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Abstract

Background: The Venezuelan equine encephalitis (VEE) virus replicon system was used to produce virus-like replicon
particles (VRP) packaged with a number of different VEE-derived glycoprotein (GP) coats. The GP coat is believed to be
responsible for the cellular tropism noted for VRP and it is possible that different VEE GP coats may have different affinities
for cells. We examined VRP packaged in four different VEE GP coats for their ability to infect cells in vitro and to induce both
humoral and cellular immune responses in vivo.

Methodology/Principal Findings: The VRP preparations were characterized to determine both infectious units (IU) and
genome equivalents (GE) prior to in vivo analysis. VRP packaged with different VEE GP coats demonstrated widely varying
GE/IU ratios based on Vero cell infectivity. BALB/c mice were immunized with the different VRP based on equal GE titers and
the humoral and cellular responses to the expressed HIV gag gene measured. The magnitude of the immune responses
measured in mice revealed small but significant differences between different GP coats when immunization was based on
GE titers.

Conclusions/Significance: We suggest that care should be taken when alternative coat proteins are used to package
vector-based systems as the titers determined by cell culture infection may not represent accurate particle numbers and in
turn may not accurately represent actual in vivo dose.
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Introduction

Venezuelan equine encephalitis (VEE) virus is a member of the

Togaviridae family within the Alphavirus genus. Alphaviruses have

single-stranded, positive-sense, RNA genomes that are capped at

the 59 end and polyadenylated at the 39 end. The viral

nonstructural proteins are encoded for in the 59 two-thirds of

the genome and the structural proteins are encoded in the 39 one-

third of the genome. The nonstructural proteins are translated in

cells directly from the capped input RNA, whereas the structural

proteins are translated from a subgenomic RNA transcribed from

a 26S promoter present on the full-length, negative-stranded,

RNA replication intermediate (reviewed in [1]). A number of live

attenuated VEE virus variants have been described [2–7]. One of

these attenuated VEE viruses (V3014) was used to generate a

replicon system that has been used as a vaccine vector to express a

wide array of genes [8,9]. Such recombinant replicons are

generated by replacing the structural protein coding region with

genes of interest (GOI) generating what is essentially a self-

replicating mRNA. Because the replicon RNA does not contain

the structural genes for VEE, it is a single-cycle, propagation-

defective RNA and replicates only within the cell into which it is

introduced. The replicon RNA can be packaged into virus-like

replicon particles (VRP) by supplying the structural protein genes

of VEE in trans [8].

VEE virus and VRP derived from the VEE replicon system

have a demonstrated lymphotropism [1,10–12]. This character-

istic may, in part, explain the robust antigen-specific immune

responses, both humoral and cellular, detected in animals

immunized with VRP vaccines [8,13–26]. The cell tropism of

VEE virus (or VRP) is believed to be defined by the envelope

proteins that are embedded in the membrane that forms the outer

surface of the particles. Amino acid changes in the envelope

glycoproteins (GP) of VEE viruses have been shown to affect the

relative rate of virus penetration of cells in culture [2], relative

heparan sulfate or hydroxylapatite column binding [7,27], in-vivo

serum virus clearance rates and overall virus attenuation in animal

models [5,7,27–29]. In addition, single or multiple amino acid

changes in the GP coat have been shown to delay VEE virus

progression to, or spread beyond, the draining lymph node of

footpad-inoculated mice, while wild type VEE virus progresses on

into the serum and seeds multiple other organs [5,30]. It is

assumed that VRP packaged with mutant GP coats would

maintain the same surface properties and cell tropisms of the

parent VEE virus harboring the same GP mutation(s) [10].

Considering this, VRP packaged with mutant GP coats, which in
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the context of live VEE viruses demonstrate altered phenotypes,

tropisms and different trafficking to and from draining lymph

nodes, may be less immunogenic than VRP packaged with the

wild type (V3000) VEE GP coat.

Previous experience using VRP packaged with two different

VEE GP coats, V3000 (the wild type Trinidad donkey GP coat)

and V3014, has suggested that different GP coats can induce

different levels of immunogenicity in mice (Kamrud and Smith,

unpublished data) possibly due to lower dendritic cell tropism of

the V3014 GP coat [10]. We were interested in determining the

effects of different GP coats, derived from several live VEE viruses,

on the immunogenicity of single-cycle VRP in BALB/c mice.

Here we report the relative immunogenicity (both cellular and

humoral) in vivo of VRP packaged with GP coats from wild-type

and three attenuated variants of VEE virus in BALB/c mice and

additionally demonstrate that the GP coats impart variable in vitro

Vero cell infectivity relative to one another.

Results

Quantitative reverse transcription PCR (RTqPCR) analysis
of VRP genome copies

A replicon expressing the HIV gag gene was packaged with each

the following VEE GP coats: V3014 GP, V3000 GP, V3042 GP

and TC-83 GP. The GP genes were identified by the name of the

VEE infectious clones from which they were derived; V3000,

V3014, V3042 and TC-83. A list of the specific mutations found in

each of the glycoprotein coats is shown in Table 1. Infectious titers

were determined for each preparation of VRP on Vero cells and

are referred to as infectious units (IU). The number of replicon

genome equivalents (GE) was also determined for each VRP

preparation by quantitative reverse transcription PCR (RTqPCR )

using primers specific for the nsP2 gene region. Determination of

the number of GE in a VRP preparation is an estimate of the total

number of physical particles. A summary of the IU and GE titers is

shown in Table 2. VRP packaged with the V3000 and V3042 GP

coats demonstrated much higher GE/IU ratios than VRP

packaged with V3014 or TC-83 GP coats (Table 2). These data

suggest that a large number of particles packaged with the V3000

and V3042 GP coats are not detected in a normal infectivity assay

carried out in Vero cells.

Effect of NaCl concentration on Vero cell VRP infectivity
The V3014 and TC-83 GP coats contain heparan binding

mutations at E2-209 and E2-120, respectively [8,31]. To

determine whether the high GE/IU ratios for V3000 and

V3042 GP packaged VRP were due to different Vero cell binding

affinities, alternative buffers were used during the cell adsorption

step of the titration assay. Both the pH and NaCl concentration of

the titration buffers were altered from what is normally found in

the MEM medium (pH 7.4, 150 mM NaCl) used for sample

dilution. Reducing the concentration of NaCl also changed the

osmolality of the titration buffers so sucrose was added in place of

NaCl to maintain the osmolality normally found in growth

medium (,270 mOsm). Results of the titration assays are

summarized in Table 3. Reducing the NaCl concentration (from

150 mM to #3.25 mM) in the titration buffer resulted in a

dramatic increase in IU titer for both the V3000 and V3042 GP

packaged VRP. The majority of these particles therefore contain

Table 1. Structural protein coding region and location of glycoprotein mutations in different VEE viruses

VEE virus
infectious clone VEE glycoprotein (amino acid number)

Relative heparan
sulfate binding

E2 (120) E2 (209) E2 (239) E2 (323) E1 (81) E1 (272)

V3000 T E I G F A Weak

V3014 T K N G F T Strong

TC-83 R E N E F A Strong

V3042 T E I G I A Weak

doi:10.1371/journal.pone.0002709.t001

Table 2. Comparison of genome equivalents

VEE GP coat IU Titera GE Titerb GE/IU

V3014 4.906109 2.2261011 45

TC-83 3.0061010 6.9261011 23

V3000 3.906108 1.4061012 3590

V3042 5.306108 6.6061011 1245

aInfectious unit (IU) titer determined on Vero cells. IU/ml titer represented.
bGenome equivalent (GE) titer determined by quantitative reverse transcription

PCR. GE/ml titer represented.
doi:10.1371/journal.pone.0002709.t002

Table 3. Effect of pH and NaCl on Vero cell VRP titer

VEE GP coat Titration buffer (pH) IU/mlc GEd/IU

V3000 Media (7.4) 1.56108 9333

V3000 Phosphatea (7.0) 6.36109 222

Phosphate (7.4) 8.76109 160

V3000 Trisb (7.4) 4.26109 333

V3000 Tris (8.0) 4.06109 350

V3042 Media (7.4) 5.76107 11578

V3042 Phosphate (7.0) 2.16109 314

V3042 Phosphate (7.4) 1.86109 366

V3042 Tris (7.4) 2.26109 300

V3042 Tris (8.0) 1.26109 550

aPhosphate: 20 mM sodium phosphate buffer + 5.5% sucrose at designated pH
used to titrate VRP packaged with indicated VEE GP coat.

bTris: 20 mM trishydroxymethylaminomethane + 5.5% sucrose at designated pH
used to titrate VRP packaged with indicated VEE GP coat.

cInfectious unit (IU) titer determined on Vero cells.
dGenome equivalent (GE) titer determined by quantitative reverse transcription
PCR.

doi:10.1371/journal.pone.0002709.t003

Replicons and Coat Proteins
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fully functional replicon RNAs but are differentially infectious in

vitro. Little change was noted in apparent VRP titer between the

different pH levels tested, suggesting that the NaCl concentration

of the titration buffer was the most important variable responsible

for this effect. A result of this increase in VRP titers was that the

GE/IU ratios for V3000 and V3042 GP packaged VRP dropped

58 to 38 fold, respectively (Table 3). However, even with the more

sensitive infectivity assay the GE/IU ratios still remained 5 to 10

times higher than the ratios for V3014 and TC-83 GP packaged

VRP. The low NaCl concentration buffers did not increase the IU

titers of V3014 or TC-83 GP packaged VRP (data not shown).

Effect of GP coat on VRP immunogenicity
Because VRP IU titer determined on Vero cells detected only a

minority of the particles packaged with the V3000 or V3042 GP

coats, quantitative RT- PCR was used to determine the relative

GE titer for each preparation. In order to detect possible

differences in immunogenicity imparted to VRP packaged with

different VEE GP coats, a range of GE-based titers were used to

immunize mice (Table 4). All of the VRP used in experiments (in

vitro and in vivo) were purified using the same purification protocol.

Sixteen mice were immunized at three week intervals with each of

three different GE doses. Sera were collected one week after each

immunization. Eight mice per group were sacrificed for T-cell

analysis 7 days after the prime and the remaining animals were

sacrificed 7 days after the boost. The results of GAG-specific

ELISPOT and ELISA analysis are summarized in Figures 1, 2, 3.

There was a dose dependent, antigen-specific, ELISPOT response

detected 7 days after the priming immunization (Figure 1).

Animals immunized with the V3000 GP packaged VRP showed

higher numbers of spot forming cells (SFC) then animals

immunized with VRP packaged with any of the other GP coats

at the 4.56107 GE dose tested. A similar result was noted at the

4.56105 GE dose, with the exception of the V3042 GP packaged

VRP which were not significantly different from V3000 GP

packaged VRP (Figure 1). Differences were also noted at the

lowest dose tested (4.56103 GE), the V3042 GP packaged VRP

demonstrated significantly more SFCs than V3014 or TC-83 GP

packaged VRP (Figure 1). ELISA analysis of serum collected at

this time point revealed that titers above background could not be

detected (data not shown).

ELISPOT analysis of samples collected after the boost revealed

differences between GP coats at each GE dose, with V3042 GP

packaged VRP inducing the highest level of SFCs at each dose

tested (Figure 2). Only the ELISPOT responses detected in

animals immunized with VRP packaged with the V3042 GP coat

remained significant between different GE dosing groups

(Figure 2). ELISA analysis of post-boost samples revealed a dose

response effect between groups receiving different GE doses and

some small but significant differences between GP coats largely in

animals that received the highest VRP dose (Figure 3). The

difference between the V3042 and TC-83 ELISA responses were

mirrored at the 4.56107 GE and 4.56105 GE doses. The only

other set of responses that remained significantly different between

two different GE doses were V3014 and TC-83 in the 4.56107 GE

and 4.56103 GE groups.

Discussion

VRP have been shown to induce a broad array of immune

responses to the foreign gene product expressed by the replicon,

including cytotoxic T lymphocytes (CTL), lymphoproliferative

responses and neutralizing antibodies. Moreover, VRP have been

shown to confer protection in animal models against a variety of

diseases that require humoral and/or cellular effector mechanisms

for protection [13–22,32–35].

One of the reasons that VRP vaccines are so potent in their

ability to induce immune responses may relate to their ability to

target dendritic cells (DC), which are the most potent antigen-

presenting cells of the immune system. The lymphotropic nature of

VEE virus has been known for many years, but it has only recently

been appreciated that VEE virus specifically infects DC in the

draining lymph nodes of mice, and VRP target the same cells [10].

VRP also infect human DC in vitro [12]. Recent data have

demonstrated the specific usage of DC SIGN and L-SIGN as

attachment receptors for alphaviruses and may mechanistically

explain their DC-targeting phenotype. In addition to lymphoid

specificity, recent studies suggest that the immunogenicity of

alphavirus replicon vaccines may be also be influenced by the

activation of the innate immune system, via ribonuclease L or a

double-stranded-RNA-dependent protein kinase (PKR), that occurs

in cells infected with an alphavirus or alphavirus replicon [36–40].

Thus, the DC targeting and high protein expression that stimulate

the adaptive immune responses, along with signaling of the innate

immune system by dsRNA replicative intermediates, combine to

make the VEE replicon system an attractive vaccine vector.

Although VRP have demonstrated ability to induce robust

immune responses only VRP packaged in a few different VEE GP

coats have been tested in animals. VRP packaged with the V3014

GP have been examined the most [13–22,32–35]. Other studies

have included VRP packaged with V3000 GP: [10,41,42], V3010

GP: [10] and V3533 GP: [10]. Because the VRP doses used in

these studies did not take particle to infectious unit ratios into

consideration it is not possible to compare the immune responses

demonstrated between these studies. As such, a direct comparison

of the immunogenicity of VRP packaged with different VEE GP

coats has not been described previously.

Data presented here suggest that large differences in Vero cell

infectivity exist between VRP packaged with the V3000 GP and

V3042 GP coats compared to V3014 GP and TC-83 GP coats.

This is perhaps not unexpected for V3000 GP packaged particles

compared to V3014 GP and TC-83 GP packaged particles

because of the methods used to produce these respective

Table 4. VEE GP coat mouse immunogenicity study design

Group VEE GP coat GE dosea IU doseb # animals

1 V3014 4.56107 1.006106 16

2 V3000 4.56107 1.206104 16

3 TC-83 4.56107 1.906106 16

4 V3042 4.56107 3.606104 16

5 V3014 4.56105 1.006104 16

6 V3000 4.56105 1.206102 16

7 TC-83 4.56105 1.906104 16

8 V3042 4.56105 3.606102 16

9 V3014 4.56103 1.006102 16

10 V3000 4.56103 1.2 16

11 TC-83 4.56103 1.906102 16

12 V3042 4.56103 3.6 16

aGenome equivalent (GE) titer determined by quantitative reverse transcription
PCR.

bInfectious unit (IU) titer determined on Vero cells.
doi:10.1371/journal.pone.0002709.t004
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attenuated viruses. The V3014 GP mutations were identified in an

attenuated VEE virus with rapid binding and penetration

characteristics on BHK cells [2,43] and the TC-83 GP mutations

were identified in an attenuated VEE virus after multiple cell

culture passages [31,44]. Both GP coats have key attenuating

mutations that map to the E2 coding region and confer a strong

heparan sulfate-binding phenotype [7]. The heparan sulfate-

binding capacity of the V3014 GP and TC-83 GP may explain

why VRP packaged with these coats demonstrate a low GE/IU

ratio based on Vero cell infectivity. It is well accepted that tissue

culture adaptation of VEE virus leads to selection of heparan

sulfate binding mutations in the GP coat [7], but attenuating

mutations in the GP coat of VEE viruses unrelated to heparan

sulfate binding have been identified [5,28]. An example of this is

the V3042 virus. The GP coat of V3042 virus has a PheRIle

amino acid change at position 81 of the E1 protein [6,28] and this

GP coat does not impart a strong heparan sulfate binding

phenotype. The lower heparan sulfate binding capacity of VRP

packaged with the V3042 GP coat (and V3000 GP coat) likely

contributes to a GE/IU ratio, determined on Vero cells, that is 5–

10 times that of V3014 GP and TC-83 GP coat packaged VRP.

The weak heparan sulfate interaction is supported by the apparent

increase in IU titer (and resultant reduction in GE/IU ratio) noted

when VRP titration was carried out in low NaCl concentration

buffers. It is possible that the lower ion concentration in the

titration buffers may have allowed weak heparan sulfate charge

associations with these GP coats that would normally not be strong

enough to facilitate cell binding and VRP entry.

We have previously explored the use of the V3000 GP coat to

package VRP and attempted to determine whether this coat could

impart higher immunogenicity to particles when compared to that

of the V3014 GP coat. Those preliminary results suggested that

V3000 GP packaged VRP induced more robust immune

responses in mice than did V3014 GP packaged VRP, but

differences in the methods used to purify the two VRP made

interpretation of the results difficult (Kamrud and Smith

unpublished results). To eliminate differences in VRP purification,

that may affect immunogenicity, a uniform production process was

used for all VRP used in this study. In addition, particle to

infectious unit ratios, as estimated by measuring GEs, were

measured by RTqPCR to control for differences in particle

number that may not be evident when VRP titer determined on

Vero cells was the sole method used to assess potency.

The greater than 100-fold difference in GE/IU ratios between

V3000 GP and V3014 GP packaged VRP may, in part, explain

the preliminary results alluded to above. To assist in our analysis,

only immune responses shown to be statistically different between

GP coats that occurred in at least two of the tested GE dosing

groups were considered. With this limitation, the majority of

differences that were found between GP coats were seen only at

the T-cell level by cIFN ELISPOT. Interestingly, VRP packaged

with the V3000 GP coat induced the highest ELISPOT results

Figure 1. GAG-specific ELISPOT analysis post prime. Splenocytes were isolated from individual animals and GAG specific gamma interferon
ELISPOT assays were performed to determine the number of antigen-specific cytokine-secreting T cells. Error bars represent 1 standard error.
doi:10.1371/journal.pone.0002709.g001

Replicons and Coat Proteins

PLoS ONE | www.plosone.org 4 July 2008 | Volume 3 | Issue 7 | e2709



after the prime while VRP packaged with the V3042 GP coat

induced the highest ELISPOT results after the boost. It is unclear

at this time why this was the case. The ELISPOT data suggest that

induction of T-cell responses may be more sensitive to differences

in VEE GP coat than induction of B-cell responses based on

ELISA. Clearly, VRP induction of T-cell responses occurred

rapidly as GAG-specific cIFN secreting cells could be detected 7

days after the prime while a GAG-specific ELISA response could

not. It is possible that the nature of the GAG antigen is the basis

for the low post prime humoral immune response noted; VRP

packaged with the different GP coats that express an alternative

antigen should be tested in the same manner to explore this

further. Post-boost, the GAG-specific ELISA analysis showed a

dose response effect independent of the GP coat used to package

the VRP. Both the V3014 and V3042 GP VRP demonstrated

significantly higher ELISA responses when compared to TC-83

GP VRP at two different GE dose levels. These data suggest that

VRP packaged with V3014 or V3042 GP coats may be better at

inducing humoral immune responses than TC-83 GP packaged

particles but they are no different than V3000 GP coated particles.

Similar studies have been conducted using either VEE or Sindbis

(SIN) replicon vectors packaged in homologous or heterologous

GP coats, respectively [41]. The results from that study indicated

that the highest humoral and cellular immune responses detected

in immunized animals correlated with the VEE non-structural

genes used in the animals, not with the VEE or SIN GP coats used

to package the VRP [41]. Our data suggest that some of the VEE

GP coats examined here impart large differences in Vero cell

infection capacity which results in a significant under estimation of

the actual particles present in those VRP preparations. When

animals are immunized with VRP packaged with different GP

coats based on genome equivalents rather than Vero cell infectious

units those differences are not mirrored in BALB/c mice based on

the immune responses detected. That is, those particles not

detected by Vero cell-based infection assay (IU) appear to be

functional in vivo in BALB/c mice. Finally, these data suggest that

caution should be taken when examining alternative GP coats

used to package vector-based vaccines (such as adenovirus, adeno-

associated virus, vesicular stomatitis virus and alphavirus-based

vectors) as differences in apparent immunogenicity imparted by

the GP coat may be an artifact of the method/cell type used to

determine IU titer and immunization dose.

Materials and Methods

Cells and media
VRP production and titration were conducted using a certified

Vero cell line derived from a master cell bank prepared from cells

obtained from the World Health Organization. Vero cells were

grown in Minimum Essential Medium (MEM: Invitrogen,

Figure 2. GAG-specific ELISPOT analysis post boost. Splenocytes were isolated from individual animals and GAG specific gamma interferon
ELISPOT assays were performed to determine the number of antigen-specific cytokine-secreting T cells. Error bars represent 1 standard error.
doi:10.1371/journal.pone.0002709.g002
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Carlsbad, CA) medium containing 5% fetal bovine serum (FBS,

HyClone, Logan, UT), for expansion before electroporation. After

electroporation Vero cells were seeded into OptiPro (Invitrogen)

serum-free medium with 2 mM glutamine.

Construction of GAG replicon and GP helpers
The Du422 gag gene has been described previously [24]. The gag

gene was cloned into an optimized replicon vector containing an

Encephalomyocarditis virus (EMCV) IRES element and spacer

sequence as described previously [9]. Site directed mutagenesis was

carried out using a QuikChangeH Site-Directed mutagenesis kit

(Stratagene, La Jolla, CA) to introduce a GRA change at nucleotide

position 3 (nt3A) at the 59 end of the replicon RNA. The nucleotide

3 GRA mutation is a known VEE virus attenuating mutation [31]

and was incorporated into the replicon to add an additional

measure of safety to VRP generated with the V3000 GP coat. The

nt3A, IRES-optimized, GAG replicon RNA was packaged with

each of the different VEE GP coats analyzed in this study.

Helpers coding for the GP genes defined by the sequence of the

VEE infectious clones V3000, V3014, V3042 and TC-83 were

constructed. Construction of the V3014 GP helper, pHGP3014,

has been described previously [8]. The V3000 GP gene was

derived from the infectious clone of the wild type virulent Trinidad

donkey strain of VEE [43]. The V3000 GP was cloned as a SpeI

and SphI gene fragment into the V3014 GP helper plasmid

digested with the same enzymes replacing the V3014 GP gene to

generate the V3000 GP helper, pHGP3000. The TC-83 GP gene

was digested from the full length infectious clone of VEE TC-83

virus [31] and cloned into a helper plasmid as described above to

generate the TC-83 GP helper, pHGPTC-83. The V3042 GP

helper was generated by introducing the E1-81 (PheRIle)

mutation [28] into the pHGP3000 GP helper using site directed

mutagenesis (Stratagene) as described above. The V3042 GP

helper, pHGP3042, was sequenced to ensure that no errors were

introduced during the mutagenesis reaction.

RNA transcription, electroporation, VRP production and
VRP titration

VRP were produced by co-electroporating Vero cells with

replicon RNA combined with capsid and GP helper RNAs

(sometimes referred to as the split helper system). The methods

used to in vitro transcribe replicon, capsid and GP RNA and

Figure 3. GAG-specific ELISA analysis post boost. Sera was collected from individual animals 1 week after the booster vaccination and GAG-
specific ELISA analysis was performed. Error bars represent 1 standard error.
doi:10.1371/journal.pone.0002709.g003
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electroporate the RNAs into Vero cells have been described

previously [9]. The infectious titer of VRP was determined by

immunofluorescence assay (IFA) using goat anti-VEE nsP2 specific

polyclonal antiserum as the primary antibody and donkey anti-

goat Alexa Fluor 488 (Invitrogen) as the secondary antibody on

methanol fixed Vero cells using a Nikon Eclipse TE300

fluorescence microscope. VRP were serially diluted in MEM

(5% FBS), dilutions were inoculated onto Vero cells and analyzed

18 hr post infection as described above by IFA to determine an

initial IU/ml titer. For VRP titers determined in low NaCl

titration buffers, each VRP preparation was diluted to within two

orders of magnitude of the original IU/ml titer determined in

MEM (5% FBS). The VRP were then diluted 1:10 in one of the

low NaCl titration buffers (20 mM sodium phosphate + 5.5 %

sucrose, pH 7.0 and pH 7.4 or 20 mM Tris + 5.5 % sucrose,

pH 7.4 and pH 8.0) followed by serial 2 fold dilutions in the

respective low NaCl titration buffers. The VRP dilutions were

inoculated onto Vero cells and analyzed as described above by

IFA to determine IU/ml titer. The VRP were tested for the

presence of contaminating replication competent VEE (RCV)

using two blind passages on Vero cells as described previously [9].

VRP purification
VRP were collected 18 hr post-electroporation, by removing the

media and washing the cells with 0.4 M NaCl (salt wash). Some of

the GP coats produced VRP that bound to Vero cells with less

affinity than V3014 GP VRP, thereby resulting in a significant

proportion of VRP in the media. In order to collect all of the VRP

generated with each GP coat and to maintain a uniform

purification method for all VRP the salt wash was combined with

the media from electroporated cells and the pool concentrated 10

fold on a tangential flow filtration (TFF) system with 100,000

molecular weight cutoff Hydrosart membrane (Sartorius, Edge-

wood, NY). A 5 M NaCl /10 mM sodium phosphate pH 7.3

solution was added to the TFF retentate to produce a solution with

a final sodium chloride concentration of 2 M. The solution was

recirculated 5 minutes with the permeate closed and then the

solution was concentrated to one half the original volume. The

solution was diafiltered against 3 volumes of cold phosphate

buffered saline containing 3 mM magnesium chloride. The

permeate of the system was closed, 25,000 U of Benzonase (EM

Science, NJ) was added and the system was allowed to recirculate

for 5 min. The pump was stopped for 60 min and then restarted.

A 5 M sodium chloride /10 mM sodium phosphate pH 7.3

solution was added to the TFF retentate to produce a solution with

a final sodium chloride concentration of 2 M. The solution was

recirculated 5 minutes with the permeate closed and then the

solution was concentrated to one half the original volume. The

solution was diafiltered against 3 volumes of cold 0.5 M sodium

chloride/10 mM sodium phosphate pH 7.3. The TFF retentate

was drained from the system, passed through a 0.2 m filter and

diluted 1:10 into 10 mM Tris buffer, pH 8.0. The diluted solution

was loaded to a 3.5 mL Cellufine sulfate (Chisso, Japan) column at

200 cm/hr. The column was washed with 10 mM Tris, pH 8

followed by 10 mM sodium phosphate, pH 7.3. VRP were eluted

with a step gradient to 1 M sodium chloride/10 mM phosphate,

pH 7.3. Fractions were pooled based upon the A280 absorbance

elution profile and the VRP titer in the pooled fractions was

determined by IFA as described above.

Quantitative reverse transcription PCR (RTqPCR) analysis
of VRP

To determine the number of genome equivalents present in

each different GP coated VRP, a standard one-step RT-qPCR

protocol was performed on an Applied Biosystems 7500 Fast Real

Time PCR System sequence detection system. Amplification was

detected by means of a fluorogenic probe designed to anneal to a

region of the nsP2 gene on the replicon between the two primers.

A 59 reporter dye (6-FAM) and a 39 quencher dye (BHQ-1) were

attached to the probe. Proximity of the reporter and quencher

dyes resulted in the suppression of reporter fluorescence prior to

amplification. Upon successful amplification of the target region,

the 59 exonuclease activity of DNA polymerase released the

reporter dye from the hybridized probe, resulting in a fluorescent

signal. Purified VEE replicon RNA was used to generate a

standard curve in the assay, and the fluorescent signal of each

VRP sample was measured over forty PCR cycles and compared

to the fluorescent signal of the standards to determine genome

equivalents.

Vaccination of mice and sample collection
Female, 6–8 week old, BALB/c, mice (Charles River Labora-

tory, Kingston, NY) were immunized with VRP produced with the

different GP coats based on genome equivalent (GE) titers. A

summary of the GE titers, the respective Vero cell infectious titer

and the number of animals immunized in each group for each

dose are shown in Table 4. Mice were immunized at 0 and 3

weeks by subcutaneous (SC) injection into the rear footpad. GAG-

specific antibody and T cell responses were monitored 1 week after

each immunization. Blood was collected by retro-orbital bleeds for

all groups. Eight (8) mice from each group were sacrificed 1 week

after each immunization and splenocytes collected from individual

animals for T-cell analysis.

ELISA and ELISPOT analysis
For ELISA analysis, dilutions of sera from GAG-VRP

vaccinated mice were made into PBS containing 1% BSA and

0.05% Tween-20 beginning with 1:40 followed by two fold

dilutions out to 1:2560. Pre-bleed samples were diluted to only

1:40. ELISA plates (Nunc, Rochester, NY), which had been coated

with HIV GAG antigen (0.25 mg/well) in carbonate/bicarbonate

buffer (Sigma-Aldrich, St. Louis, MO) overnight at 4uC, were

incubated with 200 ml/well of blocking buffer (PBS, 3% BSA) at

30uC for 1 hour. Blocked plates were washed three times with 200

ml of PBS. Fifty ml of diluted sera was added to the plates in

duplicate and incubated at 30uC for one hour. Plates were washed

three times with 200 ml PBS. 100 ml of alkaline phosphatase-

conjugated anti-mouse polyvalent immunoglobulin’s (IgG, IgA,

IgM) (Sigma) diluted in blocking buffer (1:500) was added to each

well. Plates with secondary antibody were incubated for 1 hour at

room temperature and then washed three times with 200 ml PBS.

Plates were developed using FastTM p-Nitrophenyl phosphate

tablet sets (Sigma) and reading at a wavelength of 405. An OD405

of 0.2 or greater was considered positive.

Splenocytes were isolated from individual animals and GAG

specific gamma interferon ELISPOT assays were performed to

determine the number of antigen-specific cytokine-secreting T

cells. This procedure has been described previously [45].
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