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Abstract: Sepsis is an exaggerated immune response upon infection with lipopolysaccharide (LPS)
as the main causative agent. LPS-induced activation and apoptosis of endothelial cells (EC) can
lead to organ dysfunction and finally organ failure. We previously demonstrated that the first
twenty amino acids of the Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1) are sufficient
to inhibit EC apoptosis. To identify genes whose regulation by LPS is affected by this N-terminal
APEX1 peptide, EC were transduced with an expression vector for the APEX1 peptide or an empty
control vector and treated with LPS. Following RNA deep sequencing, genes upregulated in LPS-
treated EC expressing the APEX1 peptide were identified bioinformatically. Selected candidates were
validated by semi-quantitative real time PCR, a promising one was Selenoprotein T (SELENOT).
For functional analyses, an expression vector for SELENOT was generated. To study the effect
of SELENOT expression on LPS-induced EC activation and apoptosis, the SELENOT vector was
transfected in EC. Immunostaining showed that SELENOT was expressed and localized in the ER.
EC transfected with the SELENOT plasmid showed no activation and reduced apoptosis induced by
LPS. SELENOT as well as APEX1(1-20) can protect EC against activation and apoptosis and could
provide new therapeutic approaches in the treatment of sepsis.

Keywords: APEX1(1-20); Selenoprotein T; lipopolysaccharide; endothelial cell activation; apoptosis

1. Introduction

Sepsis can best be described as an overwhelming inflammatory condition, in which
the body responds to an infection in a hyperactive, dysregulated way, which in turn results
in life-threatening organ dysfunction and eventually septic shock. According to an estimate
of the World Health Organization (WHO), sepsis affects more than 48 million people every
year, potentially leading to 11 million deaths [1]. The basis for the pathophysiological
responses in the context of sepsis is multifactorial. Therefore, except for the introduction of
vasopressor agents 40 years ago, no new therapeutic principle for the treatment of sepsis
has been developed until today.

Lipopolysaccharide (LPS) is an outer membrane component of Gram-negative bacteria.
Most bacterial LPS molecules are thermostable and generate a pro-inflammatory stimulus
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for the immune system in humans. LPS is a serologically reactive bacterial toxin, and 1 to
2 mg in the bloodstream can be lethal. LPS can enter the bloodstream through intestinal
absorption of the LPS produced by gut bacteria. Moreover, gut lesions and diet rich in
lipids boost the transport across membranes into the systemic circulation [2]. Therefore, at
the cellular level, endothelial cells (EC) are directly affected by LPS, which triggers their
activation and ultimately apoptosis, leading to vascular leakage. Thus, it is undisputable
that the loss of endothelial cell integrity is a mainstay of septic shock [3]. Hence, therapies
that could prevent endothelial cell leakage or even restore endothelial cell integrity would
be of tremendous value for patients and would address medical needs. EC with LPS
affect the endothelial transcriptome by regulating the levels of numerous transcripts, not
only of protein coding RNAs, but also of non-coding RNAs such as microRNAs and long
non-coding RNAs [4,5]. Having pointed this out, it is a mystery to us that we failed to find
any RNA deep sequencing data on LPS-induced transcriptome changes in the endothelium
in the established databases such as the Gene expression omnibus (GEO), the European
nucleotide archive (ENA), Short Sequence Archive (SRA) or ArrayExpress. However,
such an in-depth transcriptome profiling combined with pathway analyses could provide
novel targets for the development of new therapeutic principles for the treatment of sepsis,
especially for protecting the endothelium. Therefore, one aim of this study was to perform
a deep sequencing analysis in LPS-treated primary EC.

Moreover, we have recently shown that the first 20 amino acids of the Apurinic/Apyrimidinic
Endodeoxyribonuclease 1 (APEX1) are sufficient to inhibit H2O2-induced apoptosis [6]. As the
underlying molecular mechanisms initiating apoptosis are independent of the trigger, we hypoth-
esized that this N-terminal APEX1 peptide, APEX1(1-20), could also interfere with LPS-induced
apoptosis. Therefore, we included cells expressing the APEX1(1-20) in our deep sequencing
analysis to find potential therapeutic targets for sepsis, possibly regulated by this peptide.

2. Materials and Methods
2.1. Cultivation of Primary Human Endothelial Cells and HEK293

Primary human endothelial cells (EC) were obtained from LONZA (Cologne, Ger-
many) and cultured as previously described [7]. In detail, EC were cultured in endothelial
basal medium supplemented with 1 µg/mL hydrocortisone, 12 µg/mL bovine brain ex-
tract, 50 µg/mL gentamicin, 50 ng/mL amphotericin B, 10 ng/mL epidermal growth factor
(LONZA, Cologne, Germany) and 10% fetal bovine serum until the third passage. After de-
tachment with trypsin, cells were grown for at least 20 h. All experiments were performed
with EC in passage 3. HEK293 were cultured in DMEM GlutaMAX™ supplemented with
10% heat-inactivated fetal bovine serum and 1% penicillin/streptomycin and then used for
the production of lentiviruses.

2.2. Lentiviral Production and Transduction of EC

Generation of VSV-G pseudotyped lentiviral particles and transduction of EC were per-
formed as previously described [8]. Lentiviral titers were determined with the QuickTiterTM

Lentivirus Titer kit (Lentivirus-Associated HIV p24) (Biocat, Heidelberg, Germany). EC
were transduced with a multiplicity of infection of approximately 20. The day after trans-
duction the cells were washed three times, the medium replaced, and cells cultivated for
another day before they were treated with 150 ng/mL LPS for 18 h.

2.3. Isolation of Total Cellular RNA

Cells were lysed using TRIzol® (Thermo Fisher Scientific, Dreieich, Germany) and
RNA was isolated according to the manufacturer’s instructions. RNAs were subjected to a
second purification step using the RNeasy® Mini kit (Qiagen, Hilden, Germany). RNA con-
centrations were measured using a NanoDrop™ 2000c (Thermo Fisher Scientific, Dreieich,
Germany), and RNA integrity and purity were determined by agarose gel electrophoresis.
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2.4. RNA Sequencing and Bioinformatic Analysis

RNA sequencing data were obtained from quadruplicate total RNA samples. Total
RNAs used for transcriptome analyses were quantified using the QubitTM RNA HS Assay
kit (Thermo Fisher Scientific, Dreieich, Germany) and quality was determined by capillary
electrophoresis using the FragmentAnalyzer and the Total RNA Standard Sensitivity Assay
(Agilent Technologies, Santa Clara, CA, USA). All samples in this study showed highest
RNA Quality Numbers (RQN 10.0). Library construction and sequencing were performed
at the Genomics and Transcriptomics Laboratory at the Biological Medical Research Centre
(BMFZ) of the Heinrich-Heine University Düsseldorf. Library preparation was performed
according to the manufacturer’s protocol using the TruSeq Stranded mRNA Assay kit
(Illumina, San Diego, CA, USA). Briefly, 500 ng total RNA was used for mRNA capturing,
fragmentation, synthesis of cDNA, adapter ligation and library amplification. Bead purified
libraries were normalized and finally sequenced on the HiSeq 3000 system (Illumina San
Diego, CA, USA) with a read setup of 1 × 150 bp. The bcl2fastq2 (version 2.17.1.4) tool was
used to convert the bcl files to fastq files as well for adapter trimming and demultiplexing.
GC-content, base-calling quality, adapter content and read length were measured using
the tool FASTQC by Andrews (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/ accessed on 17 August 2021) and MultiQC [9]. Reads were then trimmed or
discarded based on their base calling quality and adapter content with Trimmomatic
version 0.36 [10]. Subsequently, with the help of the SortMeRNA algorithm version 2.1b [11],
the extent of rRNA depletion was measured by mapping the reads to rRNA databases. For
alignment and the following analyses, the human genomic reference sequence (GRCh38)
and annotation data (release 101) were downloaded from Ensembl [12] and BioMart [13].
For splice site usage analysis, the reads were then aligned to the human reference genome
using the two-pass mapping protocol of the STAR aligner (2.5.4b) [14]. With help of the
SAMtools software package [15], uniquely mapped reads were selected for creation of a
gap table, listing the coordinates of every gap found in the alignment of the reads and
the number of overlapping reads. For DGE analysis with the R package DESeq2 version
1.18.1 [16], count matrices were generated using the software salmon version 0.9.1 [17].
Significantly enriched gene sets were calculated, using the R package GOseq [18]. Scripts
used for this work are publicly available at https://github.com/caggtaagtat/SELENOT
(accessed on 17 August 2021). FASTQ file preparation and alignment were accomplished
using custom BASH shell scripts in the environment of the High Performing Cluster of the
Heinrich-Heine University Düsseldorf.

2.5. cDNA Synthesis

Total cellular RNA was reverse transcribed using the QuantiTect Reverse Transcription
kit (Qiagen, Hilden Germany) according to the manufacturer’s instructions.

2.6. Polymerase Chain Reaction (PCR)

Endpoint PCRs were performed with MyTaq™ HS DNA Polymerase (Biocat, Heidel-
berg, Germany) according to manufacturer’s recommendations in a Bio-Rad T100 Thermal
Cycler (Bio-Rad, Feldkirchen Germany). Reaction products were resolved on standard
agarose gels.

Relative transcript levels were determined by semi-quantitative real-time PCR using
cDNA as a template and the primaQUANT 2x qPCR-SYBR-Green-MasterMix (Steinbrenner,
Wiesenbach, Germany), the transcript for the ribosomal protein L32 (RPL32), served as
a reference. The PCR reactions were performed in a Rotor-Gene Q instrument (Qiagen,
Hilden, Germany). Relative expression was calculated by the ∆Ct method [19].

The sequences of all primer used for PCR are listed in Supplementary Table S1.

2.7. Plasmids

A lentiviral expression vector for the first twenty amino acids of APEX1 was con-
structed by transferring the coding sequence for APEX1(1-20) with a C-terminal myc-tag

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/caggtaagtat/SELENOT
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from the previously published expression vector [6] into a lentiviral transfer vector, in
which the transgene is expressed under the transcriptional control of the cytomegalovirus
immediate early promoter/enhancer [8]. To generate an expression vector for human
SELENOT with an N-terminal FLAG-tag, the SELENOT coding sequence together with
the first 179 bp of the 3′-untranslated region of the human SELENOT gene containing
the selenocysteine insertion sequence were amplified from a human EC cDNA using Q5®

High-Fidelity DNA Polymerase (New England Biolabs, Frankfurt, Germany). This frag-
ment was inserted into pFLAG-CMV-2 (Sigma-Aldrich, Deisenhofen, Germany) opened
with Not I and Xba I using the Gibson Assembly® Cloning kit (New England Biolabs,
Frankfurt, Germany) according to the manufacturer’s protocol. The construct was verified
by DNA sequencing. Cloning details and the complete plasmid sequence are available
upon request.

2.8. Transient Transfection of EC

Transient transfections of EC with plasmid DNA were performed using Superfect
(Qiagen, Hilden, Germany) as previously described [20,21]. In detail, EC were transfected
on 6 cm culture dishes with 3 µg plasmid DNA and 22.5 µL Superfect, or in 6-well plates
with 1.2 µg plasmid DNA and 12 µL Superfect per well.

2.9. Immunostaining of EC

EC were fixed and permeabilized as described previously [7]. Afterwards, cells were
incubated with an anti-FLAG-tag antibody (1:100, DYKDDDDK Tag Antibody (clone
8H8L17), Abfinity™, Cat. No. 701629, Invitrogen, Darmstadt, Germany). As secondary
antibody, a goat anti-rabbit highly cross-adsorbed antibody coupled to Alexa Fluor 594
(1:500, Cat. No. A-11012, Invitrogen, Darmstadt, Germany) was used. For ICAM1 staining,
an Alexa Fluor 488-coupled primary antibody (1:50, ICAM1/CD54 (15.2), Cat. No. SC-107
AF488, Santa Cruz Biotechnology, Heidelberg, Germany) was used. The endoplasmic
reticulum (ER) was stained with an anti-Calnexin (clone C5C9) Alexa Fluor 488-conjugate
(1:25, Cat. No. 38552, Cell Signaling, Technology, Frankfurt, Germany). Nuclei were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (100 ng/mL, Sigma-Aldrich,
Deisenhofen, Germany). Images were taken using Zeiss microscopes (Axio Observer D1 or
Axio Imager M2, magnification 400-fold, oil).

2.10. Immunoblotting

Cells were detached from the culture surface with a rubber policeman, centrifuged
at 800× g, resuspended in radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-
HCl pH 8.0, 150 mM NaCl, 1% (v/v) IGEPAL®-CA630, 0.1% (w/v) SDS and 0.5% (w/v)
Na-Deoxycholate) supplemented with 1/100 volume of a protease inhibitor cocktail (Bi-
make, Munich, Germany) and lysed for 30 min on ice. The lysates were centrifuged at
18,000× g and 4 ◦C for 15 min and the supernatant was transferred to a fresh tube. Lysate
proteins were separated by sodium-dodecyl-sulfate polyacrylamide gel electrophoresis
according to standard procedures and transferred onto polyvinylidene difluoride mem-
branes. After blocking with 5% milk powder in TBS (200 mM Tris-HCl pH 8.0, 300 mM
NaCl, 100 mM KCl) with 0.1% (v/v) Tween-20 for 1 h at room temperature, membranes
were incubated with an antibody directed against Caspase 3 (1:300 for detection of cleaved
Caspase 3, 1:500 for uncleaved Caspase 3, Cat. No. 9662, Cell Signaling Technology, Frank-
furt, Germany) and an anti α-Tubulin antibody (clone (DM1A), 1:50,000, Cat. No. T9026,
Sigma-Aldrich, Deisenhofen, Germany). Antibodies were incubated overnight at 4 ◦C.
The following day, membranes were incubated with secondary antibodies coupled to
horseradish peroxidase (ECLTM Anti-Rabbit or Anti-Mouse IgG, Horseradish Peroxidase
linked whole antibody (from sheep), 1:5000; Cat. Nos. NA934V and NA931V, GE healthcare,
Solingen, Germany). Detection was performed using ECL substrate (GE healthcare, Solin-
gen, Germany) and X-ray films. Semi-quantitative analyses were performed on scanned
X-ray films using Fiji [22].
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2.11. Statistics

The number of experiments (n) given in the figure legends represents independent
biological replicates, the data shown are mean ± SEM. Normal distribution for all data sets
was confirmed by a Shapiro–Wilk test; homogeneity of variances (from means) between
groups was verified by Levene’s test. Multiple comparisons were performed using one-way
ANOVA with post-hoc Tukey LSD test.

3. Results
3.1. APEX1(1-20) Induces Specific Transcriptome Changes in EC in Response to LPS

To identify APEX1(1-20)-mediated transcriptome differences in the response of EC
to LPS we performed RNA deep sequencing. For this purpose, primary human EC were
transduced with either a lentiviral vector leading to moderate expression of APEX1(1-20)
or an empty vector, respectively. Cells were then treated with 150 ng/mL active LPS
or detoxified LPS as control. RNA from these cells was used for RNA deep sequencing
and analyzed for differential gene expression (DGE). To identify APEX1(1-20)-specific
transcriptome changes in response to LPS, we analyzed which genes were specifically
regulated by LPS in the APEX1(1-20) expressing cells, but not in the cells transduced with
the empty vector.

PCA analysis revealed that all samples from the cells treated with detoxified LPS
cluster together, no matter whether the cells expressed APEX1(1-20) or not. The same held
true for the LPS-treated cells (Supplementary Figure S1), showing a clear effect of LPS on
the cellular transcriptome.

DGE analysis revealed that the APEX1(1-20) transcript derived from the expression
vector was only detectable in the cells transduced with this vector, but not in the cells
transduced with the empty vector. More importantly, expression of APEX1(1-20) alone did
not appear to affect the overall transcriptome as changes in the expression of only a very
small number of genes were observed (Supplementary Table S2).

In addition to the DGE analysis, we performed a gene set enrichment analysis (GSEA)
focusing on genes that were significantly regulated by LPS exclusively in either the cells
transduced with the empty vector or the cells expressing APEX1(1-20). As expected, cells
transduced with the empty vector showed a significant enrichment of upregulated genes
belonging to gene ontology (GO) terms related to immune responses including the response
to bacteria and tumor necrosis factor signaling (Supplementary Table S3). Interestingly,
we did not observe these changes in the presence of APEX1(1-20), and, moreover, genes
belonging to the GO term cellular response to tumor necrosis factor were significantly
downregulated in LPS-treated cells expressing the APEX1 peptide (Supplementary Table
S4). These data support the assumption that APEX1(1-20) might provide protection against
endothelial cell activation and apoptosis via alteration of the transcriptional responses to
LPS treatment.

In the DGE analysis, we found that after LPS treatment, 323 genes were significantly
upregulated in cells transduced with the empty vector and 280 were downregulated. In
contrast, in the cells expressing APEX1(1-20), only 177 genes were upregulated by LPS and
139 genes were downregulated (Figure 1A,B and Supplementary Tables S5 and S6). Thus,
the expression of only roughly half as many genes appeared to be affected by the presence
of APEX1(1-20).

Notably, we observed clearly different LPS responses in cells expressing APEX1(1-20)
when compared to cells transduced with the empty vector (Figure 1C–F and Supplementary
Tables S7–S10).

For functional studies, we focused on genes whose expression is upregulated by LPS
only in cells expressing the small APEX1 peptide as the corresponding proteins might
evoke APEX1(1-20)-dependent protective effects in EC, which could be of interest in a
therapeutic setting.
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Figure 1. APEX1(1-20) induces specific transcriptome changes in EC in response to LPS. (A–F) EC
were transduced with a lentiviral expression vector for APEX1(1-20) or an empty virus and treated
with 150 ng/mL detoxified (con) or active LPS (LPS) for 18 h. RNAs from the transduced cells
were subjected to RNA deep sequencing. Differential gene expression was calculated using the R
package DESeq2. Wald test from DESeq2 was used to calculate the significance of the change in
the expression. (A,B) Venn-diagrams for genes upregulated (A) or downregulated (B) after LPS
treatment of empty virus transduced cells and cells expressing APEX1(1-20). (C–F) Heatmaps of
genes significantly differentially expressed upon LPS treatment of cells transduced with the empty
virus or cells expressing APEX1(1-20). Shown are the 15 top ranked genes from Supplementary Tables
S7–S10. The color depicts the normalized expression relative to the respective mean in all samples.
(C) Genes uniquely upregulated after LPS treatment of empty virus transduced cells. (D) Genes
uniquely downregulated after LPS treatment of empty virus transduced cells. (E) Genes uniquely
upregulated after LPS treatment of APEX1(1-20) expressing cells. (F) Genes uniquely downregulated
after LPS treatment of APEX1(1-20) expressing cells.

3.2. Expression of PXDN and SELENOT Is Specifically Upregulated after LPS Treatment of EC
Expressing APEX1(1-20)

As a prerequisite for functional studies, we first validated the regulation of the top-
ranked candidates, which, according to the RNA sequencing data, should be expressed to
levels allowing reliable detection and quantification.
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IL1RL encodes an Interleukin 1 Receptor-like protein, which belongs to a family of ten
distinct but structurally related receptors. These proteins serve either as ligand binding
or accessory chains and some act as signaling inhibitors. Moreover, two members of
this family are orphan receptors [23]. Therefore, IL1RL1 is part of a complex signaling
network and one could easily envision that—due to this redundancy—interference with
this network might be compensated or evoke unwanted side effects.

Peroxidasin (PXDN), originally described as Vascular Peroxidase 1, is a heme-containing
peroxidase, which shows highest expression in the heart and the vascular wall [24]. The
protein is rapidly secreted [25] and required for formation of the vascular basement membrane
by reinforcing fibrillar network assembly in the extracellular matrix through formation of
sulfilimine bonds [26]. It has recently been shown that PXDN promotes angiogenesis [27] and,
furthermore, is essential for endothelial cell survival [28].

Selenoprotein T (SELENOT) is a member of the selenoprotein family, whose mem-
bers are characterized by containing one or more selenocysteine residues, frequently in
enzymatically active sites [29]. SELENOT is the most highly conserved selenoprotein
throughout evolution [30], suggestive of an essential function, which is underscored by the
early embryonic lethality of mice in which the selenot gene is constitutively disrupted [31].
SELENOT is one of 7 out of 25 human selenoproteins localized to the ER [32]. The expres-
sion of SELENOT, like all other selenoproteins, depends on dietary selenium as shown
by a reduced expression in chicken stomach after 55 days on a selenium-deficient diet.
Moreover, this regimen resulted in stress injuries [33]. In addition, SELENOT protects
kidney cells against cisplatin-induced apoptosis [34]. These observations go along with the
notion that ER-resident selenoproteins are critical in cellular stress responses [35].

For the reasons explained above, we did not follow up on IL1RL, but validated the
regulation of PXDN and SELENOT by semi-quantitative real-time PCR (Figure 2).
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Figure 2. LPS induces upregulation of PXDN and SELENOT expression specifically in EC expressing
APEX1(1-20). Transcript levels of PXDN (A) and SELENOT (B) in EC transduced with an empty
virus or the expression vector for APEX1(1-20) and treated with 150 ng/mL detoxified (con) or active
LPS (LPS) for 18 h were analyzed by semi-quantitative real-time PCR; RPL32 served as reference
(data are mean ± SEM, n = 4, * p < 0.05 vs. APEX1(1-20)/con, n.s. = not significant, one-way ANOVA
with post-hoc Tukey LSD test).

The real-time PCR analysis corroborated the deep sequencing data as for both genes,
an upregulation of the transcript level by LPS was only observed in the cells expressing
APEX1(1-20). Although PXDN has already been characterized with respect to protective
functions in EC [28], these data provide independent proof for the validity of the experi-
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mental approach. The second protein, SELENOT, for which no functions in endothelial
activation and apoptosis have been described so far, was chosen for functional analyses.

3.3. Generation of a SELENOT Expression Vector and Intracellular Localization of the
Overexpressed Protein

To study the impact of SELENOT on endothelial cell functions affected by LPS, we
generated an expression vector, which contained a FLAG-epitope tag allowing the iden-
tification of the overexpressed protein. For the generation of this expression vector, an
aspect unique to selenoproteins had to be taken into account. Selenocysteine (Sec) residues
in selenoproteins are not the product of a post-translational modification, but are rather
incorporated already during translation by using one of the translation termination codons,
namely UGA, for binding of the selenocysteine tRNA (tRNASec) to the mRNA. This trans-
lational recoding of the UGA codon involves a so-called selenocysteine insertion sequence
(SECIS) in the 3′-untranslated region (UTR) of the transcript. The SECIS, which is not
highly conserved on the sequence level, forms a stem-loop structure that is required for
recruitment of the tRNASec to the UGA codon [36]. Consequently, the lack of a SECIS leads
to premature translation termination, when the ribosome encounters the first UGA within
the open reading frame. Therefore, we included—besides the SELENOT open reading
frame—a portion of the SELENOT 3′-UTR including the SECIS in the expression vector.

We first analyzed the expression of FLAG-SELENOT after transient transfection of EC
on the RNA level by reverse transcriptase PCR (Figure 3A). We then determined the intra-
cellular localization of the overexpressed FLAG-SELENOT protein by immunofluorescence.
As demonstrated by colocalization with the ER-resident protein Calnexin (Figure 3B),
FLAG-SELENOT was localized in the ER.
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Figure 3. Overexpressed SELENOT is localized in the ER. (A,B) EC were transfected with the FLAG-SELENOT expression
vector (SELENOT) or an empty vector (EV). Expression and localization of exogenously expressed SELENOT was verified
on the RNA (A) and protein (B) level. (A) Expression of SELENOT was analyzed by reverse transcription polymerase chain
reaction (RT-PCR). Therefore, RNA was isolated from the transfected cells and cDNA was synthesized in the presence (+) or
absence (−) of reverse transcriptase. Amplification was performed with primers specifically detecting the FLAG-SELENOT
fusion transcript, the housekeeping gene RPL32 served as control. Amplification products were resolved by agarose gel
electrophoresis, the expected fragment sizes are specified, numbers on the left indicate selected DNA size markers (M).
(B) Localization of FLAG-SELENOT was examined by immunostaining and fluorescence microscopy. Cells were stained
with an antibody directed against Calnexin (CANX), a marker for the ER (green) and an anti-FLAG antibody (red). Nuclei
were counterstained with DAPI (blue); merge is the overlay of all channels (scale bar = 30 µm).
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3.4. SELENOT Overexpression Inhibits LPS-Induced Endothelial Cell Activation

Having demonstrated that FLAG-SELENOT is localized in the ER, we next inves-
tigated the effect of SELENOT on LPS-induced endothelial cell activation. Therefore,
FLAG-SELENOT was expressed in EC as before. After treatment with 150 ng/mL LPS for
18 h, ICAM1—a marker for endothelial cell activation—was detected. As expected, LPS
upregulated ICAM1 protein levels in empty vector transfected EC. This upregulation was
completely inhibited in cells, in which SELENOT is overexpressed (Figure 4).
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Figure 4. SELENOT suppresses LPS-induced upregulation of ICAM1. (A,B) EC were transfected with the FLAG-SELENOT
expression vector (SELENOT) or an empty vector (EV) and treated with 150 ng/mL detoxified (con) or active LPS (LPS) for
18 h. FLAG-SELENOT and ICAM1 were detected by immunofluorescence. Cells were stained with an antibody directed
ICAM1 (green) and an anti-FLAG antibody (red). Nuclei were counterstained with DAPI (blue); merge is the overlay of
all channels. (A) Representative immunostaining (scale bar = 30 µm). (B) Quantitation of ICAM1 levels. The intensity of
the green fluorescence per cell was measured using Fiji; in the cells transfected with the SELENOT expression vector, only
FLAG-SELENOT positive cells were included (data are mean ± SEM, n = 4, * p < 0.05 vs. EV/LPS, n.s. = not significant,
one-way ANOVA with post-hoc Tukey LSD test).

3.5. SELENOT Overexpression Inhibits LPS-Induced Endothelial Cell Apoptosis

Besides endothelial cell activation, LPS also induces apoptosis of EC [37]. Therefore,
we determined Caspase 3 cleavage as a marker for apoptosis in EC. As for ICAM1, LPS
increased Caspase 3 cleavage in cells not expressing SELENOT. On the contrary, overex-
pression of SELENOT completely blunted apoptosis induction by LPS (Figure 5).

In conclusion, SELENOT, which is upregulated by LPS in EC expressing APEX1(1-20),
seems to be an important mediator of the protective effects of APEX1(1-20) and could thus
be of interest as an adjuvant therapeutic agent in endotoxemia.



Antioxidants 2021, 10, 1427 10 of 14
Antioxidants 2021, 10, x FOR PEER REVIEW 10 of 14 
 

 
Figure 5. SELENOT suppresses apoptosis induction by LPS. (A,B) EC were transfected with the 
FLAG-SELENOT expression vector (SELENOT) or an empty vector (EV) and treated with 150 
ng/mL detoxified (con) or active LPS (LPS) for 18 h. Uncleaved and cleaved Caspase 3 were detected 
by immunoblot, Tubulin served as loading control. (A) Representative immunoblot. (B) Semi-quan-
titative analysis of relative amounts of cleaved Caspase 3 (data are mean ± SEM, n = 4, * p < 0.05 vs. 
EV/LPS, n.s. = not significant, one-way ANOVA with post-hoc Tukey LSD test). 

In conclusion, SELENOT, which is upregulated by LPS in EC expressing APEX1(1-
20), seems to be an important mediator of the protective effects of APEX1(1-20) and could 
thus be of interest as an adjuvant therapeutic agent in endotoxemia. 

4. Discussion 
The major findings of the present study are the first RNA deep sequencing analysis 

of LPS-induced changes in primary human EC and the identification of a protective role 
of APEX1(1-20) and SELENOT in LPS-induced endothelial cell activation and apoptosis. 

With respect to the possibility of using an APEX1(1-20) peptide or a related small 
molecule as a therapeutic agent, it has to be noted that APEX1(1-20) does not change the 
transcriptome when compared to empty virus transduced cells. Thus, there is no evidence 
of potential side effects induced by APEX1(1-20) in the endothelium. As expected, LPS 
treatment induced typical pathways known in sepsis. Those upregulated genes upon LPS 
treatment in cells not expressing APEX1(1-20) are found, for example, under the GO terms 
cellular response to tumor necrosis factor, tumor necrosis factor-mediated signaling path-
way, and plasma membrane (Supplementary Table S3). It has been known for years that 
tumor necrosis factor induces endothelial cell activation [38] and apoptosis [39]. There-
fore, activation of those pathways is a typical answer of the endothelium to LPS, which in 
turn leads to loss of endothelial integrity and barrier function. Loss of endothelial cell in-
tegrity is a mainstay of septic shock [3], because LPS can enter the systemic circulation 
destroy endothelial cell integrity, thereby leading to multiple organ failure. Thus, an ad-
ditional therapy protecting the integrity of the endothelium would be of tremendous in-
terest. Interestingly, APEX1(1-20) leads to reduced responses of the tumor necrosis factor 
pathways (Supplementary Table S4). Hence, APEX1(1-20) or its downstream targets could 
be of interest as potential therapeutic options. Therefore, we specifically focused on those 
targets induced by APEX1(1-20) in the presence of LPS in EC to identify potential candi-
dates. Indeed, we found SELENOT to be upregulated upon APEX1(1-20). 

SELENOT is an ER-resident selenoprotein, which is associated with the ER mem-
brane and required to maintain ER redox homeostasis. It is needed to cope with intracel-
lular stress conditions and is one of the most important selenoproteins [30]. 

As mentioned before, the expression of all selenoproteins depends on selenium. 
However, there seems to be a hierarchy in the sensitivity of different selenoproteins with 
respect to selenium levels and SELENOT seems to respond more avidly to selenium de-
pletion than several other proteins of this family [40]. It has been estimated that up to one 

Figure 5. SELENOT suppresses apoptosis induction by LPS. (A,B) EC were transfected with the
FLAG-SELENOT expression vector (SELENOT) or an empty vector (EV) and treated with 150 ng/mL
detoxified (con) or active LPS (LPS) for 18 h. Uncleaved and cleaved Caspase 3 were detected
by immunoblot, Tubulin served as loading control. (A) Representative immunoblot. (B) Semi-
quantitative analysis of relative amounts of cleaved Caspase 3 (data are mean ± SEM, n = 4, * p < 0.05
vs. EV/LPS, n.s. = not significant, one-way ANOVA with post-hoc Tukey LSD test).

4. Discussion

The major findings of the present study are the first RNA deep sequencing analysis of
LPS-induced changes in primary human EC and the identification of a protective role of
APEX1(1-20) and SELENOT in LPS-induced endothelial cell activation and apoptosis.

With respect to the possibility of using an APEX1(1-20) peptide or a related small
molecule as a therapeutic agent, it has to be noted that APEX1(1-20) does not change the
transcriptome when compared to empty virus transduced cells. Thus, there is no evidence
of potential side effects induced by APEX1(1-20) in the endothelium. As expected, LPS
treatment induced typical pathways known in sepsis. Those upregulated genes upon
LPS treatment in cells not expressing APEX1(1-20) are found, for example, under the GO
terms cellular response to tumor necrosis factor, tumor necrosis factor-mediated signaling
pathway, and plasma membrane (Supplementary Table S3). It has been known for years that
tumor necrosis factor induces endothelial cell activation [38] and apoptosis [39]. Therefore,
activation of those pathways is a typical answer of the endothelium to LPS, which in
turn leads to loss of endothelial integrity and barrier function. Loss of endothelial cell
integrity is a mainstay of septic shock [3], because LPS can enter the systemic circulation
destroy endothelial cell integrity, thereby leading to multiple organ failure. Thus, an
additional therapy protecting the integrity of the endothelium would be of tremendous
interest. Interestingly, APEX1(1-20) leads to reduced responses of the tumor necrosis
factor pathways (Supplementary Table S4). Hence, APEX1(1-20) or its downstream targets
could be of interest as potential therapeutic options. Therefore, we specifically focused on
those targets induced by APEX1(1-20) in the presence of LPS in EC to identify potential
candidates. Indeed, we found SELENOT to be upregulated upon APEX1(1-20).

SELENOT is an ER-resident selenoprotein, which is associated with the ER membrane
and required to maintain ER redox homeostasis. It is needed to cope with intracellular
stress conditions and is one of the most important selenoproteins [30].

As mentioned before, the expression of all selenoproteins depends on selenium. How-
ever, there seems to be a hierarchy in the sensitivity of different selenoproteins with respect
to selenium levels and SELENOT seems to respond more avidly to selenium depletion
than several other proteins of this family [40]. It has been estimated that up to one in
seven people worldwide have a low dietary selenium intake [41] and it is clear that proper
endothelial functionality depends on an adequate selenium supply [42]. Even more inter-
esting is the observation that selenium serum levels are dramatically reduced in critically
ill patients with sepsis [43]. Therefore, selenium supplementation seems to be an obvious
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supplementary treatment option for sepsis and possibly the protection of the endothelium
in this disease. In this context, it is interesting to note that selenium pretreatment or sup-
plementation alleviates some of the deleterious effects of LPS. In the murine macrophage
cell line RAW264.7, LPS induced immunological stress as shown by the upregulation of
multiple inflammation-related genes. This was accompanied by a reduction in the relative
selenot mRNA level. Pretreatment with selenium partially rescued this downregulation
and had only a very modest effect on the expression of the inflammation-related genes [44].
In mice, LPS-induced myocardial dysfunction, oxidative stress and apoptosis in the heart
could be attenuated when the animals were put on a selenium-supplemented diet 2 weeks
prior to LPS treatment [45]. Again, this pretreatment did not completely restore heart
functionality or prevent oxidative stress and apoptosis induction evoked by LPS. Our
experiments did not show a significant downregulation of selenot expression in LPS-treated
EC, although there seems to be a trend in this direction. On the contrary, the cells expressing
APEX1(1-20) showed an upregulation of selenot RNA levels of approximately threefold after
LPS treatment. This clearly indicates that the small APEX1 peptide can convey a protective
outcome, which is much stronger than the effects observed with selenium supplementation
or pretreatment.

Up to now, the precise molecular functions of SELENOT have not been elucidated.
Nevertheless, a peptide derived from SELENOT has already been used in animal models.
Rocca et al. demonstrated that this SELENOT-derived peptide—including the active cat-
alytic site corresponding to the sequence FQICVSUGYR—applied after ischemia and prior
to reperfusion is able to protect the heart from ischemia/reperfusion injury. This protection
was attributed to a reduction in oxidative stress and inhibition of apoptosis [46]. This is
in accordance with our study presented here, in which we demonstrate that SELENOT
completely inhibited LPS-induced activation and apoptosis in human primary EC.

The same peptide was applied in a cell-permeable form in a mouse model for Parkin-
son’s disease, where it protected dopaminergic neurons. This effect was also associated
with reduced oxidative stress and Caspase 3 activity [47].

Based on the protective effects of this SELENOT peptide in such different organs as
the brain and the heart, it is conceivable that it could exert its protective functions also in
the vasculature in the setting of sepsis.

Given the high numbers of patients and the up to 11 million deaths per year due
to sepsis, a protection of the endothelium as an additional additive therapy could be of
tremendous importance. The metabolic response to sepsis entails the rapid breakdown
of intracellular reserves of proteins, carbohydrates and fat. This is accompanied by an
increase in ER stress. An increase in SELENOT or application of a peptide could dampen
this stress and maintain the ER homeostasis, counteracting the overshooting responses of
the body to sepsis.

5. Conclusions

In conclusion, our data presented here suggest that APEX1(1-20) and SELENOT are
promising therapeutic options for the treatment of sepsis to protect the endothelium and
thus, to prevent endothelial cell leakage or even to restore endothelial cell integrity. This
would be of tremendous value for patients and would potentially lower the numbers of
septic shock, multiple organ failure and deaths.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10091427/s1, Figure S1: Principal component analysis, Table S1: Primer pairs used
for endpoint PCR and semi-quantitative real-time PCR. Primer pairs used for endpoint PCR and
semi-quantitative real-time PCR, Table S2: Differential gene expression analysis for genes regulated
byexpression of APEX1(1-20), Table S3: Overrepresented GO terms in genes upregulated by LPS
exclusively in cells not expressing APEX1(1-20), Table S4: Overrepresented GO terms in genes down-
regulated by LPS exclusively in cells expressing APEX1(1-20), Table S5: Differentially expressed genes
upon LPS treatment of cells not expressing APEX1(1-20), Table S6: Differentially expressed genes
upon LPS treatment of cells expressing APEX1(1-20), Table S7: Genes upregulated by LPS exclusively
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in cells that do not express APEX1(1-20), Table S8: Genes downregulated by LPS exclusively in cells
that do not express APEX1(1-20), Table S9: Genes upregulated by LPS exclusively in cells that express
APEX1(1-20), Table S10: Genes downregulated by LPS exclusively in cells that express APEX1(1-20).
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