterations at each of the three resolution levels, and a

convergence threshold of 0.0001.

A difference MR image (dMRI) volume was created by subtracting

water images from fat images, which provided preferable tissue cluster

distributions for classification in our method (Fig. 2). To reduce image

noises on MR images, an edge‐preserving anisotropic diffusion filter

was applied to all four MRI volumes (in‐phase, fat, water, and dMRI). A

volume of interest (VOI) was segmented based on external contours

on in‐phase MRI volume using Otsu’s thresholding method followed

by morphological operations, such as hole filling, dilation, and erosion.

2.B.2 | Tissue classification using FCM

Probabilistic tissue classification was achieved via the FCM clustering

algorithm on dMRI volume, and three probability image volumes
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were generated to represent three tissue clusters, which are consis-

tent with the histogram shown in Fig. 2: (a) high‐density tissue (e.g.,

liver, heart, and muscle), (b) bone marrow, solid bone, air, and lungs,

and (c) fat. The second tissue class mixed tissue types with a wide

CT number range, which were further partitioned into lungs, air, and

spine and described in next two sections.

2.B.3 | Air and lung localization

To identify the lung segment, the intensity thresholding was first

applied on in‐phase images using the threshold value acquired from

Otsu’s method in section 2.B.1 to segment low intensity voxels

which mostly belonged to lungs, air, or solid bone (e.g. ribs). Given

that the size of air pockets and solid bone was much smaller than

the size of the lungs, small objects in the segment with an area smal-

ler than 3500 voxels in each two‐dimensional (2D) image were

removed. Therefore, only voxels in the lungs were preserved. Then a

3D region growing technique with seed points in the lung mask on

in‐phase images was utilized, followed by morphological cleanup. To

identify the air segment, morphological erosion was applied on the

low intensity segment that excluded lungs, and followed by region

growing and morphological cleanup.

2.B.4 | Spine localization

Our method primarily attempted to distinguish spine from other tis-

sues, so ribs were ignored and classified as a mixture of high‐density
tissue and fat. To localize the spine, a spine mask was first created

based on its spatial location and dimension inside the body. Next,

the spine mask was modified by removing voxels that also belonged

to air, lungs, and fat, followed by a morphological opening to pre-

serve bone marrow only. To keep the spinous processes, a solid

bone mask was created simultaneously during the process for air

and lung localization. Then, a 2D region growing technique with seed

points in the bone marrow and solid bone masks was performed

with intensity and distance constraints. The spinal cord was identi-

fied and removed from the spine mask based on its spatial location

and cylindrical shape. Figure 3 shows the process for spine localiza-

tion.

2.B.5 | Class property assignment to the probability
image volumes for synthetic CT generation

Because the second class was further classified into air, lungs, and

spine, five probability image volumes were generated to represent

air, lungs, spine, fat, and high‐density tissue. Population‐based HUs

from our previous study were then applied to these five tissue

classes: −1000 HUs for air, −708 HUs for lungs, −89 HUs for fat,

39 HUs for high‐density tissue, and 354 HUs for spine.19 The sum

of probability‐weighted HUs in each voxels yielded the synthetic CT

(Fig. 4).

2.C | Manual contouring on MR images

2.C.1 | Contours of five tissue segments

A ground truth contour set of fat, air, lungs, spine, and other high‐
density tissue (i.e., residual tissue) was manually segmented on MR

image volumes using a combination of the available drawing tools

that are implemented in a commercial treatment planning system

(Eclipse 13.7, Varian Medical Systems, Palo Alto, CA). First, an inten-

sity thresholding tool was used to segment the fat and vertebral

body on fat images. Air and lungs were contoured on in‐phase
images. A 3D brush was then used to modify and clean‐up air and

lung segments. A 2D adaptive brush on each axial slice was used to

contour the spinous process and a rigid eraser was used to clean up

the entire segment — slice by slice. The spine segment was post‐
processed to remove stray pixels, fill in holes, and smooth the con-

tour. The remaining tissue structure was created using Boolean

Multi-spectral 
MR images 

Spine 
localization

Image 
preprocess

Air and lung 
localization

Tissue classification 
using FCM

Generation of five 
probability image volumes

Class property 
assignment

Synthetic CT 
generation F I G . 1 . Tissue classification process for

synthetic CT generation.

(a) (b) (c) (d) (e)

Fat

High density 
�ssue 

Bone marrow, solid 
bone, air and lungs 

F I G . 2 . (a) In‐phase, (b) water, (c) fat, and (d) difference image (dMRI) volumes. (e) Intensity histogram inside body contours for the 3D
volume of the dMRI. The histogram has three peaks, which include (1) high‐density tissue, (2) bone marrow, solid bone, air and lungs, and (3)
fat.

138 | HSU ET AL.



operators to subtract other segments (i.e., fat, air, lungs, and spine)

out of the body. The body contour was the same as the one created

from auto‐segmentation in section 2.B. In addition, the spine con-

touring process was processed by another observer to evaluate

inter‐observer variations, and to study the impact of its segmenta-

tion subjectivity.

2.C.2 | Contours of simulated targets

Three spherical clinical target volumes (CTVs) with a 2 cm radius

were generated on MR images for all volunteer subjects. A 5 mm

margin was applied symmetrically to the CTV to generate a planning

target volume (PTV). The first target was centered at the upper

abdomen adjacent to the lungs (CTVlung and PTVlung), the second tar-

get was adjacent to the air pockets (CTVair and PTVair), and the third

target was approximately in the midline of the abdomen adjacent to

the spine (CTVspine and PTVspine) (Fig. 5).

2.D | Evaluation of segmentation accuracy

2.D.1 | Geometric comparison

Our method generates five probability maps, which indicate the

probability of a given voxel to belong to a specific class. To compare

them with manual segments, a defuzzification procedure was applied

to convert this fuzzy partition to a crisp partition. Defuzzification

involves a maximum membership conversion procedure in which a

given the voxel k is assigned to the class Cj, j = 1,...N, for which it

has the highest membership probability (u).

Volume ratios, Dice coefficient, and Hausdorff distance metric

were calculated using Velocity AI (Velocity 3.2.1, Varian Medical

Systems, Palo Alto, CA), and compared between automatic segmen-

tation and manual contouring. To evaluate overall segmentation

accuracy, a weighted Dice coefficient (S) was calculated by summing

the Dice coefficient for each tissue segment i with the ratio of the

segment volume (Vi) to the total volume (VT):

S ¼ ∑
N

i¼1
wiSi ¼ ∑

N

i¼1

Vi

VT
Si (1)

where the sum of wi is equal to 1. The maximum S for the best seg-

mentation is 1.

2.D.2 | Dosimetric effect of segmentation accuracy

The population‐based HUs (as described in section 2.B.5) were

assigned to the five tissue segments that were generated from auto-

matic segmentation after defuzzification and manual contouring. This

resulted in a defuzzified MRCT (dMRCT) and reference MRCT

(rMRCT). To quantify the dosimetric effect of segmentation accuracy,

treatment planning employing hypo‐fractionated volumetric modu-

lated arc therapy (VMAT) was performed on the dMRCT and rMRCT

datasets in the Eclipse treatment planning system. Two partial arcs

were utilized for planning on both PTVlung and PTVair, whereas two

full arcs were utilized for planning on PTVspine. The VMAT plan was

first optimized on the dMRCT dataset following institutional con-

straints for target coverage and gradient falloff, and the dose was

calculated using the analytical anisotropic algorithm (AAA) with a grid

size of 1.25 mm. Then, the fluence was copied to rMRCT and the

dose was recalculated. A total dose of 50 Gy in five fractions was

utilized. Dose volume histogram (DVH) metrics for the doses to 97%

(D97%) and 0.03 cm3 (D0.03 cm3) of the volume were extracted for

(a) (b) (c) (d) 

F I G . 3 . (a) A fat image after edge‐preserving filtering. (b) The fat image after removing fat, lungs, air, and non‐spine areas. (c) The fat image
after performing the morphological opening and thresholding. (d) The fat image after performing region growing and removal of the spinal
cord.

F I G . 4 . Synthetic CT in a coronal view for all five volunteers.
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the PTV and CTV and compared between dMRCT and rMRCT dose

calculations.

3 | RESULTS

3.A | Geometric comparison

Figure 6 shows the contours of the tissue segments generated man-

ually and automatically. Table 1 shows the volume of manual seg-

mentation, volume ratio of auto‐segmentation to manual

segmentation, Dice coefficients, and Hausdorff distances in mm

(mean ± one standard deviation) for the five volunteers. The volume

ratio of auto‐segmentation to manual segmentation was 0.88–2.10
for the air segment while it was 0.72–1.13 for the remaining seg-

ments. The range of the Dice coefficient was 0.24–0.83 for air,

0.84–0.93 for fat, 0.94–0.98 for the lungs, 0.93–0.96 for high‐density
tissue, and 0.76–0.79 for the spine. The range of the mean Haus-

dorff distance was 3–29.1 mm for air, 0.5–1.3 mm for fat, 0.4–1 mm

for the lungs, 0.7–1.6 for high‐density tissue, and 1.2–1.4 mm for

the spine. The segmentation accuracy was better for fat, lungs, and

high‐density tissue, than it was for air. Although the accuracy of air

was the worst, the overall segmentation accuracy using the weighted

Dice coefficient ranged from 0.91 to 0.96 because the air volume

was small in the abdomen and the majority of tissue types were fat,

(c)(b)(a)

F I G . 5 . Simulated spherical targets, CTVs (red), and PTVs (cyan), adjacent to (a) lungs, (b) air pockets, and (c) spine displayed on in‐phase MR
images. CTVs, clinical target volumes; PTVs, planning target volumes.

(a) 

(b) 

F I G . 6 . Air (magenta), lung (blue), fat (brown), and spine (green) contours using (a) manual and (b) auto‐segmentation for volunteer 2. The
high‐density tissue segment includes the residual tissue (the contour is not shown).
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lungs, and high‐density tissue, which had better segmentation accu-

racy. Due to the laborious process of contouring the spine, spine

contours were compared between two independent observers. The

Dice coefficient for spine contours between two observers drawing

on MR images was 0.95 ± 0.02 and the mean Hausdorff distance

was smaller than 0.5 mm for all volunteers.

3.B | Dosimetric effect of segmentation accuracy

The impact of segmentation accuracy on dose calculations was evalu-

ated for three different target locations that were adjacent to lungs,

spine, and air (Table 2). Generally, the calculated dose to targets on

rMRCT generated using manual segmentation was lower than the dose

on dMRCT using auto‐segmentation. The difference for all target loca-

tions and volunteers was 0.2% ± 0.2%, with a maximum difference of

0.8%. No dosimetric difference was observed between target locations.

4 | DISCUSSION

In this study, the segmentation accuracy of our proposed method in

generating synthetic CT was evaluated in the abdomen, and the

TAB L E 1 The volume from manual segmentation, volume ratio of auto‐segmentation to manual segmentation, Dice coefficient, and Hausdorff
distance (mm) for air, fat, lungs, high‐density tissue, and spine for five volunteers. The weighted Dice coefficient for all segments is also shown.

Tissue Segment

Volunteer Number

1 2 3 4 5

Volume from Manual Segmentation (cm3)

Air 37 32 13 189 98

Fat 4884 2081 1587 3674 1468

Lungs 1236 1696 1559 1459 396

High‐density tissue 12077 6098 6111 6546 5794

Spine 415 230 223 241 227

Volume Ratio (Auto/Manual Segmentation)

Air 1.28 1.28 2.10 0.88 1.45

Fat 0.86 0.91 0.72 0.78 0.81

Lungs 0.94 0.97 1.01 0.98 0.97

High‐density tissue 1.07 1.04 1.07 1.13 1.05

Spine 0.80 0.81 0.96 0.87 0.73

Dice Coefficient

Air 0.238 0.830 0.596 0.823 0.587

Fat 0.920 0.935 0.844 0.880 0.891

Lungs 0.947 0.973 0.980 0.971 0.939

High‐density tissue 0.957 0.964 0.953 0.928 0.958

Spine 0.786 0.787 0.786 0.763 0.791

Weighted Dice 0.941 0.955 0.935 0.914 0.936

Hausdorff Distance in mm (Mean ± 1 SD.)

Air 29.1 ± 34.9 4.1 ± 10.7 5.8 ± 11.1 3.0 ± 8.1 6.3 ± 10.3

Fat 0.5 ± 0.7 0.6 ± 1.1 0.8 ± 1.2 1.3 ± 1.9 0.5 ± 0.8

Lungs 1.0 ± 2.2 0.7 ± 1.8 0.4 ± 0.9 0.6 ± 1.3 0.8 ± 2.2

High‐density tissue 0.7 ± 1.3 0.8 ± 1.5 0.9 ± 1.4 1.6 ± 2.8 0.7 ± 1.3

Spine 1.4 ± 1.8 1.2 ± 1.4 1.3 ± 1.6 1.4 ± 1.9 1.3 ± 1.9

TAB L E 2 Relative dose difference (%) in targets for the plans on rMRCT to the plans on dMRCT. Mean, one standard deviation, and range are
shown.

Metrics PTV D97% PTV D0.03cm3 CTV D97% CTV D0.03 cm3

Plan: PTVlung, CTVlung −0.2% ± 0.2% [−0.5% 0%] −0.2%±0.2% [−0.5% 0%] −0.4% ± 0.2% [−0.8% −0.2%] −0.2% ± 0.2% [−0.5% 0%]

Plan: PTVspine, CTVspine −0.2% ± 0.1% [−0.3% 0%] −0.2% ± 0.3% [−0.8% 0%] −0.2% ± 0.1% [−0.4% 0%] −0.2% ± 0.3% [−0.8% 0%]

Plan: PTVair, CTVair −0.2% ± 0.2% [−0.4% 0%] −0.3% ± 0.3% [−0.8% 0%] −0.2% ± 0.3% [−0.7% 0.1%] −0.3% ± 0.3% [−0.8% 0%]

All Target Plans −0.2% ± 0.1% [−0.5% 0%] −0.2% ± 0.3% [−0.8% 0%] −0.3% ± 0.2% [−0.8% 0.1%] −0.2% ± 0.3% [−0.8% 0%]

CTVs, clinical target volumes; dMRCT, defuzzified MRCT; rMRCT, reference MRCT. PTVs, planning target volumes.
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weighted Dice coefficient was found to be between 0.914 and

0.955 for the five volunteer subjects. In addition, the impact of seg-

mentation accuracy on dose calculations for target locations adjacent

to lungs, spine, and air was evaluated and found to be within the

clinically acceptable range, with a mean difference of 0.2% and a

maximum difference of 0.8% in target coverage.

The segmentation accuracy was the worst for air, with a Dice

coefficient of 0.24–0.83 and a Hausdorff distance of 3–29.1 mm.

However, due to its small volume, the dosimetric effect was not crit-

ical. For spine segmentation, the Dice coefficient was 0.76–0.79
while the Hausdorff distance was 1.2–1.4 mm. Spine segmentation

was the most challenging step in automatic segmentation on MR

images because the signal in solid bone was really low and it could

not be easily separated from air. In addition, the contrast of bone

marrow was not sufficient to be completely separated from other

tissues using the imaging sequence in our study. Misclassification

was observed in the spine and the neighboring area; however, its

dosimetric effect was not critical when using two full arcs on the

target close to spine. Improving MR imaging contrast and spine local-

ization accuracy would improve the quality of synthetic CT, and may

be more critical when using synthetic CT for dose calculations in

spine metastasis cases. Regarding the remaining tissue segments, the

Dice coefficient was higher than 0.84 and the mean Hausdorff dis-

tance was less than 1.6 mm. Because the volume of these tissue

types was much larger than air and spine, the dosimetric accuracy

was found not to depend on target locations.

When manually contouring different tissue segments, there was

a small uncertainty that resulted from the process in intensity

thresholding and observer judgment. This may cause misclassification

between high‐density tissue and other tissue segments (e.g., fat)

because the high‐density tissue volume was acquired by subtracting

the other four tissue segments from whole body volume. This may

explain why the volume ratio was larger than 1 for high‐density tis-

sue and smaller than 1 for fat. The inter‐observer variation was

within 5% based on the Dice coefficient on the spine segment. The

uncertainties in the process of manual contouring would have a min-

imal effect on the evaluation of segmentation accuracy on dosimetry

in our study.

The segmentation accuracy using the proposed method resulted

in a mean dose difference of 0.2% for target coverage when using

VMAT in the abdomen. Using population‐based HUs on five tissue

segments resulted in a mean difference of 0.1% for target coverage

according to our previous study.19 The dosimetric uncertainty caused

by MRI geometric distortion only was ~0.5% when the distortion

was 3 mm.22 Therefore, the combined uncertainty of distortion, seg-

mentation accuracy, and population‐HU assignment is estimated to

be ~0.6%. This result indicates that the dosimetric accuracy is clini-

cally acceptable and demonstrates the potential of using MRI alone

for treatment planning in the abdomen.

The proposed method only used one single MR imaging

sequence, which minimizes the uncertainty of movement between

imaging sequences and therefore improves the quality of synthetic

CT. In addition, it does not require MRI‐CT pairs as a training

dataset, and the uncertainty from mismatch between MRI‐CT due to

motion and distortion is eliminated. Guerreiro et al17 reported a dose

difference of 0.5% for ITV coverage with VMAT when compared

with true CT using an automatic atlas‐based segmentation with a tri-

ple‐model technique for MRI intensity to HU value conversion for

pediatric patients under general anesthesia. Due to less motion arti-

facts in the training data under general anesthesia, their results and

our results were within the same order of magnitude. Our method is

similar to the method presented by Bredfeldt et al.16 The main dif-

ference is that the authors applied a vertebral body shape model

which separated bone from air but ignored spinous processes, while

our method used the intensity thresholding, areas, and spatial loca-

tions of the spine and kept the spinous processes. However, the

dosimetric effect of spinous processes was negligible because their

reported dosimetric accuracy was ~0.3% although their comparison

was made on synthetic CT vs. true CT.

To evaluate segmentation accuracy, the probability maps gener-

ated from the proposed method were defuzzified so the information

of intensity variations in the voxels disappeared. Future work will

optimize the parameters in the clustering algorithm to retain tissue

characteristics within each voxel, and dosimetric accuracy will be

evaluated by comparing synthetic CT with true CT in a large patient

cohort. In addition, a comparison with other available methods is

warranted.

5 | CONCLUSION

A method to classify different tissue types for synthetic CT genera-

tion in the abdomen was developed, and segmentation accuracy and

its dosimetric effect were evaluated. The segmentation accuracy in

the air segment was worse than the other tissue segments (i.e., fat,

lungs, high‐density tissue, and spine). The Dice coefficient was higher

than 0.76 and the mean Hausdorff distance was less than 1.6 mm

for all tissue segments except for air. The mean dose difference for

target locations close to air, lungs, and spine was 0.2%, with a maxi-

mum difference of 0.8%. Our results demonstrate the potential of

using MRI alone for treatment planning in the abdomen.
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