
RESEARCH ARTICLE

Multi-locus Analysis of Genomic Time Series
Data from Experimental Evolution
Jonathan Terhorst 1, Christian Schlötterer 2, Yun S. Song 1,3,4*

1Department of Statistics, University of California, Berkeley, Berkeley, California, United States of America,
2 Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria, 3 Computer Science Division,
University of California, Berkeley, Berkeley, California, United States of America, 4 Department of Integrative
Biology, University of California, Berkeley, Berkeley, California, United States of America

* yss@cs.berkeley.edu

Abstract
Genomic time series data generated by evolve-and-resequence (E&R) experiments offer a

powerful window into the mechanisms that drive evolution. However, standard population

genetic inference procedures do not account for sampling serially over time, and new meth-

ods are needed to make full use of modern experimental evolution data. To address this

problem, we develop a Gaussian process approximation to the multi-locus Wright-Fisher

process with selection over a time course of tens of generations. The mean and covariance

structure of the Gaussian process are obtained by computing the corresponding moments

in discrete-time Wright-Fisher models conditioned on the presence of a linked selected site.

This enables our method to account for the effects of linkage and selection, both along the

genome and across sampled time points, in an approximate but principled manner. We first

use simulated data to demonstrate the power of our method to correctly detect, locate and

estimate the fitness of a selected allele from among several linked sites. We study how this

power changes for different values of selection strength, initial haplotypic diversity, popula-

tion size, sampling frequency, experimental duration, number of replicates, and sequencing

coverage depth. In addition to providing quantitative estimates of selection parameters from

experimental evolution data, our model can be used by practitioners to design E&R experi-

ments with requisite power. We also explore how our likelihood-based approach can be

used to infer other model parameters, including effective population size and recombination

rate. Then, we apply our method to analyze genome-wide data from a real E&R experiment

designed to study the adaptation of D. melanogaster to a new laboratory environment with

alternating cold and hot temperatures.

Author Summary

A growing number of experimental biologists are generating “evolve-and-resequence”
(E&R) data in which the genomes of an experimental population are repeatedly sequenced
over time. The resulting time series data provide important new insights into the dynamics
of evolution. This type of analysis has only recently been made possible by next-generation
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sequencing, and new statistical procedures are required to analyze this novel data source.
We present such a procedure here, and apply it to both simulated and real E&R data.

Introduction
A common study design in population genetics consists of collecting genomic variation data
from living organisms to make inferences about unobserved evolutionary and biological phe-
nomena. The many areas where this design has been applied include demographic inference
(see [1] for a recent review), recombination rate estimation [2–6], and detection of natural se-
lection [7–13]. Recently, there has been much interest in utilizing time series genetic data—e.g.,
from ancient DNA [14–21], experimental evolution of a population under controlled laborato-
ry environments [22–26], or direct measurements in fast evolving populations [27]—to en-
hance our ability to probe into evolution. In particular, understanding the genetic basis of
adaptation to changes in the environment can be significantly facilitated by such temporal
data. Specifically, the dynamics of allele frequencies in an evolving population potentially con-
vey added information about how the genome functions [28], information which is inaccessible
to methods which operate only on a static snapshot of that genome.

An experimental methodology which serially interrogates the genomes of an controlled
population over time could potentially yield new insights. In fact, this methodology can now be
realized thanks to the advent of next-generation sequencing. By sequencing successive genera-
tions of model organisms raised in a controlled environment, genetic time series data can be
generated which describe evolution at nucleotide resolution [24, 25, 28, 29]. This so-called
evolve-and-resequence (henceforth, E&R) methodology is fundamentally different than the
observational approach described above, and new inference procedures are needed to analyze
this type of data.

In this paper, we present such a procedure and study its ability to perform a number of test-
ing and estimation tasks relevant to population genetics. Our method is based on an approxi-
mation to the multi-locus Wright-Fisher process, and is well-suited to the small population,
discrete generation, and random mating setting in which many E&R experiments are con-
ducted. Furthermore, because it is based on a canonical population genetic model of genome
evolution, our method can directly estimate population genetic quantities such as fitness, dom-
inance, recombination rate, and effective population size. It can also be used to design future
experiments with sufficient power to reliably infer these quantities.

We first use simulated data to demonstrate the utility of our method. Then, we apply our
method to analyze genome-wide data from a real E&R experiment of D. melanogaster, de-
signed to study the adaptation to a novel laboratory environment over tens of generations.

Related work
There is a small but growing literature on the analysis of evolve-and-resequence data. Feder
et al. [30] present a statistical test for detecting selection at a single biallelic locus in time series
data. (Although it is not a major focus, their method can also be used to estimate the selection
parameter.) Similar to our method, they model the sample paths of the Wright-Fisher process
as Gaussian perturbations around a deterministic trajectory in order to obtain a computable
test statistic. However, their aim is slightly different from ours in that they analyze yeast and
bacteria data sets where the population size is both large and must be estimated from data.
Here we focus on population sizes which are smaller and more typical of experiments per-
formed on higher organisms, for example mice or Drosophila. We generally assume that the
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effective population size is known but also test our ability to estimate it from data. Also, be-
cause of the increased amount of drift present in the small population regime, we necessarily
restrict our attention to selection coefficients which are somewhat larger than those considered
by Feder et al. Finally, although Feder et al. do study the performance of their method when
time series data are corrupted by noise due to finite sampling (as in e.g. a next-generation se-
quencing experiment), they do not model this effect. Here we properly account for the effect of
sampling by integrating over the latent space of population-level frequencies when computing
the likelihood.

Another related work is Baldwin-Brown et al. [31], which presents a thorough study of the
effects of sequencing effort, replicate count, strength of selection, and other parameters on the
power to detect and localize a single selected locus segregating in a 1 Mb region. Results are ob-
tained by simulating data under different experimental conditions and comparing the resulting
distributions of allele trajectories under selection and neutrality using a modified form of t-test.
Because it is not model-based, this method is incapable of performing parameter estimation.
As a result of their study, Baldwin-Brown et al. present a number of design recommendations
to experimenters seeking to attain a given level of power to detect selection. In a related work,
Kofler and Schlötterer [32] carried out forward simulations of whole genomes to provide
guidelines for designing E&R experiments to maximize the power to detect selected variants.

Illingworth et al. [33] derive a probabilistic model for time series data generated from large,
asexually reproducing populations. The population size is sufficiently large (on the order
of* 108) that population allele frequencies evolve quasi-deterministically. The deterministic
trajectories are governed by a system of differential equations describing the effect of a selected
(“driver”) mutation on nearby linked neutral (“passenger”) mutations. Randomness arises due
to the finite sampling of alleles by sequencing. The main difference between the setting of
Illingworth et al.’s and our own concerns genetic drift. While drift may be ignored when study-
ing a large population of microorganisms, we show that it confounds our ability to detect and
estimate selection in populations of order* 103. Thus, for E&R studies on (smaller) popula-
tions of macroscopic organisms, methods which assume that allele frequencies evolve deter-
ministically may not perform as well as those which explicitly take drift into account.

Topa et al. [34] present a Bayesian model for single-locus time series data obtained by next-
generation sequencing. In each time period, the allele count is modeled as a draw from a bino-
mial distribution with number of trials equal to the depth of sequencer coverage, and success
probability equaling the population-level allele frequency. The posterior allele frequency distri-
bution is used to test for selection by comparing a neutral model to one in which unobserved
allele frequencies to depend on time. In the non-neutral case, a Gaussian process is used to
allow for directional selection acting on the posterior allele frequency distributions.

Finally, Lynch et al. [35] derive a likelihood-based method for estimating population allele
frequency at a single locus in pooled sequencing data. The method allows for the possibility of
sequencing errors as well as subsampling the population prior to sequencing. Using theoretical
results as well as simulations, the authors give guidelines on the (subsampled) population size
and coverage depth needed to reliably detect a difference in allele frequency between two popu-
lations. Unlike the other methods surveyed here, the approach of Lynch et al. is not designed to
analyze time series data. Hence the data requirements needed to reliably detect allele frequency
changes using their method—for example, sequencing coverage depth of at least 100 reads—
are potentially greater than for methods are informed by a population-genetic model of ge-
nome evolution over time.
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Novelty of our method
Our method differs from the above-mentioned approaches in several regards. To the best of
our knowledge, ours is the first method capable of analyzing time series data from multiple
linked sites jointly. We find that this is advantageous when studying selection in E&R data.
Furthermore, it enables us to analyze features of these data which cannot be studied using sin-
gle-locus models, such as local levels of linkage disequilibrium and the effect of a recombina-
tion hotspot. Additionally, because our model is based on a principled approximation to the
Wright-Fisher process, it can numerically estimate the selection coefficient, dominance param-
eter, recombination rates, and other population genetic quantities of interest. In this way it is
distinct from the aforementioned simulation-based methods [31, 32], methods which only
focus on testing for selection [30, 31, 34], or methods based on general statistical procedures
which are not specific to population genetics [34, 35].

Software and data availability
Source code implementing the method described in this paper is included in S1 Code. The ex-
perimental data analyzed in Analysis of a real E&R experiment data are from Franssen et al.
[36] and are available on the Dryad digital repository http://dx.doi.org/10.5061/dryad.403b2.

Results
As described above, the primary methodological advance of this paper is to derive a tractable
approximation to the discrete, multi-locus Wright-Fisher model with selection. This approxi-
mation enables us to perform statistical inference on time-series data generated in E&R experi-
ments. Before studying how our approximation performs on both simulated and real data, we
give a brief overview of its motivation and derivation.

A brief overview of the method
We consider the following model of an E&R experiment. A sexually reproducing population of
N diploid individuals is evolved in discrete, non-overlapping generations. Pooled DNA se-
quencing [37, 38] is performed T times at generations t1 < t2 < � � �< tT. At each segregating
site in the resulting data set, we assume that there are two alleles, denoted A0 and A1. (As will
be seen below, up to a change in the sign of the selection coefficient associated with each site,
the model is agnostic to which allele is called A0 or A1.) Let L and R denote the number of loci
and the number of experimental replicates, respectively. The arrayD 2 [0, 1]T×L×R counts rela-
tive frequency with which the A1 allele was observed for each combination of generation, locus
and replicate.

GivenD and a vector of underlying population-genetic parameters θ, let P(Djθ) denote the
model likelihood. In an idealized E&R experiment, generations are discrete and non-overlap-
ping, mating is random, and the population size is fixed, so the likelihood is well approximated
by the classical Wright-Fisher model of genome evolution [39]:

PðD j y;G0Þ ¼
X
G12G

� � �
X
GT2G

PðD j G0; � � � ;GTÞPyðGT j GT�1Þ � � �PyðG1 j G0Þ; ð1Þ

where Pθ(GijGi−1) is the transition function of the discrete, many-locus Wright-Fisher Markov
chain from genomic configuration Gi−1 to Gi given parameters θ, G is the set of all possible ge-
notypic configurations in a diploid population of size N, and P(DjG0, . . ., GT) is the probability
of the sequencer emittingD conditional on G0, . . ., GT. (Here, G0 represents the haplotypic
configuration of the founding experimental population. In order to take advantage of linkage

Multi-locus Analysis of E&R Time Series Data

PLOS Genetics | DOI:10.1371/journal.pgen.1005069 April 7, 2015 4 / 29

http://dx.doi.org/10.5061/dryad.403b2


information we assume that this is known, although as described in Methods this is not neces-
sary in order to use a single-locus version of our model.)

For typical problems, evaluating (1) is intractable since jGj is very large and the transition
density Pθ(GijGi−1) is difficult to compute and store. Asymptotic (i.e., diffusion) approxima-
tions to the transition density may be inaccurate if the population size N and/or scaled genera-
tion time 2Nt are small, as is common in an E&R experiment. Hence, alternative
approximations to P(Djθ) are needed to perform inference.

The approximation we make is as follows. Let X� (Xijk) 2 [0, 1]T×L×R denote the (unob-
served) population frequency of the A1 allele at each data point. Conditional on knowing X,
and assuming that the DNA sequencer samples each site independently and binomially from
the population, we have Dijk * Binomial(cijk,Xijk) where cijk is the depth of sequencing cover-
age observed at this site. (Although sequencer coverage is random, we assume that it is inde-
pendent of all other variables in the experiment and treat it as constant conditional on the
observed data.) Marginalizing over X, we obtain

LðD j yÞ ¼
Z
½0;1�T�L�R

Y
i;j;k

ℬðDijk; cijk; xijkÞ
" #

pXðx j yÞ dx; ð2Þ

where ℬðd; c; xÞ ¼ c
d

� �
xdð1� xÞc�d is the probability mass function of the binomial distribu-

tion and p X (x) is the density of X. Note that if each cijk is large, as when the samples have
been deeply sequenced, then the likelihood is (approximately) proportional to the density of
X, i.e., L(Djθ)/ p X(x), and the integral in (2) does not need to be evaluated. This computa-
tional savings can be useful when performing simulations.

To perform inference we must approximate the density p X, which represents the joint dis-
tribution of all allele frequencies observed in the experiment. In Methods, we provide the de-
tails of the approximation we use. Briefly, it is as follows: we assume that, conditional on the
initial genome configuration G0, the underlying allele frequencies Xijk are distributed according
to a Gaussian process:

X j G0; y � N ðmðG0; yÞ;SðG0; yÞÞ ð3Þ

where the first- and second-order moment functions μ(�) and S(�) are obtained by considering
Wright-Fisher models on a small number of loci. For example, the terms of S(�) correspond to
the covariance between a pair of linked sites (potentially at different time points in the experi-
ment) under the Wright-Fisher model. To compute this we can “marginalize out” the remain-
ing loci in the model and study simpler Wright-Fisher model on only two loci. (A slightly more
elaborate approximation is needed in the case when there is a nearby selected locus, as detailed
in Methods.) Thus, we are essentially approximating the complex joint distribution of allele fre-
quencies using a sequence of simpler one- and two-locus distributions. This approximation en-
ables us to capture the correct mean and covariance structure in the random variable X while
omitting higher order correlations.

Using this approximation we can perform tractable, likelihood-based inference while cap-
turing salient aspects of the linkage-induced correlation present in the data. Indeed, by (2), (3)
and the preceding discussion we have

LðD j yÞ �
Z
½0;1�T�L�R

Y
i;j;k

ℬðDijk; cijk; xijkÞ
" #

�yðxÞ dx ¼: ~LðD j yÞ; ð4Þ

where ϕθ denotes the density function of the Gaussian distribution in equation (3). This
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expression may then be maximized over θ to perform inference. Alternatively, by placing
a prior on θ a Bayesian approach may be adopted, but we do not explore that in this
work.

Simulated data
We tested our method on simulated data designed to capture the essential features of an E&R
experiment. See Methods for the details on simulation. Briefly, it consisted of cloning a set of F
homozygous founder lines (whose haplotypes are assumed to be known) to form an experi-
mental population of N diploid organisms, which were then simulated forwards in time for T
generations according to the Wright-Fisher random mating model. The experiment was re-
peated using the same starting conditions to form R experimental replicates. After the simula-
tion terminated, the frequency of allele A1 was recorded for each combination of segregating
site, time period and replicate, possibly with introduced sampling error; this setup mimics
pooled sequencing. The input to the model consisted of these time series allele frequency data
along with the haplotypes of the founder lines.

Certain aspects of the simulation were varied to test different aspects of the model; these
changes are described more fully in their respective sections below. Unless otherwise noted, the
simulations were performed using F = 200 founder lines, census population size N = 1000, sam-
pling at generations ti 2 {10, 20, 30, 40, 50}, R = 3 experimental replicates and a region of size L
= 105 sites. These values were chosen to reflect a typical E&R experiment and we refer to them
in the sequel as the “default” parameter values. Expected sequencing coverage depth is denoted
by C, with C =1 corresponding to having perfect knowledge of the population allele frequen-
cies. We use C =1 in the default parameter setting to upper bound the performance of our
method, but also consider C 2 {10, 30} to investigate the effect of uncertainty in allele frequency
estimation. In these scenarios, coverage at each site was Poisson distributed with mean C. Last-

ly, scenarios with coverage “Ĉ” denote simulations in which each segregating site had a random
level of coverage drawn from the empirical coverage depth distribution observed in actual E&R
sequencing data (see Analysis of a real E&R experiment data for further details.) The average
coverage depth observed in this experiment was 84 short-reads, but the distribution has a
heavy left tail which leads to a small percentage of sites having little to no coverage (S1 Fig).

A common objective in E&R experiments is to detect genetic adaptation. For example, a
population may be partitioned, with one subgroup placed in a new environment. Upon run-
ning an E&R experiment, one wishes to 1) determine whether a fitness difference exists be-
tween the control and subject groups; 2) find the alleles responsible for the adaptation; and 3)
estimate the strength of selection acting on these alleles. To test our model’s ability to perform
each of these tasks, we simulated E&R experiments in which a segregating site in the founding
population was chosen uniformly at random and placed under selection. The relative fitnesses
of A0/A0 and A1/A1 homozygote genotypes are respectively given by 1 and 1+s, while the rela-
tive fitness of the heterozygote A0/A1 is 1+hs. In what follows, we assume h = 1/2 unless
stated otherwise.

Testing for selection
Let si denote the coefficient of selection at segregating site i = 1, . . ., K, where K is the total
number of segregating sites in the region being considered. We wish to test the following null
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and alternative hypotheses:

H0 : s1 ¼ � � � ¼ sK ¼ 0;

versus

HA : sj 6¼ 0 for some j;

ð5Þ

which can be implemented using a standard likelihood-ratio (LR) test. As the number R of ex-
perimental replicates grows large, the distribution of the test statistic under the null hypothesis
tends to a χ2 distribution. However, since R was set to a realistic (i.e., small) value in our experi-
ments, we found that the test performed better if the null distribution was determined empiri-
cally. The null distribution was calculated by performing additional simulations under
neutrality (s = 0), computing the maximum likelihood estimate ŝ for each simulation, and then
using these estimates to compute the empirical null distribution of the LR test statistic

�2 ½logL~ðD j s ¼ 0Þ �sup
u

log L~ðD j s ¼ uÞ�; ð6Þ

where L~ðDjs ¼ uÞ is defined in (4).
Using the default parameter settings mentioned earlier, Fig. 1 displays the test’s estimated

receiver operating characteristic (ROC) curve for various strengths s of selection and various
numbers of founding haplotypes (F). Larger values of F correspond to increased haplotypic di-
versity in the start of the E&R experiment. Each curve was estimated from 200 simulations.
Some overall trends are apparent: stronger selection is easier to detect than weaker selection,

Fig 1. Receiver operating characteristics (ROC) when testing for selection in a region under the
default parameter setting. Each ROC curve was estimated using 200 simulations. For each selection
regime, the curve was calculated by comparing the distribution of the maximum likelihood-ratio over all
segregating sites in a region of length 100 kb with the distribution of the same statistic under neutrality. As the
plots show, stronger selection is easier to detect than weaker selection, and increased haplotypic diversity
makes it more difficult to confidently reject the null hypothesis of neutrality.

doi:10.1371/journal.pgen.1005069.g001
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and increased haplotypic diversity makes it more difficult to confidently reject the null hypoth-
esis of neutrality. With a small number of initial haplotypes (F = 20), strong selection (s = 0.1)
is easily distinguished from neutrality. Moderate selection (s = 0.05) is more challenging to de-
tect, but the test still has 75% power with a false positive rate of* 6%. Weaker selection
(s = 0.02) poses more of a challenge; in this case achieving 50% power would entail a false posi-
tive rate of approximately 30%. As the number of founding lineages increases, it becomes
harder to test for selection. This occurs because many sites are segregating at low initial fre-
quencies, increasing the chance that some are lost due to drift.

Detecting weakly selected variants may be confounded by genetic drift, which can cause
low-frequency alleles to be lost even if they are under positive selection. One option for im-
proving sensitivity to weaker selection is to reduce the effect of drift by increasing the effective
population size used in the experiment. To study how this influences our ability to detect
weaker selection, we ran additional simulations with larger population sizes N 2 {2000, 5000}
while holding the remaining experimental parameters fixed. Results from these experiments
are shown in Fig. 2. The top panel (N = 1000) is reproduced from the middle panel of the pre-
ceding figure for ease of comparison. We see that reducing the amount of genetic drift in the
data improves the performance of the test, particularly when it comes to distinguishing weak
selection (s = 0.02).

Fig 2. Receiver operating characteristics when testing for selection in E&R experiments with larger
population sizes. Parameters for each simulation were the same as in Fig. 1, except that the population size
was increased to N = 2000 (middle panel) andN = 5000 (bottom panel). Comparing these ROC curves with
those in Fig. 1, we see that increasing the population size by only a few folds significantly improves the
performance of the test for selection.

doi:10.1371/journal.pgen.1005069.g002
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Locating the selected site
Once selection has been detected in a region, it is desirable to map the selected site as accurately
as possible. An obvious estimator in this case is to declare the site with the highest likelihood-
ratio (versus a neutral model) from the preceding test to be the selected site. Table 1 shows how
this estimation procedure performed for different strengths of selection. We also studied how
varying the number of founding lines affected the ability to precisely locate the selected site by
allowing F to take on the values F 2 {20, 200, 2000}. Since the minimumminor allele frequency
(MAF) in an E&R experiment is 1/F, a low number of founding lines ensures that sites are seg-
regating at intermediate frequencies, while a large value of F decreases LD and improves the
ability to map the selected site accurately. Note that under our default parameter regime, set-
ting F = 2000 amounts to sampling each founder from a panmictic population of size, so that
the patterns of diversity reflect what would be seen in a (neutrally evolving) region in nature.

Two measures of the accuracy are displayed in Table 1. The first set of columns examines
the distribution of the distance (in base pairs) between the estimated and true selected site. The
second set of columns examines the distribution of the rank of the true selected site when all
segregating sites in the region are sorted according to their likelihood ratio.

As the table shows, selection becomes easier to localize as it becomes stronger and as the
number of founder haplotypes grows. With strong selection (s = 0.1) and 20 founding haplo-
types, the method correctly pinpointed the exact location of the selected site in over 50% of the
simulations. Additionally, the correct selected site was among the top four in 75% of the simu-
lations. With F = 200 founder lines, the true selected site ranked among the top two overall in
over half the simulations. The top rows of Table 1 indicate that weak selection (s = 0.02) is diffi-
cult to localize precisely using this method; the median estimated distance from the true select-
ed site was 27–29 kb in these cases.

Since increasing the number F of founder lines diminishes linkage disequilibrium, it may
seem counterintuitive that our results suggest that localizing selection actually becomes more dif-
ficult as F increases. In S1 Table, we have displayed the same statistics as Table 1 for the restricted
subset of simulations where the selected site was segregating at an initial frequency of at least 0.1.
Compared to the unrestricted data set, these sites are more likely to rise in frequency by the

Table 1. Results of localization procedure.

Distance Rank

s F q.1 q.25 q.5 q.75 q.9 q.1 q.25 q.5 q.75 q.9 E(#SS)

0.02 20 3540 10740 27360 51791 66270 5 17 195 660 851 1307

0.02 200 900 8870 29000 52680 74000 6 152 946 1537 1694 2086

0.02 2000 2830 10050 27380 49350 67850 14 309 1235 1889 2297 2781

0.05 20 0 0 1450 24740 50040 1 1 2 74 467 1313

0.05 200 0 0 8980 31640 52630 1 1 43 1210 1558 2086

0.05 2000 0 180 18900 43260 63470 1 2 1193 1916 2286 2778

0.10 20 0 0 0 11229 52320 1 1 1 4 14 1318

0.10 200 0 0 0 22920 48631 1 1 1 506 1566 2084

0.10 2000 0 0 8440 33841 58680 1 1 173 1955 2305 2781

The two sets of columns display percentiles of the distance in base pairs from the estimated selected site to the true selected site, and of the average rank

(in terms of likelihood ratio) of the true selected site. The column labeled qj corresponds to the jth percentile. The column labeled E(#SS) shows the

average number of segregating sites observed over all simulations. F denotes the number of homozygous founder lines, while s denotes the selection

coefficient. This table shows that the selected site is generally easier to localize for larger values of s and F.

doi:10.1371/journal.pgen.1005069.t001

Multi-locus Analysis of E&R Time Series Data

PLOS Genetics | DOI:10.1371/journal.pgen.1005069 April 7, 2015 9 / 29



action of positive selection, and less likely to be lost due to drift. Here we see that increasing F
does improve the ability to map the selected site for s 2 {0.02, 0.05}; for strong selection (s = 0.1),
essentially all cases of F performed equally well. Interestingly, an intermediate number of found-
ing lineages (F = 200) seems to outperform both other regimes, suggesting that there is a trade-
off between improving localizability by increasing F and limiting the number of segregating sites
which must be considered by decreasing the number of founding lineages.

We also studied how coverage depth affects the ability to map the selected site. For F = 200,
Table 2 repeats the analysis of Table 1 when the data are sampled at simulated coverage depths
of 10 and 30 short-reads, as well as from the empirical coverage distribution discussed above.
Comparing the two tables, we see that the additional noise introduced by sequencing makes
the problem of localizing the selected site more difficult; the modal estimate is often separated
from the true site by tens of kilobases. Nevertheless, in more than half the trials performed we
observed that a strongly selected site would be among the top five segregating sites (in terms of
likelihood ratio; see Table 2, last two rows). For medium selection, increasing coverage depth
from 10 to 30 short-reads improved our ability to map the selected site by several kilobases,
and more than halved the number of segregating sites we would need to examine before en-
countering the selected site. Weaker selection, already difficult to detect without sampling, is
even more so when noise is introduced.

Estimating the strength of selection
Once a selected site has been located, it is desirable to numerically quantify the fitness of the A1

allele. Table 3 describes the distribution of these estimates for various combinations of selective
strength, coverage depth, and model complexity (i.e., the number of loci in the Gaussian pro-
cess approximation). For each of the simulations above we estimated s by maximum likelihood.
To separate the ability of our model to estimate selection from its ability to locate the selected
site, we assumed that the selected site was already known when performing these estimates.
Aside from varying selection strength, we also examined how coverage depth and the number

Table 2. Results of localization procedure with finite coverage.

Distance Rank

s C q.1 q.25 q.5 q.75 q.9 q.1 q.25 q.5 q.75 q.9 E(#SS)

0.02 10 5200 15880 33670 53400 67881 34 195 795 1496 1770 2085

0.02 30 3720 11460 28850 52730 77380 25 308 912 1499 1690 2084

0.02 Ĉ 5310 12419 28360 48630 60750 17 152 863 1420 1676 2082

0.05 10 0 3170 18380 42240 63170 1 6 304 1161 1635 2080

0.05 30 0 0 14330 38860 57019 1 1 129 1356 1619 2086

0.05 Ĉ 990 9080 28750 53110 69750 2 4 159 1473 1639 2083

0.10 10 0 0 3770 27300 55960 1 1 5 373 1591 2082

0.10 30 0 0 290 26950 50649 1 1 2 498 1539 2091

0.10 Ĉ 0 0 14079 37290 58970 1 1 3 493 1583 2082

Data were generated as in Table 1 and then sampled to simulate sequencing. The number of homozygous founder lines was fixed to F = 200 in this

study. Average coverage depth is indicated in the column labeled C. The rows denoted “Ĉ” correspond to simulations in which each segregating site had

a random level of coverage depth drawn from the empirical coverage distribution observed in actual E&R sequencing data. The column labeled qj
corresponds to the jth percentile. The column labeled E(#SS) shows the average number of segregating sites observed over all simulations. As the table

shows, the additional noise introduced by low coverage depth makes the problem of localizing the selected site more challenging. However, under strong

selection (s = 0.1), the true selected site was among the top five segregating sites in more than half the trials.

doi:10.1371/journal.pgen.1005069.t002
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of loci used for estimation affected the quality of the estimates. For each parameter combina-
tion, the table displays the mean, median and inter-quartile range (IQR) of the distribution of
the maximum likelihood estimate ŝ of s.

Several interesting features emerge from the table. Inter-quartile range is of roughly the same
order across scenarios, so that estimation error shrinks relatively as selection become stronger.
For one-locus models, IQR shrinks as coverage depth increases. For multi-locus models the effect
of increasing the number of sites used to perform estimation is interesting. When the data are ob-
served without noise, we saw little improvement in the accuracy of ŝ when using a single-locus
model fit only to data from the selected site versus a multi-locus model which also took the trajec-
tories of linked sites into account. In fact, in several cases this cause the estimates to become
more dispersed as the trajectory of the selected allele had relatively less weight in the likelihood
calculation. On the other hand, when allele frequencies are sampled with noise we see that esti-
mates ŝ obtained from a five-locus model generally have smaller IQR, particularly in the low-cov-
erage-depth case C = 10. These findings are confirmed in Fig. 3, which displays density estimates
for the residual s� ŝ for each of these cases presented in the table. Compared with the one-locus
model, the five-locus model which takes additional data from linked sites into account produces
estimates which are more concentrated around the true parameter value. Thus, when the data
are noisy (i.e., when C is small), the trajectories of nearby linked sites provide useful information
concerning the (unobserved) population frequency of the selected allele as it evolves over time.

We observed a slight negative bias for weaker selection and a slight positive bias for medium
and strong selection, which can be attributed to loss or fixation of the selected allele. Indeed, es-
timated selection may be negative when a weakly selected allele segregating at low frequency is

Table 3. Estimation of selection coefficient.

s # Loci C EðŝÞ Median IQRðŝÞ
0.02 1 10 0.01874 0.01957 0.02273

0.02 5 10 0.01898 0.01991 0.01862

0.02 1 30 0.01877 0.01888 0.01828

0.02 5 30 0.01988 0.01987 0.01821

0.02 1 1 0.01724 0.01710 0.01543

0.02 5 1 0.01775 0.01739 0.01916

0.05 1 10 0.05107 0.05047 0.02339

0.05 5 10 0.05056 0.05046 0.01775

0.05 1 30 0.05035 0.05035 0.01886

0.05 5 30 0.05072 0.05097 0.01716

0.05 1 1 0.05018 0.04950 0.01517

0.05 5 1 0.04840 0.04867 0.02176

0.10 1 10 0.10385 0.10255 0.02516

0.10 5 10 0.10234 0.10197 0.02204

0.10 1 30 0.10521 0.10456 0.02019

0.10 5 30 0.10265 0.10339 0.01893

0.10 1 1 0.10403 0.10369 0.01617

0.10 5 1 0.10300 0.10318 0.01832

For each combination of selection strength, model complexity, and coverage depth (s, # Loci, and C, respectively), the rightmost columns display the

average, median and inter-quartile range (IQR) of the selection estimate ŝ obtained from 200 simulations. Rows with C = 1 denote simulations when the

population-level allele frequency was known without error. When allele frequencies are sampled with noise (C = 10), estimates of s obtained from a 5-

locus model generally have smaller IQR than that for a 1-locus model.

doi:10.1371/journal.pgen.1005069.t003
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lost due to drift; similarly, there is a tendency to overestimate the strength of selection acting
on a high-frequency allele which fixes quickly.

It is also interesting to consider the effect of study design on estimation accuracy. In Table 4
we examine how parameter estimates are affected by sequencing effort and experimental dura-
tion. We focus on the limited-coverage case (C = 10) since it is most sensitive to adding or re-
moving sequence data from additional generations. For ease of comparison, the first set of
rows reproduces data from Table 4, where generations {10, 20, 30, 40, 50} were sequenced. The
next subsection examines the case when sequencing effort is reduced to two time periods {25,
50}. The final subsection studies estimation quality when the experimental duration is halved,
and only one round of sequencing is performed at generation 25. In all cases we see that the es-
timators are approximately unbiased, EðŝÞ � s, but that their dispersion about the true param-
eter value is greatly affected by data availability. Sampling genomic data at just a single time
period t = 25 roughly doubles the IQR of the estimator in each case. Interestingly, with two
time periods (t 2 {25, 50}) performance is improved, and the estimator is only somewhat less
precise than when sampling at every tenth generation. Finally, as in the previous table we see
again that, at least for data sampled at low coverage, estimation performance is unilaterally im-
proved by fitting a multi-locus model versus a single-locus model.

Overdominance estimation
In the preceding discussion, the dominance parameter was fixed at h = 1/2, so that selection
acted additively. Our method is capable of handling general diploid selection. In our

Fig 3. Estimated error density of with sampling.Data were generated using the standard parameters and
sampled to a depth of 10 reads per site. Density estimates for the residual s� ŝ for s = 0.02, 0.05, 0.10 (top to
bottom) are plotted. The red and blue lines denote the density estimates obtained using one- and five-locus
models, respectively. The five-locus model, which takes additional data from linked sites into account,
produces estimates which are more concentrated around the true parameter value.

doi:10.1371/journal.pgen.1005069.g003
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experiment, we tested our method’s ability to estimate the effect of overdominance, in which
case heterozygotes are fitter than either homozygote. We simulated populations under the con-
ditions h> 1 and s	 1 such that heterozygotes had a relative fitness of 1+hs where hs 2 {0.02,
0.05, 0.10}. Thus, heterozygotes have a fitness advantage of the same order as that which we
were able to detect in the additive case.

Results for jointly estimating h and s are shown in Table 5. A fixed value of s = 0.01 was
used for fitness in all cases, while h was varied. We found that estimating overdominance is dif-
ficult when both alleles are initially segregating near their limiting frequency of ½, since the re-
sulting allele trajectories appear very similar to those generated by a neutral model with drift.

Table 4. Effect of sampling frequency on selection coefficient estimation.

s # Loci C EðŝÞ � s Median IQRðŝÞ � s

ti 2 {10, 20, 30, 40, 50}

0.02 1 10 0.01874 0.01957 0.02273

0.02 5 10 0.01898 0.01991 0.01862

0.05 1 10 0.05107 0.05047 0.02339

0.05 5 10 0.05056 0.05046 0.01775

0.10 1 10 0.10385 0.10255 0.02516

0.10 5 10 0.10234 0.10197 0.02204

ti 2 {25}

0.02 1 10 0.01742 0.02231 0.05067

0.02 5 10 0.01938 0.02086 0.03450

0.05 1 10 0.04958 0.04813 0.05762

0.05 5 10 0.04864 0.04887 0.03045

0.10 1 10 0.09913 0.10167 0.05164

0.10 5 10 0.09930 0.09948 0.03535

ti 2 {25, 50}

0.02 1 10 0.01912 0.01886 0.02799

0.02 5 10 0.01948 0.01953 0.01923

0.05 1 10 0.05149 0.05047 0.02591

0.05 5 10 0.05142 0.05037 0.01969

0.10 1 10 0.10360 0.10256 0.03049

0.10 5 10 0.10139 0.10105 0.02208

Column definitions are the same as in Table 3. The three sections correspond to sampling at generations (10, 20, 30, 40, 50), 25, and (25, 50)

respectively. The estimators are approximately unbiased in all cases, but their dispersion about the true parameter value is considerably affected by data

availability. Further, the 5-locus model consistently produced improved estimation results over the 1-locus model.

doi:10.1371/journal.pgen.1005069.t004

Table 5. Overdominance estimation.

h hs EðŝÞ IQRðŝÞ EðĥÞ IQRðŝÞ EðĥŝÞ IQRðĥŝÞ
2.0 0.02 0.023 0.018 3.28 4.92 0.029 0.016

5.0 0.05 0.012 0.009 4.60 11.19 0.048 0.022

10.0 0.10 0.010 0.005 6.62 7.28 0.099 0.024

The selection coefficient was fixed at s = 0.01 while the dominance parameter h was varied. In each simulation, the initial allelic frequency was restricted

to lie outside the interval [0.4, 0.6] (see discussion in text). The estimators ĥ and ŝ are highly variable, while the product estimator ĥ � ŝ is substantially

more accurate.

doi:10.1371/journal.pgen.1005069.t005
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The results in the table are therefore conditioned on the initial allele frequency residing outside
of the interval [0.4, 0.6].

When considered individually, the estimators ĥ and ŝ are highly variable (see Table 5, col-
umns 3–6). This behavior is expected since, as witnessed in the previous subsections, small val-
ues in s (specifically, s = 0.01) are difficult to detect in experimental data. Encouragingly, a

different picture emerges when we consider the product estimator ĥ � ŝ (see Table 5, columns
7–8). The estimator is close in expectation to the true value hs (column 2) and also more tightly

concentrated around that value. Density estimates of the product estimator ĥŝ are shown in
Fig. 4 and confirm this finding. Each density estimate has a mode at the true parameter value
hs and is reasonably concentrated around that value.

Recombination rate estimation
Our multi-locus model can also be used to study phenomena which alter covariance between
linked alleles. For example, in a region containing a recombination hotspot, covariance de-
creases markedly as increased recombination breaks down linkage disequilibrium. Using the
same likelihood-based approach as above, the recombination rate within the hotspot can be es-
timated from E&R data. To test this, we simulated a region of length L = 100 kb in which the
middle 2 kb region had an elevated recombination rate rH = α � r, where r = 10−8 is the back-
ground recombination rate and α 2 {10, 102, 103}. For simplicity, we focused on the case of C =
1 and assumed that the hotspot boundaries are known. For each simulation, a 30-locus model
was fit using 10 randomly-selected loci from within the hotspot and 20 outside of it. Density

Fig 4. Overdominance estimation.Density estimates of the product ĥ � ŝ when the parameters are
estimated jointly. The selection coefficient was fixed at s = 0.01 while the dominance parameter hwas varied.
In each simulation, the initial allelic frequency was restricted to lie outside the interval [0.4, 0.6] (see
discussion in text). The mean of ĥ � ŝ is quite close to the true value hs and the distribution is tightly
concentrated around that value.

doi:10.1371/journal.pgen.1005069.g004
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estimates for the residual log10ðr̂HÞ � log10ðrHÞ are shown in Fig. 5. In all cases, the mode of the
density occurs close to zero. A 3-order increase in the recombination rate is easily detected in
experimental data, and a 2-order increase can also be estimated to well within an order of mag-
nitude of accuracy. Increasing the recombination rate by only a factor of 10 leads to a fairly dis-
persed estimator, and it would be difficult to detect using the default experimental parameters.

Effective population size estimation
As a final application of our method, we consider estimating the effective population size Ne

from experimental data. Up to now we have assumed that the (census) size N of the experimen-
tal population is fixed at a known value. In practice, the effective and census population sizes
may differ due to various factors, including nonrandom mating and population structure. It
could be interesting to quantify this effect by estimating Ne in experimental data using the
same likelihood-based procedures described above. Since our model approximates the Wright-
Fisher process, in which Ne = N, and simulations were carried out also assuming the Wright-

Fisher model, we expect our estimate N̂ e to be close to N. Fig. 6 shows a scatter plot of N̂ e ver-
sus N for 1,000 simulated E&R experiments. In each experiment, the population size N was
chosen uniformly at random from the interval [10, 104]. We see that the estimator is quite ac-
curate for small population sizes and becomes more variable as N grows. This is expected since

N̂ e is essentially measuring genetic drift, which is of order O(1/N) as N grows. Thus, the inverse
map taking drift to population size is well-conditioned for small N and becomes ill-conditioned
as N grows.

Fig 5. Hotspot estimation. A recombination hotspot was simulated by evolving a 100 kb region in which the
recombination rate rH = α � r for the middle 2 kb (positions 49–51 kb) was increased by a multiplicative factor α
2 {10, 100, 1000} above the baseline recombination rate r. The hotspot intensity r̂ H was then estimated from
E&R experimental data. The figure shows density estimates of the residual log10ðr̂ HÞ � log10ðrHÞ for each value
of α. Note that the mode of the density is close to zero in all cases. Furthermore, a 3-order increase in r is
easily detected, while a 2-order increase can also be estimated to well within an order of magnitude
of accuracy.

doi:10.1371/journal.pgen.1005069.g005
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Analysis of a real E&R experiment data
Finally, we tested our method on data from an actual E&R experiment of D. melanogaster
adapting to a new laboratory environment involving an alternating cycle with 12-hrs of cold
(18
C) and 12-hrs of hot (28
C) temperature conditions. The experiment has been described
previously [25, 36], so we give only a brief summary here. The experiment consists of three D.
melanogaster populations each of N� 1000 individuals. The populations were founded by
gravid females from isofemale lines, and then evolved forward in discrete generations. Pooled
sequencing was performed at generations 15, 37, and 59 on three experimental replicates.

The observed coverage distribution for a selected data point (replicate 4, generation 59) is
shown in S1 Fig. The distribution has fairly high average coverage depth, but a significant num-
ber of sites have little or no coverage. After read-mapping and filtering sites to have sufficient
coverage and quality, 1.46 million segregating sites remained in the data set. In order to maxi-
mize the accuracy of our model, we further filtered the data to include sites segregating only at
intermediate frequencies (MAF� 0.1), resulting in a total of 414, 049 sites. The distribution of
coverage for each filtered pool-seq data point is plotted in S2 Fig. In addition to pooled se-
quencing data, whole-genome haplotype sequences were collected for 29 founder individuals
(see [36] for details). This enabled us to estimate local linkage disequilibrium for use in the
multi-locus model.

We employed a two-pass approach to analyze the data. In the first pass, we performed a ge-
nome-wide scan of the entire data set using the single-locus implementation of our model.
Using the results of this first pass, we identified regions of the genome for which there was
strong evidence of non-neutrality. We then fit more computationally demanding 3-, 5-, and 7-
locus models in these genomic regions in order to localize and estimate the strength of

Fig 6. Effective population size estimation. The census population size (N) versus the estimated effective
population size ðN̂eÞ for 1,000 simulated E&R experiments. For each simulation, population size was chosen
uniformly at random from the interval [10, 104]. The estimator is quite accurate for smallN, but becomes more
variable as N grows. See text for discussion.

doi:10.1371/journal.pgen.1005069.g006
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selection. Further details of our analysis procedure are provided in Methods. Total run-time
for the one-locus portion of the analysis was 8 hours 43 minutes for the entire genome (� 0.07
seconds per site), using a parallel implementation on a 16-core machine. For the multi-locus
models, the average running time per site was 0.94 seconds (3 loci), 2.54 seconds (5 loci) and
4.96 seconds (7 loci). Memory consumption for the multi-locus models averaged around 40
GB, although this can be reduced at the expense of greater run-time by disabling result caching
features built into our software.

The first pass identified the following 16 intervals (in Mb) for further analysis: Chr X: (1.6,
1.7); Chr 2L: (15.0, 16.0), (16.5, 18.5), (19.0, 20.7); Chr 2R: (20.9, 21.1); Chr 3L: (2.3, 3.0), (6.6;
6.7), (8.6, 8.8), (13.0, 14.5), (15.2, 16.0), (18.0, 18.9), (20.2, 20.8); Chr 3R: (14.3, 14.7), (15.7,
16.1),(18.4, 19.0), (26.2, 26.4). Focusing on these regions, we computed the LR test statistic at
about 37,000 SNPs in total for each multi-locus model. Because of long-range linkage disequi-
librium and hitchhiking effects [36], all models produced rather large LR statistics for numer-
ous sites. However, compared to the one-locus model, multi-locus models generally produced
more distinctive peaks in the LR statistic. For example, Fig. 7 illustrates a 200 kb region of chro-
mosome arm 3R for which the one-locus analysis resulted in several distant SNPs with compa-
rably high LR values, while all multi-locus models highlighted two nearby SNPs (illustrated in
red) in the 14.615–14.619 Mb region with pronounced LR peaks. S3 Fig is another example of
size 800 kb for which every multi-locus model yielded a distinctive peak (shown in red) near
18.205 Mb of chromosome arm 3L, while the one-locus model did not single out any particular
SNPs in the region.

To deal with variable results across different multi-locus models, we used the following
strategy: For each of 3-, 5-, and 7-locus models, we first ranked the SNPs according to their LR
statistic and took the top 100 SNPs. This corresponds to the LR statistic being greater than
8.741, 9.525, and 11.310 for the 3-, 5-, and 7-locus model, respectively. (Shown in S4 Fig are
empirical cumulative distributions of the LR statistic for each multi-locus model; the 99th per-
centile for the 3-, 5-, and 7-locus models are 6.883, 7.330, and 8.257, respectively.) Then, we
took the intersection of the resulting three top 100 lists. This led to thirteen SNPs, nine of
which belong to five coding genes (one SNP in CG42334 and two SNPs each in CG9726,
CG33991, CG17697, and CG7720). In particular, gene CG7720 actually resides in the region il-
lustrated in Fig. 7, and the two distinctive SNPs mentioned in the previous paragraph are in
fact the two top ranking SNPs contained in CG7720. Allele frequency trajectories of the thir-
teen identified SNPs are illustrated in S5 Fig; they generally display an increasing trend over
the time course of the experiment. A brief description of the five genes is provided in Table 6. It
is well known that temperature affects the cell membrane composition [40], and it is interesting
that one of the five genes we identified is involved in transmembrane transport. It is also inter-
esting that two of the remaining genes are related to cytoskeleton (reorganization and
coordination).

Using the same data, Franssen et al. [36] recently studied the evolving pattern of linkage dis-
equilibrium and identified 17 haplotype-blocks putatively under selection. Interestingly, three
of the five genes mentioned above—namely, CG33991, CG17697, CG7720—are contained in
that set of haplotype-blocks.

Discussion
In this paper we have presented a model for analyzing time series data generated by evolve-
and-resequence experiments. Our model is designed to analyze multiple recombining sites
evolving in a moderately-sized population and potentially affected by measurement error. On
data obtained from simulated E&R experiments combined with pooled sequencing, we have
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Fig 7. Comparison of likelihood-ratio results for the one-locus andmulti-locus models applied to a real E&R experiment ofD. melanogaster.
Shown here are the results for a 200 kb region of chromosome arm 3R. Note that the one-locus model resulted in several distant SNPs with comparably high
LR values, while all multi-locus models produced cleaner pictures, isolating two nearby SNPs (illustrated in red) in the 14.615–14.619 Mb region with
pronounced peaks.

doi:10.1371/journal.pgen.1005069.g007
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shown that it is possible to detect, localize and estimate the strength of selection in the range s
2 [0.01, 0.10] in a population of moderate size (N* 103) and using a moderate number (R =
3) of experimental replicates. We have also explored the effect of the founding population com-
position (in terms of the number of founders) and sequencer effort (coverage depth, number of
sampling time points, and time intervals between sampling) on the quality of these estimates.
Finally, we have shown that our method can also be applied to study other phenomena of inter-
est, including overdominance and effective population size; in particular, our work suggests
that E&R data can be used to estimate recombination rates in putative hotspots in model or-
ganisms inferred by previous studies [5, 41, 42]. Space and time considerations have necessarily
prevented us from considering many other combinations of experimental parameters which
could be informative when designing E&R experiments. To enable other researchers to explore
these options, we have made the computer code used in this study publicly available.

We have also applied our method to analyze genome-wide data from a real E&R experiment
of D. melanogaster adapting to a new laboratory environment over tens of generations. Because
of the small population size involved in that particular E&R experiment, LD does not break
down fast enough over the time scale of the experiment, and long-range correlation between
distant sites and hitchhiking effects pose challenges to localizing the true sites under selection.
In our work, we have observed that combining information from several multi-locus models
may produce improved results. We have employed a heuristic ensemble approach in this
paper; further statistical work on this problem would be worthwhile to pursue in the future. In
a given multi-locus model, we have noticed that choosing appropriate SNPs to include in the
model is important for producing cleaner signals. Specifically, we recommend choosing SNPs
for which the allele frequency does not get too close to the boundary (0 or 1) and that are suffi-
ciently far apart (e.g.,> 100 kb apart for the particular E&R data we considered). Our analysis
of the E&R data has identified five genes in D. melanogaster (Table 6) which may be involved
in adaptation, and some of these genes reside in haplotype-blocks recently identified as candi-
date regions of selection [36]. Further, some of the genes we have identified are involved in re-
lated biological processes, in particular concerning cytoskeleton and transmembrane transport.
It would be interesting to investigate this thread of observations further. We note that we have
employed a rather conservative approach in our analysis, so it is likely that we missed several
other regions potentially under selection.

Experience has shown that the running time of our model is dominated by the recursive
procedure used to calculate covariances between pairs of sites (see Methods). Thus, to fit a K-

Table 6. Genes identified by our analysis as potentially being under selection in the E&R experiment [25, 36] ofD. melanogaster.

Gene Chr Position Biological process

CG33991 (nuf) 3L 14, 183, 976–14,
225, 600

Cytoskeleton reorganization; microtubule-based process; wing disc dorsal/ventral pattern formation

CG17697 (fz) 3L 14, 267, 446–14,
326, 917

Receptor for Wnt proteins; establishment or maintenance of cell polarity; G-protein coupled receptor
signaling pathway; required to coordinate the cytoskeletons of epidermal cells to produce a parallel
array of cuticular hairs and bristles

CG42334 (comm3) 3L 15, 606, 283–15,
640, 837

Autophagic cell death

CG7720 3R 14, 584, 955–14,
620, 876

Transmembrane transport

CG9726
(PH4alphaMP)

3R 26, 317, 530–26,
321, 872

Peptidyl-proline hydroxylation to 4-hydroxy-L-proline; oxidation-reduction process

Genomic coordinates correspond to that of BDGP Release 5 assembly, and biological functions are taken from FlyBase.org.

doi:10.1371/journal.pgen.1005069.t006
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locus model sampled at T time points has computational complexity of order O(K2 T2). When
performing the large number of simulations needed to benchmark our model, this quadratic
scaling in the model size K prevented us from fitting models jointly using many more sites.
Since our results suggest that estimation precision can be improved (in particular, at low cover-
age) by exploiting linkage information between sites, it could make sense in practice to expend
additional computation time in order to add more sites into the model.

It is interesting to compare our findings with existing results. Feder et al. [30] suggest that
power to detect selection is maximized when (positively) selected alleles are sampled as they
rise in frequency, but before they have fixed. By a simple modification of their argument, the
expected strength of selection required for a mutation in our simulated E&R experiments to
achieve frequency xf in T time periods is given by

sfixðTÞ ¼
1

HF�1

XF�1

k¼1

1

kT
log

xf
1� xf

� F � k
k

 !
; ð7Þ

whereHn :¼
Pn

i¼1 1=i is the harmonic series. Above we generally chose T = 50 and F = 200; for
xf = 0.95 we find that sfix(T)� 0.11 which roughly agrees with our finding (Fig. 1) that medium
and strong selection (s = 0.1) could be reliably detected, while weaker selection was fairly diffi-
cult to detect. Our findings are somewhat more optimistic than those of Baldwin-Brown et al.
[31], whose simulation results suggest that E&R experiments require a fairly large number of
experimental replicates (R� 25), founder haplotypes (F� 500) and strong selection (s� 0.1)
in order to reliably detect and localize selected sites in a 1 Mb region. Since we used a smaller
region for simulation (L = 100 kb), the results we report are not directly comparable; neverthe-
less, it is interesting that with many fewer replicates and haplotypes (R = 3 and F = 20) we
could reliably detect the selected site in at least 50% of trials (Table 1). With sampled data the
problem becomes harder, but we found that average coverage depth 30 still sufficed to discover
the selected site from among the top four segregating sites in 50% of trials (Table 3).

Several extensions to our model could potentially be of use. In our simulations we assumed
that sequencer coverage depth is Poisson distributed. However, some studies have noted that
coverage depth is overdispersed relative to the Poisson distribution, in which case an alterna-
tive distribution such as the negative binomial is preferred. For multi-locus estimation prob-
lems, our model requires that the haplotypic structure of the founding experimental
population be known. In cases where this information is not known exactly, a Bayesian ap-
proach could be adopted in which model results are weighted by a prior on the space of initial
haplotypic configurations. Such a procedure could allow the researcher to trade sequencing ef-
fort for computation time by decreasing the burden of initial sequencing that must be per-
formed in order to establish the haplotypes of the founding lineages.

The other extreme of sequencing effort is to obtain haplotype data for a sample of individu-
als at each sampling generation, rather than to use pooled sequencing to infer only marginal al-
lele frequencies. (Indeed, there is a discussion on the utility and power of pooled sequencing
[37, 43–45].) The same multi-locus model underlying our approach can be applied to develop
a method for analyzing haplotypic time series data, and we will explore incorporating such an
extension into our method.

Our approximation to the multi-locus Wright-Fisher process relies on a system of recur-
sions which describe the evolution of neutral sites conditional on the presence of a linked se-
lected site (see Methods). The process of generating those recursions has been automated [46]
to handle more general scenarios including population structure and interaction between mul-
tiple selected sites. Our model could therefore be extended to handle these more complex
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scenarios at the expense of (potentially significantly) greater computational effort and
data requirements.

For datasets consisting of a small number of time intervals, or which are sampled at low cov-
erage, allele frequency trajectories may be very noisy, making it difficult to reliably detect the
presence (or absence) of selection. In these cases, it could be useful to decrease the variance of
our estimates by including many more segregating sites into the model in hopes of “averaging
out” the noise. The quadratic time complexity of our method makes this difficult to achieve,
but alternatives could be explored. These could include approximating the covariance matrix
used in the model by something which is faster to compute, (for example, using the Matérn co-
variance function), or using an ensemble approach whereby a large number of small models
are fit simultaneously to the same putative selected site and at various linked neutral sites.

Methods
Our model (3) posits that the population-level allele frequency array X� (Xijk) 2 [0, 1]T×L×R is
conditionally a multidimensional Gaussian random variable. In order to specify such a model,
we therefore need to be able to compute the marginal first-order moments EXijk, along with
the marginal second-order moments E(Xijk, Xuvw), for all times ti, tu 2 {t1, . . ., tT}, loci j, v 2
{1, . . ., L}, and replicates k, w 2 {1, . . ., R}. (Since the replicates are assumed to be independent
and identically distributed, we suppress the dependence on index k for the remainder of this
section.)

Below we describe rigorously how to compute the needed moments. First let us give some
intuition. The first- and second-order moments described above involve either one or two loci.
It is intuitive, and correct in the case of neutrality, that these moments can be computed accu-
rately by studying simpler one- and two-locus Wright-Fisher models, for which computations
are significantly easier than when studying the behavior of all L loci in the model jointly. (In
the non-neutral case a slightly more delicate analysis is required, which we describe below.)
Thus we have reduced the difficult problem of determining the joint distribution of all the ran-
dom variables comprised by X, to a simpler problem involving the computation of moments in
relatively simple and well-understood Wright-Fisher models.

We now make this argument more precise. Recall that X consists of marginal allele counts
obtained from a population which is assumed to undergo Wright-Fisher random mating. Let
us define this process more rigorously. The L-locus, biallelic Wright-Fisher process is defined

to be the discrete-time Markov process Zt ¼ ðZð1Þ
t ; . . . ;Zð2LÞ

t Þ 2 D2L�1, for t = 1, 2, . . ., where

Dm�1 ¼ fðy1; . . . ; ymÞ 2 ½0; 1�m : y1 þ � � � þ ym ¼ 1; yi � 08 ig
denotes an (m − 1)-dimensional simplex. The 2L different entries of Zt correspond to distinct
haplotypes. For example, in a two-locus model with alleles A0 and A1 at each locus, Zt is a 4-
tuple with the entries corresponding to the population-wide fraction of A1 A1, A1 A0, A0 A1,
and A0 A0 haplotypes.

Corresponding to the process Zt is the L-dimensional marginal processXt ¼
ðXð1Þ

t ; . . . ;XðLÞ
t Þ 2 ½0; 1�L in which XðjÞ

t denotes the population frequency of the A1 allele at locus
j and time t. Thus, in the above two-locus example, if Zt = (0.1, 0.2, 0.3, 0.4) then Xt = (0.3, 0.4)
gives the population-wide marginal frequencies of the A1 alleles. It is this marginal process
which we observe in a pooled sequencing experiment.

Since each entry of Xt is a linear combination of the entries of Zt, it suffices to compute mo-

ments of the form EZð‘Þ
t and covðZð‘Þ

t ;ZðmÞ
u Þ for arbitrary times t, u and loci ℓ,m. As described
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above, we assume that either zero or one of the L loci considered in the model is under selec-
tion. We will carry out this computation separately for each of these two cases. Under the as-
sumption that all sites are neutral, we derive an analytic approximation to the mean and
covariance of the vector of Zt. The other case we consider is one in which one site is under se-
lection while the rest are neutral. The hitchhiking effect will disturb the mean and variance of
nearby linked sites away from what they would be under neutrality. In this case, a different ap-
proximation is necessary, which we describe in detail below.

Neutral case
As described above, in the case of neutrality it suffices to consider covariances between pairs of
sites in a two-locus haploid model. The one-generation transition function of the neutral two-
locus Wright-Fisher model with recombination fraction r is

f : D3 ! D3

Zt 7!Zt þ rCt�
ð8Þ

where �� (−1, 1, 1, −1) and Ct � Zð1Þ
t Zð4Þ

t � Zð2Þ
t Zð3Þ

t is the linkage disequilibrium at time t.
Thus, conditional on Zt we have that 2N × Zt+1 is multinomially distributed according to f(Zt):

2N Ztþ1 j Zt �Multinomial ð2N; f ðZtÞÞ: ð9Þ

(Note that the multinomial distribution which arises in this equation is due to the random
sampling of gametes to form generation t + 1, and is different from the binomial sampling
scheme described earlier (equation 2) which was resulted from sampling biallelic sites using
sequencer.)

Using equation (9), we can derive an accurate approximation to the evolution of the covari-
ance of the Zt process. In what follows we let π = (z(1), z(2), z(3), z(4)) and c0 = z(1) z(4) − z(2) z(3)

denote the initial distribution and linkage disequilibrium of the Wright-Fisher process
under consideration.

Lemma 1. To order Oðr þ 1
2N
Þ,

EpZ
ðiÞ
t ¼ zðiÞ þ �itrc0 1� t � 1

4N

� �

EpðrZðiÞ
t ZðjÞ

t Þ ¼ r
2N

zðiÞzðjÞð2N � tÞ þ tzðiÞ1fi ¼ jg� �
EpðrZðiÞ

t CtÞ ¼
r
2N

zðiÞc0 2N � 3tð Þ þ t
2

ð1� �iÞzð1Þzð4Þ � ð1þ �iÞzð2Þzð3Þ
� �h i

:

Corollary 2. To order Oðr þ 1
2N
Þ,

Ep ZðiÞ
t ZðjÞ

t

� 	
¼ zðiÞzðjÞ þ �i�jtrc0ð�izðiÞ þ �jz

ðjÞÞ þ t
2N

�zðiÞzðjÞ1fi6¼jg þ zðiÞð1� zðjÞÞ1fi¼jg

� 	
rt
2N



1

2
t þ 1� j�i � �jj
� 	

zð1Þzð4Þ þ zð2Þzð3Þ
� �� �i�jc0ð2t � 1Þð�izðiÞ þ �jz

ðjÞÞ�

1

8
j�i þ �jj c0ð�i þ �jÞðt þ 1Þ1fi 6¼jg þ 4t ð�i þ 1Þzð2Þzð3Þ þ ð1� �iÞzð1Þzð4Þ

� �h i�
:

Proofs of the above results are given in S1 Text. These results can be combined to give an

Oðr þ 1
2N
Þ approximation to the within-generation covariance covpðZðiÞ

t ;ZðjÞ
t Þ. Using the same

approach, we can also approximate the covariance between generations. Indeed, by Lemma 1
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and the Markov property,

Ep ZðiÞ
tþu j Zt

� 	
¼ EZt

ZðiÞ
u

� � ¼ ZðiÞ
t þ �iurCt 1� u� 1

4N

� �
:

Hence,

EpðZðiÞ
tþu;Z

ðjÞ
t Þ ¼ Ep ZðiÞ

t ZðjÞ
t þ �iurZ

ðjÞ
t Ct 1� u� 1

4N

� �� 


and each of the expectations on the right-hand side is given to order Oðr þ 1
2N
Þ by the

preceding results.
Remark. The constants subsumed in the Oðr2 þ 1

ð2NÞ2Þ terms in the above expressions in-

crease as t increases; in particular, we would not expect the approximation to be accurate if tr 2
O(1). For our application typically t	 1/r.

Non-neutral case
Computations in the non-neutral case are more involved because the transition operator f(Zt)
is a rational function of its arguments. This results in moments of Zt+1 depending on allmo-
ments of Zt. To illustrate the issues involved, consider first the simplest possible example of a
one-locus Wright-Fisher model with diploid selection and no mutation [39]. The relative fit-
nesses of A0/A0 and A1/A1 homozygote genotypes are given by 1 and 1 + s, respectively, where-
as the relative fitness of the A0/A1 heterozygote is 1 + hs. The frequency of the A1 allele at time t
is denoted Xt. Conditional on Xt, 2N×Xt+1 has a binomial distribution with 2N trials and suc-
cess parameter f(Xt), where

f ðxÞ ¼ x þ s½hþ ð1� 2hÞx�xð1� xÞ
1þ sx½2hþ ð1� 2hÞx� : ð10Þ

We cannot apply the method described in the preceding subsection due to the appearance
of x in the denominator of (10). Hence, a different form of approximation is required. First, we
formally decompose Xt as Xt ¼ �Xt þ dXt , where �Xt ¼ f ð�Xt�1Þ equals the deterministic trajec-
tory that would be followed by Xt in the infinite-population limit, and δXt is a random distur-
bance away from the deterministic path due to genetic drift. Next, we expand E(Xt) in a Taylor
series about this deterministic path:

EðXtÞ ¼ Eðf ðXt�1ÞÞ
¼ Eðf ð�Xt�1 þ dXt�1ÞÞ

� f ð�Xt�1Þ þ
df
dx

����
�Xt�1

� EðdXt�1Þ þ
1

2

d2f
dx2

����
�X t�1

� E½ðdXt�1Þ2�:

This yields a recursion for computing EðXtÞ in terms of moments of the disturbance term in
the preceding time period, E[(δXt−1)

u], u = 1, 2. Since also

EðXtÞ ¼ �Xt þ EðdXtÞ ¼ f ð�Xt�1Þ þ EðdXtÞ;
these terms themselves obey the recursion

EðdXtÞ �
df
dx

����
�Xt�1

� EðdXt�1Þ þ
1

2

d2f
dx2

����
�Xt�1

� E½ðdXt�1Þ2�
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which is a recursion for computing E(δXt) in terms of the moments of δXt−1. Inductively as-
suming that we can compute E[(δXt)

u] for u = 1, 2, this enables us to compute E(Xt) and var
(Xt) = var(δXt).

This approach was previously employed by Barton et al. [47] to obtain order O(1/N) ap-
proximations to these moments. Here we have used the same idea but automated the symbolic
algebra and code generation needed to generate the recursions to higher orders of accuracy.

Multi-locus case
The above idea can be extended to multiple loci in a straightforward manner. (As we describe
in the next subsection, we only require models of size up to L = 3 for our purposes, but we state

it in full generality here.) Recall Zt ¼ ðZð1Þ
t ; . . . ;Zð2LÞ

t Þ 2 D2L�1. Conditional on Zt, the vector
2N × Zt+1 is multinomially distributed with success probabilities f(Zt). The form of f:Δ2L−1 !
Δ2L−1 varies according to the underlying model; we describe our choice of f in the
following subsection.

As in the one-locus case, write ZðiÞ
t ¼ �Z ðiÞ

t þ dZðiÞ
t where �Z ðiÞ

t is the deterministic trajectory

which would be followed by ZðiÞ
t in the infinite-population limit, and dZðiÞ

t is a random distur-

bance. (Note that in general, EðdZðiÞ
t Þ 6¼ 0 for t> 1.) For u, v non-negative integers, we have

E ZðiÞ
t

� 	u

ZðjÞ
t

� 	vh i
¼ E ð�Z ðiÞ

t þ dZðiÞ
t Þuð�Z ðjÞ

t þ dZðjÞ
t Þv

h i
¼ E ð�Z ðiÞ

t þ dZðiÞ
t Þuð�Z ðjÞ

t þ dZðjÞ
t Þv � dZðiÞ

t

� 	u

dZðjÞ
t

� 	vh i
þ

E dZðiÞ
t

� 	u

dZðjÞ
t

� 	vh i
:

ð11Þ

From the conditional distribution 2N ZtjZt−1 * ℬ(2N f(Zt−1)), we have

ð2NÞuþv � E ZðiÞ
t

� 	u

ZðjÞ
t

� 	v

j Zt�1

h i
¼ gijðf ðZt�1ÞÞ ¼ gijðf ð�Zt�1 þ dZt�1ÞÞ

where gij(z
(1), . . ., z(2

L)) is a polynomial in z(1), . . ., z(2
L) which can be computed using the mo-

ment generating function of the multinomial distribution. By performing a Taylor expansion
of hij � gij 
 f about the deterministic path �Zt�1 and taking expectations, we get another formu-

la for E½ðZðiÞ
t ÞuðZðjÞ

t Þv� in terms of moments of δ Zt−1:

E ZðiÞ
t

� 	u

ZðjÞ
t

� 	vh i
� hijð�Zt�1Þþ

X
l

@hij

@zðlÞ

����
�Z t�1

EðdZðlÞ
t�1Þ þ

1

2

X
lm

@hij

@zðlÞ@zðmÞ

����
�Z t�1

EðdZðlÞ
t�1dZ

ðmÞ
t�1Þ: ð12Þ

For u + v� 2, comparing (11) and (12) yields a recursion for computing E dZðiÞ
t

� 	u

dZðjÞ
t

� 	vh i
in terms of moments of δ Zt of total degree strictly less than u + v, and moments δ Zt−1 of total
degree at most u + v. The latter feature is important for computation because it implies that we
only need to compute a bounded number of terms in each recursive step, which would not be
the case if we had instead expanded the function hij(�) about zero with respect to model param-
eters (for example, selection or mutation).

The recursive nature of the above algorithm lends itself to computing moments of the form

covðdZðiÞ
tþm; dZ

ðjÞ
t Þ. Stopping the recursionm time steps into the past, we obtain an expression of

the form EðdZðiÞ
tþm j dZtÞ ¼ pimðdZtÞ; where pim(z(1), . . ., z(2

L)) is a polynomial. Hence,

EðdZðiÞ
tþmdZ

ðjÞ
t Þ ¼ EðdZðjÞ

t pimðdZtÞÞ
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is again a recursion involving moments of δ Zt which can be solved using the techniques
described above.

Moment calculation with a linked selected site
When selection is acting on a nearby linked site, some additional care is needed in computing
the first- and second-order moments for neutral sites. For example, the hitchhiking effect will
cause these moments to be different from they would be in the absence of linked selection.
Consider a three-locus model with Xt = (Xt, 1, Xt, 2, Xt, 3), where Xt, j denotes the marginal allele
frequency at time t at locus j. Suppose the site corresponding to Xt,1 is under positive selection,
and the remaining sites are neutral and under positive LD with the selected site. Computing
EXt,2 using a one-locus neutral model as described above will produce an underestimate since
linkage with site 1 will cause site 2 to rise in frequency faster than what is expected under neu-
trality. A similar effect can be seen when computing E(Xt,2 Xt,3).

To capture this effect it is necessary to condition on the presence of a linked selected site
when performing the moment calculations discussed earlier for neutral sites. To carry this out
we utilize a three-locus model which describes the evolution of two neutral and one linked se-
lected site over time. This model was derived by Stephan et al. [48] using the general frame-
work of Kirkpatrick et al. [46]. In the notation of the preceding subsection, we let L = 3 and
obtain the transition function f using the system of recursions presented in equations (1)–(11)
of [48]. This system can then be expanded in terms of the random disturbance δ Zt to yield the
system of recursions (11) and (12). The differentiation steps needed to perform the expansion
involve a very large number of terms, and are too complex to perform by hand. Instead, we au-
tomated these computations using the symbolic algebra package Maple. Code to automatically
generate these recursions is included in the source code accompanying this paper.

Simulation
Our procedure for simulating an E&R experiment was the following. To generate realistic pat-
terns of standing variation, a set of F founder lines was sampled from the coalescent with re-
combination using the program ms [49]. (The exact ms command-line used for each
simulation was: ms<F> 1 -t<4μLNe> -r<4Ne(L − 1)r><L>, where the variables in angled
brackets are computed using the values described in the text.) Recombination and mutation
rates and the effective population size were set to biologically plausible values for D. melanoga-
ster, a common model organism used in E&R studies (r = 2 × 10−8/bp/gen, μ/2 = 10−9/bp/gen,
N = 106) [50]. Each founder line was cloned 2N/F times to generate an initial diploid popula-
tion of size N. This replication step is intended to mimic the practice using of (nearly-)homozy-
gous recombinant inbred founder lines to initialize an E&R experiment. Next, the
experimental population of size N was simulated forward in time using the discrete-time simu-
lator simuPOP [51]. Finally, alleles were sampled binomially and independently at each locus
and time point to simulate next-generation sequencing. Parameters for the forward simulation
and sampling were varied from scenario to scenario as described in the main text. The output
of the simulation consisted of the haplotypes of the initial founder lines and the frequency of
each segregating site (potentially after sampling) at each time point. All simulations were per-
formed on a machine with 2 × 2.5 GHz AMD Opteron 6380 processors (32 cores total) and
256 GB of memory.

Analysis of real data
In our model, we used an effective population size of 200, as previously estimated for the E&R
data we considered [25]. To prevent our estimates from becoming confounded by the action of

Multi-locus Analysis of E&R Time Series Data

PLOS Genetics | DOI:10.1371/journal.pgen.1005069 April 7, 2015 25 / 29



genetic drift, we restricted our analysis to only those sites which were segregating at intermedi-
ate frequencies throughout the experiment. Specifically, we only considered sites which were
segregating at frequencies in the interval [0.1, 0.9] for all generations and replicates. A total of
414, 049 sites remained after filtering.

First, we computed the one-locus likelihood-ratio statistic at each of the 414, 049 sites, com-
paring the fitted model to the null (neutral) model. Then, we partitioned the genome into non-
overlapping windows of a fixed size (we considered various window sizes, including 5 kb, 10
kb, 50 kb, 100 kb, 200 kb, 500 kb, and 1 Mb) and computed the average one-locus LR statistic
over the SNPs in each window. By visually inspecting plots of these quantities, we identified re-
gions of the genome which were enriched for SNPs that potentially behaved non-neutrally.

For each region identified, a multi-locus model was then estimated for each segregating site
within the region. Specifically, we fit a model in which each site in the region was posited to be
under selection, and the trajectories of linked neutral sites were affected due to hitchhiking. To
choose which linked neutral to include in the model, we identified SNPs which were segregat-
ing at multiples of approximately 250 kb from the midpoint of the region. For example, to ana-
lyze the region 6.6–6.7 Mb on chromosome 3L using a five-site model, we first fixed four SNPs
segregating at intermediate frequencies near positions 6.15 Mb, 6.4 Mb, 6.9 Mb and 7.15 Mb.
For each site between 6.6 Mb and 6.7 Mb, we then estimated the strength of selection s using
the five-locus model containing the selected site plus the four fixed neutral sites.

Supporting Information
S1 Text. Proofs of Lemma 1 and Corollary 2.
(PDF)

S1 Fig. Empirical coverage distribution. Empirical coverage Ĉ observed in a real E&R experi-
ment of Drosophila melanogaster [25, 36]. The distribution has high average coverage

ðEĈ ¼ 84:2Þ but with a heavy left-tail which results in low to no coverage for a small fraction
of the sites.
(PDF)

S2 Fig. Pooled coverage distribution. Coverage distribution for pooled sequencing experi-
ments. Sequencing was performed in generations 15, 37 and 59, for three replicates labeled 1, 4
and 5.
(PDF)

S3 Fig. Comparison of the one-locus and multi-locus models applied to a real E&R experi-
ment. Shown here are the likelihood-ratio statistics for a 800 kb region of D. melanogaster
chromosome arm 3L. Every multi-locus model yielded a distinctive peak (shown in red) near
18.205 Mb of chromosome arm 3L, while the one-locus model did not single out any particular
SNPs in the region.
(PDF)

S4 Fig. Empirical cumulative distributions of the LR statistic for each multi-locus model.
The 99th percentile for the 3-, 5-, and 7-locus models are 6.883, 7.330, and 8.257, respectively.
(PDF)

S5 Fig. Allele frequency trajectories of the thirteen top SNPs identified by our multi-locus
analysis. Each SNP has three trajectories corresponding to the three replicate experiments. The
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initial frequency at generation 0 was estimated from pooled sequencing data for the base popu-
lation. Note that all thirteen SNPs generally display an upward trend over the time course of
the experiment.
(PDF)

S1 Table. Results of localization procedure, intermediate MAF. This table displays the same
results as Table 1, except that here we only consider those simulations in which the selected site
was segregating at a frequency of at least 0.1 in the initial generation. Note that increasing F im-
proves the ability to localize the selected site for s 2 {0.02, 0.05}; for strong selection (s = 0.1),
essentially all cases of F performed equally well.
(PDF)

S1 Code. Source code implementing the method described in this paper.
(ZIP)
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