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Abstract: The sense of agency (SoA) is part of psychophysiological modules related to the self.
Disturbed SoA is found in several clinical conditions, hence understanding the neural correlates
of the SoA is useful for the diagnosis and determining the proper treatment strategies. Although
there are several neuroimaging studies on SoA, it is desirable to translate the knowledge to more
accessible and inexpensive EEG-based biomarkers for the sake of applicability. However, SoA has
not been widely investigated using EEG. To address this issue, we designed an EEG experiment
on healthy adults (n = 15) to determine the sensitivity of EEG on the SoA paradigm using hand
movement with parametrically delayed visual feedback. We calculated the power spectral density
over the traditional EEG frequency bands for ten delay conditions relative to no delay condition.
Independent component analysis and equivalent current dipole modeling were applied to address
artifact rejection, volume conduction, and source localization to determine the effect of interest. The
results revealed that the alpha and low-beta EEG power increased in the parieto-occipital regions in
proportion to the reduced SoA reported by the subjects. We conclude that the parieto-occipital alpha
and low-beta EEG power reflect the sense of agency.

Keywords: sense of agency; electroencephalography (EEG); mirror visual feedback; virtual reality;
delayed visual feedback

1. Introduction

In recent years, research interest in two types of self-senses, sense of ownership (SoO)
and sense of agency (SoA), has been increasing. The SoO is the sense one feels that one’s
body parts, thoughts, or emotions belong to one. For example, when one’s hand is moved,
one feels SoO irrespective of whether one initiated the movement voluntarily or the hand
is moved by external force [1]. The SoA, on the other hand, refers to the sense of initiating
and controlling actions to influence events in the outside environment. For example, when
one moves a hand or think about something, one feels that s/he caused the hand moving
or started the train of own thoughts. The SoO and SoA are considered psychophysiological
modules that consists the sense of self, and an interruption in their consistency reported
under some clinical conditions provides clues about the disorder and information useful
for diagnosis and treatment.

Clinical studies on SoO and SoA investigated patients with chronic pain conditions
including Complex Regional Pain Syndrome (CRPS), hemiplegia, and phantom limb [2–6]
and reported altered SoO and SoA [7–9]. A study on CRPS reported a rather complicated
interaction between pain and disturbing body senses in the affected parts, and proposed
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a treatment strategy that targets cortical areas to monitor and enhance body perception
and pain symptoms in parallel [7]. A functional MRI (fMRI) study using virtual reality to
investigate the neural correlate found mainly two brain regions responsible for the SoA:
the prefrontal cortex including the cingulate cortex as a leading network processing a
mismatch detection, and the inferior parietal lobule as a following network that generates
the SoA [10]. An EEG study also reported modulation of the alpha-band EEG power
(8–12 Hz) within the anterior frontal area reflecting the SoA [11]. Although MRI provides
high spatial resolution, it is desirable to translate the MRI-based biomarkers to the EEG-
based biomarkers for future application in terms of applicability. However, an EEG study
replicating the result [11] is lacking. Finally, as is the common limitation in EEG studies, the
spatial resolution of the reported results is limited, and the influence of artifacts from ocular
and muscular potentials was not fully validated. These problems need to be addressed to
advance the possibility of EEG-based biomarkers in the study of the SoA.

To replicate and extend our understanding on the sensitivity of EEG on the SoA
paradigm, we designed an EEG experiment using healthy subjects. The goal of this study
was to determine the EEG correlate of the SoA by using a behavioral task of hand movement
with parametrically delayed visual feedback. To address the issue of volume conduction
and artifact rejection, we used independent component (IC) analysis (ICA) and equivalent
current dipole modeling to determine the locations of ICs of interest. Results showed
that the spectral EEG activities in alpha and early-beta EEG frequency bands, mainly in
parieto-occipital regions, are the main correlates of the SoA modulation.

2. Materials and Methods

In this work, we carried out a behavioral experiment to study both the implicit and
explicit measures of the SoA. Electroencephalogram (EEG) recordings were obtained in the
first part of the experiment to implicitly assess the neural correlate of the SoA fluctuations
in response to disruption in the visual perception of individual’s body movement by
introducing different amounts of time delay to the visual feedback of hand movement.
The explicit SoA was assessed in this experiment by asking the participants to rate their
perceived SoA after each time-delay condition applied to the video streaming of their real
hand movement. The detailed description of the experiment design and tasks is presented
in the following subsections.

2.1. Participants

Fifteen healthy volunteers have participated in the experiment. All of them are
students at Okayama University (3 females, 12 males, age range 22–35 years, mean
28.5 ± 4.5 years). Prior to the day of the experiment, the participants were instructed
to get enough sleep and wash their hair. We gave them explanations about the procedure
of the experiment and answered their questions. All volunteers had normal or corrected to
normal vision, and none of them had a history of neurological disorders.

2.2. Experimental Design and Procedure

The experiment consisted of two parts. In the first part, EEG data were recorded
from the subjects while performing the hand movement task. When the first part was
finished, the EEG electrode cap was removed, and participants washed their heads and
took a 10-minute break. In the second part, the participants gave subjective ratings of the
SoA after each task condition using a numeric scale.

The EEG experiment was performed in a chamber that was dimly lit and acoustically
isolated. A small white box was designed to visually hide the actual participant’s hand
movement (Figure 1). Inside the white box, a webcam was attached so that the hand
movement was streamed on the display monitor in front of the subject. The tasks in both
the first and the second parts were identical except that the subjects were instructed to
report the perceived SoA in the second part.
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Figure 1. Environment of the EEG experiment. A participant performs the experiment’s tasks
while monitoring his movement by watching the video stream on the front screen. The movement
displayed on the screen can be delayed according to different time delay conditions.

During the experiment, the subjects were comfortably seated and placed their right
hand inside the white box. They were asked to move the individual fingers sequentially
while looking at the display monitor. The image of hand movement was displayed on the
monitor with the parametrically controlled delay for each block-separated 20-s condition
from 0 to 1000 ms with a 100 ms step. The subjects were instructed to maintain their pace
and not follow the movement of the visual feedback. Note that small initial delays due to
the electronic device were ignored in this experiment. In addition to the delay conditions,
there was the “M” condition, in which the subjects moved their hand while watching a
green screen. Before each of the delay conditions, there was a 20-s resting period, in which
the subjects stopped hand movement and relaxed while watching a grey screen. Thus,
there was a total of twelve block-separated conditions: Delay 0 ms, 100 ms, 200 ms, 300 ms,
400 ms, 500 ms, 600 ms, 700 ms, 800 ms, 900 ms, 1000 ms, and no visual feedback (“M”
condition). Each block was 40 s including the resting and repeated four times in total. The
order of the delay conditions was randomized within each run of all the twelve conditions.
The subjects took a small break every 24 blocks (two cycles of all the twelve conditions).
The flow of the experiment is illustrated in Figure 2. EEG recording was paused during the
rest. A total of 32 min of EEG data was recorded from each subject. The experiment was
designed and controlled using PsychPy software [12].

Display 
Experiment’s
Instructions

End of 
Experiment

Resting state Delay conditionBreak

 12 conditions × 2 runs 

Resting state Delay condition

 12 conditions × 2 runs 

Figure 2. The block diagram of the experiment tasks and procedure. Each delay condition is displayed randomly within
four condition cycles with a short break after the first two cycles.
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During the second part of the experiment, the participants repeated the movement
tasks, but, this time, they reported the subjective evaluation of the perceived SoA with an
integer scale from 0 to 10 in which the larger the number, the more control on their own
movement. Each delay condition was repeated three times randomly in this part, and the
“M” condition was omitted. All data displayed on the screen during the whole experiment
were recorded using OBS Studio [13], which can be used for further investigation.

2.3. Subjective Analysis of the Sense of Agency

The subjective data collected in the second session of the experiment were used to
quantitatively assess the changes in the SoA as the amount of delay applied to the visual
feedback of the participants own movement changed. The SoA was divided into 11 discrete
levels in this experiment for the purpose to let participants estimate the strength of SoA
they perceived at each delay condition. The highest level, level 10, matches the zero
delay and indicates full SoA, whereas level 0 corresponds to the maximum delay and
reflects a lack of agency over their hand movement. Each delay condition was played
3 times and a window pops up on the screen after each condition, and participants should
select a number (between 0 and 10) to rate how the displayed movement on the monitor
was congruent with their agency over their real hand movement. The recorded rating
of the SoA corresponding to each level of delay was averaged over subjects. Mean and
standard error of mean (SEM) for data of each condition were computed, and statistical
plots were generated.

2.4. EEG Data Acquisition and Preprocessing

EEG data were recorded from 16 active EEG electrodes placed on a cap with the loca-
tions compatible to international 10–20 system (FP1, F3, F5, F7, C3, T7, P3, P7, O1, O2, P4,
P8, C4, T8, F4, F8, Fp2) using V-Amp amplifier (Brain Products GmbH, Gilching, Germany).
The ground and the online initial reference electrodes used during EEG recording were
placed on Oz and Cz, respectively. The data sampling rate was 2 kHz. Bipolar vertical
and horizontal electrooculograms (EOG) were recorded using the auxiliary inputs of the
amplifier. No online filters were applied during the data acquisition.

Offline, the raw EEG data were imported to BrainVision Analyzer 2 [14] and further
preprocessed by the EEGLAB toolbox [15] running under MATLAB 2017b (The MathWorks
Inc., Natick, MA, USA). The preprocessing steps are shown in the block diagram in Figure 3.
The EEG data were first downsampled to 256 Hz. A high-pass filter (with 0.5 Hz low cutoff
and transition bandwidth of 0.5 Hz) and a low pass filter (50 Hz high cutoff and 5 Hz
transition bandwidth) were applied. We used two-step data cleaning approaches, artifact
subspace reconstruction (ASR) [16–19] and independent component analysis (ICA) [20,21].
These two approaches work in a complementary manner; ASR uses a sliding-window PCA-
based subspace rejection and reconstruction allowing it to address data non-stationarity
such as infrequent short-lasting bursts, while ICA uses a stationary spatial filter method to
find temporally maximally independent sources, which can reveal physiologically valid
cortical EEG sources [22], by linearly unmixing the “scalp projection”. EEG data were
offline re-referenced to average prior to applying ICA. Subsequently, we fit an equivalent
current dipole model to independent component (IC)’s scalp topographies by using Dipfit
3.3 from Fieldtrip [23]. We used EEGLAB’s default electric forward model based on MNI
template [24,25] to build a boundary element model (BEM) that consists of three layers
of the brain, skull, and scalp, whose electric conductivities are [0.33 0.0041 0.33] S/m,
respectively (i.e., brain-to-skull conductivity ratio is 80). The template electrode locations
were coregistered to the MNI coordinate system. We used ICLabel [26] to generate seven
probabilistic class labels, ’Brain’, ’Muscle’, ’Eye’, ’Heart’, ’Line Noise’, ’Channel Noise’,
or ’Other’ for each IC. Finally, all the ’non-Brain’ ICs were rejected. The mean number of
ICs rejected was 9.9 (SD 2.5, range 6–16), and the corresponding mean electrode variance
reduction was 59% (SD 16, range 32–89). The mean label probability of the ‘Brain’ class
was 82% (SD 10, range 55–98).
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Rename 
Events

Down-sample    
to 256 Hz

High-pass filter

Cutoff = 0.5 Hz

TBW  =  0.5 Hz

Low-pass filter

Cutoff = 50 Hz

TBW   =   5 Hz

Data Cleaning
Interpolate 

removed 
channels

Re-reference 
to average

Fit equivalent 
current dipoles

 IC Labeling
Rejecting 

non-Brain ICs Done

Convert Data 
Format

Run ICA

Raw EEG Data BrainVision Analyzer 2

Figure 3. EEG data preprocessing pipeline. The first two steps are done using BrainVision Analyzer 2, while the other steps
are performed on MATLAB 2017b.

2.5. EEG Data Analysis

For each of the 20-s condition-separated blocks, we calculated the power spectral den-
sity (PSD) using EEGLAB function spectopo(). The window size used was 4 s (Hamming
window) with 50% overlap, and the frequency bin resolution was 0.25 Hz. The average
power of the traditional EEG frequency band was calculated. Table 1 illustrates the EEG
frequency bands used in this study. The PSD was computed for both scalp electrode data
and IC time series.

Table 1. EEG frequency bands.

Frequency Band Range (Hz)

Delta 1–4
Theta 4–8
Alpha 8–13
Early-Beta (Beta1) 13–20
Late-Beta (Beta2) 20–35
Gamma 35–50

To highlight the spatial distribution of the ICs that contribute to the significant results
observed at scalp electrode data, spatial probabilistic density of the equivalent current
dipoles of the ICs that survived the statistical thresholding and multiple comparisons,
described below, were plotted together with their mean values. To compute the dipole
density, 3D Gaussian with FWHM of 30 mm was applied to the dipole locations. Then, the
group-level sum was calculated for visualization.

2.6. Statistical Test

We calculated Pearson’s correlation coefficients and p-values. The independent vari-
able was the visual delay (0–1000 ms for every 100 ms). The dependent variable was the
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average EEG power within the defined frequency band (Delta, Theta, Alpha, Beta1, Beta2,
Gamma). In the preliminary analysis, we performed one-way ANOVA for the eleven levels
of the visual delay and obtained similar results. However, we decided to use Pearson’s
correlation test for the final results because the meaning of the correlation coefficient makes
intuitive sense compared with the F-statistics generated by ANOVA. To control the family-
wise error rate, multiple comparison correction using a false discovery rate (FDR) [27] was
applied. The test results showed general tendency for saturation, so we applied a stringent
correction threshold of 18 (electrodes) × 6 (frequency bands) × 15 (subjects) for the scalp
electrode data and 8 (average number of ICs) × 6 (frequency bands) × 15 (subjects) for
the IC data. This is equivalent to correcting single-subject’s single-electrode/IC for each
frequency band, which was necessary and used for the IC preselection but also applied to
scalp electrode analysis for the sake of consistency. The results from the scalp electrode
analysis showed tendency of saturation, so the risk of the Type II error (i.e., missing the true
positive) was unlikely to be a problem. In the same vein, the statistical threshold for the
p-value was p < 0.01 for the scalp electrode data and p < 0.05 for the IC data, respectively.

3. Results
3.1. Behavioral Results

The summary of the subjective report of SoA is shown in Figure 4. The group-mean
SoA changes are congruent with the amount of the delay in the visual feedback (Pearson’s
correlation coefficient, r = 0.96, and p-value, p < 0.001). The behavioral data thus replicated
the previous reports [10,11].

Figure 4. Behavioral results of subjective rating of the Sense of Agency (SoA) with an increasing
delay of visual feedback.

3.2. EEG Results

Figure 5 shows the grand-mean global (i.e., mean across all the scalp electrodes) EEG
power changes for each frequency band. It is clear that alpha band power showed the most
sensitive changes to the increased delay of the visual feedback.
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Figure 5. Global EEG power (i.e., mean across all scalp electrodes) changes to increasing amount of
visual delay for each frequency band. The changes are relative to no delay condition (0 ms). The
alpha-band power showed the most sensitive changes to the increase of visual delay.

To study the scalp distribution of the EEG power modulation for each frequency
band, we plotted the results from the Pearson’s correlation test in Figure 6. The overall
positive values across frequency bands and the scalp locations indicate a global tendency
of the EEG power increase together with the increase of the visual feedback delay. The
significance masks across the frequency bands indicate that alpha and beta1 are the two
sensitive frequency bands. However, the spatial resolution in these frequency bands is
poor because of heavy saturation across all the electrodes.

Delta Theta Alpha

Beta1 Beta2 Gamma

0

0.5

1

Pearson’s

Correlation

Coefficient

Delta Theta Alpha

Beta1 Beta2 Gamma

p < 0.01

(FDR)

n.s.

(A) (B)

Figure 6. Pearson’s correlation coefficients (A) and statistical significance mask with FDR-corrected
p-value, p < 0.01 (B). The correlation between the ∆power and the amount of visual delay was tested
for all the combination of scalp electrodes and frequency bands, which was corrected using a false
discovery rate (18 × 6 × 15 = 1620 tests). Note that alpha and beta1 showed global response to the
increase of visual delay. However, the globally saturated result also means poor spatial resolution of
the underlying EEG sources.
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We then performed the analysis on single IC, which may be considered as “the
effective EEG source” [21,22] (Figure 7). Only alpha and beta1 band power tests survived
the multiple comparison correction using FDR. The number of ICs survived were 14 (from
six subjects, hereafter Ss) and 15 (7 Ss) for alpha and beta1, respectively. Even after applying
the further correction using Benferroni across the six frequency bands, four and five ICs
survived for alpha and beta1 frequency bands, respectively. Apparently, the dominant
contribution by the alpha and beta1 explains the results at the scalp electrodes. Importantly,
the locations of the estimated equivalent current dipoles were mostly parieto-occipital.
Thus, we conclude that the dominant source of the delay-related EEG power increase
is in the parieto-occipital regions. Note also that the amount of power increase in beta1
is not visibly large compared with alpha frequency band, but still showed consistent
tendency. The results suggest a different underlying mechanism between alpha and beta1
frequency bands.
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MNI [0 −51 8]

Figure 7. Density of the equivalent current dipoles (Gaussian smoothing with FWHM = 30 mm) fitted
to independent components whose power showed significant (FDR-corrected p-value, p < 0.05 for
10 × 6 × 15 = 900 tests) correlation to the amount of visual delay. Only alpha and beta1 survived the
multiple comparison correction, and the estimated locations of the ICs were in the inferior parietal to
superior occipital.

4. Discussion

The goal of the present study was to replicate and extend our understanding on the
sensitivity of EEG on SoA paradigm using healthy subjects. For this purpose, we searched
for the EEG correlate of SoA changes in response to parametrically delayed visual feedback
of the hand movement. The subjective results confirmed effectiveness of the paradigm,
and the EEG results reflected the subjective changes of SoA. Moreover, the ICA-based
spatiotemporal decomposition revealed for the first time the parieto-occipital distribution
of the dominant EEG sources in the alpha and lower beta bands. The strength of the current
study is that not only does it provide a replication to the limited number of previous studies



Brain Sci. 2021, 11, 743 9 of 12

available [11,28], it also extends our understanding as to where in the brain the sources of
the dominant, frequency-specific modulation are distributed.

The subjective report of the SoA confirmed a clear degradation in the perceived SoA as
the delay in the visual feedback increased. Similar results have been implicated by several
behavioral studies on the SoA [10,11,29]. Correspondingly, the EEG data showed relative
spectral power increase with respect to 0 delay in broadband. Our analysis revealed that
the alpha band reflected the changes of SoA sensitively across the whole scalp regions (see
Figure 6). The lower-beta band (beta1) also showed the strong modulation, but the effect
size of the power increase was about half of that in the case of alpha band. We conclude
that the alpha band power is the main EEG correlate of the lack of SoA.

We were interested in estimating the spatial distribution of the dominant sources that
contribute to this SoA-specific modulation. However, the result showed substantial satura-
tion (FDR-corrected p-values, p < 0.01) across the whole scalp regions in both alpha and
beta1 bands (Figure 6B) which made it unable for us to visually evaluate the location of the
underlying sources. To address this issue, we performed ICA-based scalp EEG modeling so
that electrode-level EEG is re-constructed as a linear sum of the projections from temporally
maximally independent source activities whose locations inside the brain can be estimated
as equivalent current dipoles [21,22]. The results from this analysis demonstrated that
a greater number of ICs showed a linear power increase as SoA decreased in the alpha
and beta1 bands, and their main spatial distribution was found in the parieto-occipital
regions (Figure 7). Interestingly, the number of ICs that are dominant contributors to the
SoA-related power changes are comparable (14 vs. 15 among all the subjects), but the effect
size in EEG power is about two times bigger in the alpha than beta1, replicating the pattern
found in the scalp electrode measures. The results may suggest that the alpha band and
the beta1 band may represent different processes.

Our findings are in line with several neuroimaging studies on the SoA. It was reported
that temporo-parietal junction (TPJ), primary somatosensory cortex, inferior parietal lobe
(IPL), parieto-occipital sulcus, and insula [10,30–34] are the neural correlates of the SoA,
most of which can be included in the parieto-occipital regions. One of the particularly
relevant studies reported that the no-agency status, i.e., the sense of ’It is not my movement’,
corresponding to a large time delay in our experiment, is associated with the activation of
the parietal regions [33]. Even with the general limitation in the spatial resolution with the
18-chennel time-series data, it still seems valid to conclude that we found the relevant EEG
sources within the parieto-occipital areas, at least in the sense that it was not found in the
frontal or temporal areas.

Our result is consistent with the results from the previous EEG study [11]. They re-
ported EEG power increase in the alpha and beta bands as the control over hand movement
decreased (corresponding to delay increase in our study). Moreover, they reported that
these results were found in the central, parietal, and occipital areas, which is also in line
with our results. In the current analysis, we further investigated spatial distribution of
the effective EEG sources in the sense of ICA. We observed the parieto-occipital distribu-
tion of the dominant contributors of the EEG power changes, which provides additional
evidence that supports the parieto-occipital involvement in processing the altered visual
feedback of self-motion. It is also important to confirm that our results did not observe any
dominant frontal source in EEG power analysis, which is also consistent with their results.
They concluded that the frontal region is the key brain region to process SoA based on
their connectivity analysis, but the reported connectivity seems heavily involved with the
fronto-parietal network for the alpha band and the fronto-occipital network for the beta
band. Together with the EEG power analysis results, we conclude that the parieto-occipital
region is the key region in both power analysis and possibly in the connectivity analysis as
well. The current study provides another support for the bridge over the gap between the
relatively new paradigm and the rich literature of EEG power analysis.

The current paradigm may also have clinical usefulness. Conventional and virtual
reality-based mirror visual feedback (MVF and VR-MVF) systems have been proposed
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among different methods to cure and release pain in patients with phantom limb, CRPS,
and other chronic pain conditions [35–38]. The effectiveness of MVF therapy systems in
alleviating the chronic pain severity is related to the restoration of the closed-loop between
the motor command to the affected body part and its anticipated visual feedback [9,37].
This loop is suggested to be involved in the SoA, but the relationship between such therapy
and the SoA is still unclear. A subjective study on patients with phantom limb reported
improvement in the SoA following a single short session of conventional mirror therapy,
suggesting that short-term mirror therapy can enhance the SoA over the phantom limb [9].
In the future studies, EEG experiments on patients with chronic pain conditions may help
to better understand the mechanism of MVF/VR-MVF therapy systems in alleviating pain.
We believe that the present study provides ground work that clarifies the spatiotemporal
regions of interest upon which a clinical target for treatment and monitoring may be built.

One of the limitations of the current study is the minimum number of EEG electrodes
used. With more electrodes available, ICA could decompose more brain signals as well
as successfully separating the physiological/non-physiological artifacts to improve the
overall SNR. In addition, with the greater number of electrodes, the scalp topography of
the ICs can be better represented, which generally improves localization of the equivalent
current dipole sources as well. We hope that the current study serves as a proof of concept
to justify more full-fledged studies using a high-density EEG system in the larger scale
of the project with more subjects, such as studying individual differences associated with
personality traits for the purpose of individualized medicine.

5. Conclusions

We conducted an EEG experiment on healthy subjects to explore the EEG correlates
for a sense of agency in response to delayed visual feedback of hand movement. The
explicit assessment of the SoA demonstrated a degradation in the perceived SoA as the
visual feedback of self-movement was distorted by increasing the amount of time delay
applied to the real movement’s visual return. The results revealed that the EEG power
in the alpha and low-beta bands linearly increased as the introduced delay to the video
feedback increased, and the dominant source of EEG power increase was resolved in the
parieto-occipital regions. The results from the current study extend our understanding of
the SoA modulation in the context of EEG power analysis.
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Abbreviations
The following abbreviations are used in this manuscript:

CRPS Complex Regional Pain Syndrome
FDR False Discovery Rate
fMRI Functional MRI
IC Independent Component
ICA Independent Component Analysis
SoA Sense of Agency
SoO Sense of Ownership
VR-MVF Virtual Reality-based Mirror Visual Feedback
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