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Abstract

With the emerging multi-modality imaging performed at multiple time points for each patient, it 

becomes more important to analyze the serial images quantitatively, select and combine both 

complementary and contradictory information from various sources, for accurate and personalized 

evaluation of tumor response to therapy.

CT Features

Assessment of the change in tumor burden or tumor response is an important feature of the 

clinical evaluation of cancer therapeutics [1]. Traditionally, response of solid tumors to 

cancer therapy is evaluated visually or measured with anatomic changes in tumor diameters 

using CT imaging according to the Response Evaluation Criteria in Solid Tumors (RECIST) 

or World Health Organization (WHO) criteria [1–3]. Briefly, RECIST [1] defines complete 

response (CR) as disappearance of all target lesions, partial response (PR) as at least 30% 

decrease in the sum of (largest) diameters (in the axial plane) of target lesions from the 

baseline, progressive disease (PD) as at least 20% increase and an absolute increase of at 

least 5 mm in the sum of diameters, and stable disease (SD) as neither sufficient shrinkage to 

qualify for PR nor sufficient increase to qualify for PD.

Recent studies show that new CT features, including volumetric, attenuation, morphologic, 

structure, and texture descriptors, have advantages over the RECIST and WHO criteria in 

certain tumor types. Both RECIST and WHO criteria are linear measurements of tumor size, 

which have limitations related to technical variability, tumor morphology, and reader 

decisions. With the thin-section CT, it is possible to measure tumor volume using 

segmentation methods with adequate spatial resolutions [4,5], which overcomes some of the 

limitations of linear measurements. Changes in attenuation in contrast-enhanced CT (CECT) 

has been shown correlate better with response than changes in tumor size in hepatocellular 

carcinoma [6] and gastrointestinal stromal tumor [7]. One advantage of attenuation features 

is that they can take into consideration of tumor necrosis [6]. In colorectal liver metastases, 

morphologic evaluation based on metastases changing from heterogeneous masses into 

homogeneous hypoattenuating lesions had a statistically significant association with 

pathologic response and survival while RECIST did not [8]. Adding structure features 
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(presence or absence of marked central necrosis) to morphology, attenuation, and size 

features in CECT was found more accurate than response assessment by RECIST in renal 

cell carcinoma [9]. CT texture features characterizing the spatial variations of tissue density 

were shown to be prognostic factors in non-small cell lung cancer (NSCLC) [10] and 

esophageal cancer [11].

PET Features

In recent years, FDG-PET imaging, which measures functional (metabolic activity) changes, 

has shown advantages over anatomic imaging as a response evaluation tool in many 

malignancies [3,12–16]. For example, in NSCLC [12,17] and esophageal cancer [14,18–22], 

FDG PET imaging has shown superior results in predicting survival and pathologic response 

to chemoradiotherapy (CRT) compared with conventional CT imaging. Both the European 

Organization for Research and Treatment of Cancer (EORTC) [23] and the PET Response 

Criteria in Solid Tumors (PERCIST) [3] developed guidelines for the methodology of 

evaluating tumor response with serial FDG-PET, with the goal of achieving standardization 

in clinical trials. Despite these encouraging results, the reported accuracy for predicting 

response to CRT using PET/CT is often not high enough (<90%) for clinicians to make 

critical treatment decisions confidently. For example, a pooled sensitivity of 67% (range: 

33% – 100%) and specificity of 68% (range: 30% – 100%) were reported in 20 studies for 

esophageal cancer [21]. Furthermore, none of these studies have demonstrated both high 

sensitivity and high specificity.

Almost all of the published (to our knowledge) FDG-PET studies quantify therapeutic 

response in tumors with SUVmax - the maximum standard uptake value (SUV) of FDG 

within a tumor [24–26]. In these studies, changes in SUVmax, or sometimes SUVmax 
before (pre-) CRT or after (post-) CRT, are correlated to post-CRT pathologic response, or 

survival, or both. SUVmax is a single point estimate which ignores changes in the 

distribution of FDG uptake within a tumor and in the extent of metabolic abnormality. 

However, it is known that most solid tumors consist of various malignant and non-malignant 

components so that they show significant heterogeneity in both the degree and distribution 

of FDG uptake. Heterogeneity in FDG uptake is associated with important biological and 

physiologic parameters [27–31], and has been shown to be prognostic in many cancers 

[27,28,30–34]. Another limitation of SUVmax is that it exhibits dependence on image noise 

and image resolution [3,35–37]. Recent studies suggest that new PET/CT features 

considering spatial information, such as tumor volume [38], tumor shape [33,39], total 

glycolytic volume [3], and texture features [31–33,40,41] are more informative than 

SUVmax and tumor diameters for the prediction of tumor response. Particularly, Tan et al. 

demonstrated that comprehensive spatial–temporal 18F-FDG PET features (intensity, texture, 

and shape) were more useful predictors of pathologic tumor response to CRT than 

conventional SUV measures in esophageal cancer [42].

Future Works

The new PET/CT response features characterize different properties of a tumor suggesting 

that they contain complementary information. Therefore, it would be advantageous to 

Lu Page 2

J Nucl Med Radiat Ther. Author manuscript; available in PMC 2018 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combine multiple features instead of traditional response criteria that are based on cutoff 

values of a single measure [3, =21]. Vaidya et al. showed that multivariable logistic 

regression improved the prediction of local failure for NSCLC by combining complementary 

PET and CT features [10]. Zhang et al. constructed support vector machine models using 

spatial–temporal 18F-FDG PET features [42]. With cross-validation, the models achieved 

100% sensitivity and 90% specificity for the prediction of pathologic tumor response to CRT 

in patients with esophageal cancer [43].

Though not widely used in clinic, quite a few new PET tracers, including FLT that measures 

cell proliferation [44,45], FMISO that measures hypoxia [46, 47], and others [48,49] have 

brought enthusiasm in the evaluation of tumor response for various disease sites. The 

aforementioned concepts and methods are generally applicable to any tracer and therapy 

where PET/CT is used for response evaluation.

Challenges for implementing the new methodology with the more comprehensive PET/CT 

features include delineating the tumor volume in multi-modality (PET/CT) images, 

identifying a few features that truly capture biological changes correlated with tumor 

response for a specific disease and therapy, validating the results in large, multicenter patient 

datasets, vendor implementation and ultimately clinic acceptance.
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