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ABSTRACT

Tumor formation is partially driven by DNA copy
number changes, which are typically measured
using array comparative genomic hybridization,
SNP arrays and DNA sequencing platforms. Many
techniques are available for detecting recurring
aberrations across multiple tumor samples,
including CMAR, STAC, GISTIC and KC-SMART.
GISTIC is widely used and detects both broad
and focal (potentially overlapping) recurring events.
However, GISTIC performs false discovery rate
control on probes instead of events. Here we
propose Analytical Multi-scale Identification of
Recurrent Events, a multi-scale Gaussian
smoothing approach, for the detection of both
broad and focal (potentially overlapping) recurring
copy number alterations. Importantly, false discov-
ery rate control is performed analytically (no need
for permutations) on events rather than probes.
The method does not require segmentation or
calling on the input dataset and therefore reduces
the potential loss of information due to discret-
ization. An important characteristic of the
approach is that the error rate is controlled across
all scales and that the algorithm outputs a single
profile of significant events selected from the appro-
priate scales. We perform extensive simulations
and showcase its utility on a glioblastoma SNP
array dataset. Importantly, ADMIRE detects focal
events that are missed by GISTIC, including two
events involving known glioma tumor-suppressor
genes: CDKN2C and NF1.

INTRODUCTION

DNA copy number alterations in cancer, typically recorded
by array comparative genomic hybridization (aCGH),
single nucleotide polymorphism (SNP) arrays and (more
recently) sequencing, can reveal interesting genes that are
important for diagnosis, prognosis and targeted thera-
peutics. However, genomic instability typically introduces
random or passenger alterations that make it hard to dis-
tinguish recurring alterations (possibly harboring driver
genes) from the rest in single sample (tumor)measurements.
A number of statistical methods have been developed to

detect aberrations that recur at high frequencies across
multiple samples. These methods include CMAR (1),
Significance Testing for Aberrant Copy numbers (STAC)
(2), Hierarchical Hidden Markov model (H-HMM) (3),
Genomic Identification of Significant Targets in Cancer
(GISTIC) (4), GISTIC2.0 (5), JISTIC (6) and Kernel
Convolution: a Statistical Method for Aberrant Region
deTection (KC-SMART) (7).
CMAR and STAC require discretized copy number al-

teration profiles where genomic regions take on one of three
discrete states: a loss, no-aberration or a gain. Although
this is partially justified because copy number changes in
DNA are discrete in nature, measurements are typically
performed on DNA extracted from a heterogeneous pool
of cell populations, which could cause deviations from the
expected discrete values. Therefore, CMAR and STAC dis-
regard valuable information by ignoring the amplitude of
gains or losses in single samples. H-HMM does not require
discretized profiles but uses three hidden states to model
losses, absence of aberrations and gains.
GISTIC2.0 requires non-discretized, but segmented,

profiles. Segmentation (typically performed on single
sample profiles) reduces measurement noise, but approxi-
mates a signal that varies across the genome with a
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piecewise constant signal, requiring selection of segment
boundaries (breakpoints). Breakpoints can be missed
(in noisy profiles), and therefore, segmentation also intro-
duces a form of discretization.
All methods used to detect recurring aberrations, in one

way or another, aggregate (sum) all the sample profiles
either in raw, segmented or discretized form. This results
in a significant reduction in biological noise (passenger
events) with respect to signal (recurring events). In
addition, aggregation also reduces measurement noise,
justifying an approach followed by, e.g. KC-SMART,
that avoids segmentation all together and performs
smoothing on the aggregated profile.
In particular, GISTIC2.0 and KC-SMART use a statis-

tical framework that weighs both the amplitude and fre-
quency of recurrence in its detection procedure. JISTIC is
an adaptation of GISTIC, and all arguments used for
GISTIC2.0 in this article also apply to GISTIC and JISTIC.
Possibly the single most desirable property of

GISTIC2.0 is its ability to detect focal recurring events
embedded in broader events (such as whole chromosome
arms being deleted) through a peel-off algorithm requiring
knowledge of segment boundaries provided by a segmen-
tation algorithm. However, to the best of our knowledge,
there are no approaches that analytically (without resort-
ing to permutation tests) characterize the significance of
recurring events and, at the same time, use a principled
approach for automatic scale selection (required level of
smoothing) while guaranteeing a specified error rate
(average number of falsely detected recurrent events).
For an extensive review on (many more) methods,

see (8).
Here we present ADMIRE (Analytical Multi-scale

Identification of Recurring Events), a smoothing method-
ology, with the following features:

. Segmentation and/or calling are not required for the
genomic profiles. Instead, reduction of measurement
noise is achieved by performing smoothing on the
aggregated profile;

. Automatic scale selection, or selection of the level of
smoothing, is performed on the aggregated profile to
increase the power for detecting recurrent events. For
example, broad recurrent events are detected with
higher significance if we allow for a higher level of
smoothing. An important characteristic of the
approach is that the error rate is controlled across all
scales and that the algorithm outputs a single profile of
significant events selected from the appropriate scales;

. A recursive procedure to detect statistically significant
focal recurrent events that are embedded in broader
events;

. An analytical method that controls the expected number
of detected false-positive recurrent events (and therefore
helps avoid time-consuming permutation tests)

METHODS

The ADMIRE methodology is summarized in Figure 1
and described in subsequent subsections. In this

example, and subsequent simulations, we simulate
aCGH profiles, but any technique, such as SNP arrays
(see RESULTS) or sequencing, might be used in principle.
In Figure 1, the left column (Column I) illustrates the
methodology on measured profiles, whereas Column II
illustrates the construction of the null distribution (the
expected behavior of the aggregated profile if none of
the copy number alterations are recurrent). Multiple
aCGH samples are summed [Figure 1B.I (Figure 1, Row
B, Column I)] to obtain a single aggregated profile in
which recurrent aberrations reveal high peaks compared
with passenger events. This indicates that in our model, we
consider both the frequency and amplitude of events,
similar to the approach followed by GISTIC2.0 and
KC-SMART. Next we perform kernel smoothing at dif-
ferent scales (Figure 1C.I) to reduce measurement noise.
Figure 1A.II illustrates how we can simulate profiles that
share no recurrent events by performing cyclic permuta-
tions on each profile individually, Figure 1B.II shows the
summation of the resulting profiles to obtain a represen-
tative null hypothesis that closely resembles a stationary
Gaussian random process and Figure 1C.II shows the
kernel convolution per scale. In Figure 1 (Column II),
these steps (permutation, summation and smoothing) are
repeated 1000 times to obtain an empirical approximation
of the null distribution per scale. These distributions are
used to derive a threshold per scale corresponding to the
desired false discovery rate (FDR) or family-wise error
rate (FWER) of passenger events. The permutation test
is shown for illustration purposes. ADMIRE avoids per-
mutations altogether by exploiting an analytical relation-
ship between the desired threshold and FDR or FWER.
We apply the constant thresholds derived at each scale
(kernel width) to obtain recurrent segments for each
scale separately (Figure 1D.I). In Figure 1D.I and II, we
regard only detected recurrent segments that are of suffi-
cient resolution (the detected event is large compared with
the kernel width) and take the union of all significant
segments across all scales. The final step (not shown in
Figure 1) involves a recursive procedure to detect focal
recurrent events embedded in broad events. In the follow-
ing sections, we will run through all these steps in more
detail.

Aggregation

Consider an ordered set of small genomic sequences hseqii
(hi means the set is ordered) that are centered at genomic
positions hpii on a normal reference genome. Each such
sequence has an average copy number hts , ii across all cells
in a specified tumor sample s. Furthermore, for a normal
cell, we have a reference copy number for each sequence
hnii (typically ni ¼ 2 for a diploid sequence). From now on
we assume that we have an unbiased probe measurement
of the log ratio (the base of the log is irrelevant for the
subsequent analysis) as , i ¼ logðts , i=niÞ, where a positive
(negative) value indicates a gain (loss) in the tumor
sample.

To find recurring losses or gains, we simply add all
sample profiles into one aggregated profile (Figure 1B.I).
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The aggregated probe values are given by:

ai ¼
XS�1
s¼0

as , i , ð1Þ

where s 2 f0 , 1 , ::: ,S� 1g and i 2 f0 , 1 , ::: ,P� 1g are the
sample and probe indices, respectively.

This process is the same as that proposed by
KC-SMART and GISTIC2.0, with the fundamental ex-
ception that we do not split gains and losses. Little

power is lost by doing this, except for clear cases where
a region (of the same size) is recurrently lost and gained.
The major advantage of not splitting gains and losses is
that relevant statistics (such as FDR control) become ana-
lytically tractable.

The null hypotheses

We propose to model the null distribution by per-
forming random cyclic permutations. This implies that
for genomic profile s, we push all probes by a random
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Figure 1. Illustrating the steps involved for detecting recurring aberration in multiple copy number alteration profiles with the multi-scale ADMIRE
approach. All plots in the left column, Column I, represent data with recurrent events, and Column II shows the exact same procedure
when permuting the data to construct a cyclic shift null hypothesis. Column I: (A) Illustration of five (of 100) simulated aCGH profiles with
recurring events and a number of passenger (random) aberrations. (B) The first step in detecting recurring events is to sum all profiles (100 samples)
to a single aggregated profile. (C) A Gaussian kernel is convolved with the aggregated profile and z-normalized, as described in the text. This is done
with many different kernel widths so that focal events can be detected with small kernels and broad events with larger kernels. Ultimately, constant
thresholds (derived from the empirical null as outlined in Column II) will be applied on the smoothed signal (both upper and lower tail), as
illustrated by the red dashed lines. (D) Illustration of how we combine all the events found on multiple scales. Basically, we take the union of all
events found on all scales; however, for all kernels (except the smallest), we perform a filtering procedure to ensure the proper resolution. The
procedure is simple in that we only keep those events that are substantially (20 times) larger then the kernel width (more on this in the text). Column
II: Illustration of the permutation of profiles where each profile’s probes are cyclically shifted with a random offset (Panel A) and the summation of
the resulting profiles (Panel B) to obtain a representative null hypothesis that closely resembles a stationary Gaussian random process with param-
eters � , � and the auto-correlation r. Panel C shows the kernel convolution per scale. In this illustration, we propose to repeat the steps in Panels A,
B and C one thousand times to obtain an empirical approximation of the null distribution and use these distributions to derive a threshold per
scale corresponding to the desired control of FDR and FWER. However, in this article, we derive an analytical relationship between the thresholds
and FWER or FDR.
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number Us positions to the right. The Us probes that
are pushed out of the genomic profile on the right are
cycled around and fill the Us empty positions that
are created on the left of the profile. This process
is performed for each sample independently
(Figure 1A.II). We prefer this over random permutation
of the probes in a sample profile because it destroys
the recurrence structure but retains the auto-correlation
between probes. After every sample has undergone
a random cyclic shift, all the profiles are aggregated
(Figure 1B.II). More specifically,

A0
i ¼

XS�1
s¼0

A0
s , i

A0
s , i ¼ as ,Rs , i

Rs , i ¼ i+UsðmodPÞ ,

ð2Þ

where Us is a uniform random variable covering
f0 , 1 , ::: ,P� 1g. Note that each individual probe is identi-
cally distributed and identical to the distribution obtained
from a permuting null hypothesis, as we randomly select
one of the log ratios in each sample. It is also clear that the
cyclic auto-correlation remains unchanged for each
sample. Furthermore, A0 ¼ fA0

0 ,A0
1 , ::: ,A0

P�1g is a homo-
geneous random process since the correlation between
probes is independent of the probe labels and depends
only on their relative ordering on the genome.
We can easily obtain analytical expressions for the

mean, variance and auto-correlation of A0:

� ¼
XS�1
s¼0

�s , �s ¼
1

P

XP�1
i¼0

as , i

�2 ¼
XS�1
s¼0

�2s , �2s ¼
1

P

XP�1
i¼0

ðas , i � �sÞ
2

rð�iÞ ¼
XS�1
s¼0

rsð�iÞ , rsð�iÞ ¼
1

�2P

XP�1
i¼0

½ðas , i � �sÞ�

ðas , i+�iðmodPÞ � �sÞ�

ð3Þ

Alternatively, we can represent the auto-correlation
function with a P� P diagonal-constant correlation
matrix r with ri , j ¼ rði� jÞ.
Because we are summing multiple profiles, the random

process will become multivariate Gaussian (a consequence
of the central limit theorem), and the parameters in
Equation 3 fully describe the random process.
Technically, it is more desirable to calculate a homoge-

neous auto-correlation measure based on genomic
distance instead of probe index, as probes are not
equally spaced. Nonetheless, the proposed scheme
provides a good approximation.

Smoothing with a fixed kernel width

As we do not assume that the input samples are seg-
mented, and therefore contain substantial measurement
noise, it is desirable to smooth the aggregated profile

(Figure 1C). We describe an optimal kernel smoothing
methodology based on the assumption that the null hy-
pothesis is a random Gaussian process. The idea is that if
we fix the kernel type (e.g. Gaussian) and the kernel width
(i.e. the number of nearby probes to average, in our case
controlled by the standard deviation of the Gaussian
kernel), we can normalize the smoothed (continuous)
profile so that each point on the genome has exactly the
same normal distribution (mean zero and variance one) in
the null process. This way we can apply a constant thresh-
old across the whole genome when detecting recurring
aberrations.

The first step is to smooth the signal by convolving the
aggregated profile with a kernel.

F0
wðgÞ ¼ kwðgÞ �

XP�1
i¼0

A0
i �ðg� piÞ , ð4Þ

where g is the position on the genome, F0
wðgÞ is the

smoothed random process, kwðgÞ is the kernel of width w
(expð�0:5g2=w2Þ for a Gaussian kernel) and pi is the
genomic location of probe i. * represents the convolution
operator and � is the Dirac delta function.

The smoothed function F0
wðgÞ is a linear com-

bination of fA0
0 ,A0

1 , ::: ,A0
P�1g with coefficients

fkwðg� p0Þ , kwðg� p1Þ , ::: , kwðg� pP�1Þg for any given
point in space g.

We can calculate the exact mean and variance of F0
wðgÞ

as follows:

�wðgÞ ¼ � mwðgÞ

�2wðgÞ ¼ �
2s2wðgÞ ,

ð5Þ

where

mwðgÞ ¼ kwðgÞ �
XP�1
i¼0

�ðg� piÞ

s2wðgÞ ¼
�kTwðgÞr

�kwðgÞ

ð6Þ

�kTwðgÞ is a 1� P column vector equal to the kernel coeffi-
cients ½kwðg� p0Þ , kwðg� p1Þ , ::: , kwðg� pP�1Þ�

T and r is
the auto-correlation matrix.

We choose a threshold function such that F0
wðgÞ has

the same (single tale) P-value � for any given
g. Therefore:

PðF0
wðgÞ � tðgÞÞ ¼ � ð7Þ

As F0
wðgÞ is Gaussian we get:

tðgÞ ¼ �wðgÞ+�wðgÞt� , ð8Þ

where tp is a constant threshold that controls F0
wðgÞ at a

P-value �.
Equivalently, we can z-normalize F0

wðgÞ to apply a
constant threshold t� represented by the z-normalized
smoothed random process H0

wðgÞ:

H0
wðgÞ ¼

F0
wðgÞ � � mwðgÞ

�swðgÞ
ð9Þ

e100 Nucleic Acids Research, 2013, Vol. 41, No. 9 PAGE 4 OF 14



It is worth mentioning that H0
w is a differentiable

(smooth) normal random process (with mean zero and
variance one for all g), but is non-homogeneous (unlike
the discrete random process hA0

i i) due to unequal probe
spacings.

Counting significant events

We ultimately seek to provide a list of genomic regions
(broad or focal events) that are significantly recurring and
therefore likely to be relevant in cancer development. In
providing such a list, we are interested in controlling the
expected proportion of regions that are in error (passenger
events). We call this the event-based FDR. Before we can
do this, it is important to first define what we mean by an
event.

For a fixed threshold and kernel width, we define
positive and negative excursion sets as follows:

a+ðhw , tÞ ¼ fg 2 ajhwðgÞ � tg

a�ðhw , tÞ ¼ fg 2 ajhwðgÞ � �tg ,
ð10Þ

where hw is the smoothed (and z-normalized) aggregate
profile (see Equation 9) and a is the set of all g
considered (the genome). a+ and a� represent all
genomic regions that are deemed recurrently gained
and lost, respectively (relative to the threshold t). Due
to the Gaussian null hypothesis, we will focus all atten-
tion on a+ and realize that symmetric arguments exist
for a�.

We define positive recurring events to be the maximally
connected subsets (ordered by inclusion) of a+. For a
smoothed aggregated profile hwðgÞ and fixed threshold t,
we represent the total number of detected events with
�ðhw , tÞ. Note that counting the number of events is
equivalent to counting the number of up-crossing on the
threshold and adding one if the left boundary point is
above the specified threshold.

Analytical relationship between the threshold
and the expected number of events found in
the null hypothesis

For H0
w (smoothed non-homogenous Gaussian process),

we can find an exact analytical expression that relates
any given t to the expected number of events found
(E½�ðH0

w , tÞ�), with the only restriction being that the
kernel selected must be differentiable up to the second
order. A large amount of work has been done on finding
E½�ðH0

w , tÞ� for homogeneous fields (9–12) and little on
non-homogeneous fields (13). Therefore, we extend the
theory for non-homogeneous (one-dimensional) processes
in the supplementary Data (see the section entitled
‘Analytical expression for the Euler characteristic’) and
show the final result here. More specifically, for a
non-homogeneous process, the expected number of
events is given by:

E½�ðH0
w , tÞ� ¼

1

2
erfcð

tffiffiffi
2
p Þ+

e�t
2=2

2�

Z
g2a

ffiffiffiffiffiffiffiffiffiffiffi
vwðgÞ

p
dg , ð11Þ

where

vwðgÞ ¼ Var½
d

dg
H0

wðgÞ�

¼

d
dg

�kTwðgÞr
d
dg

�kwðgÞ

�kTwðgÞr
�kwðgÞ

�

� �kTwðgÞr
d
dg

�kwðgÞ

�kTwðgÞr
�kwðgÞ

�2 ð12Þ

vwðgÞ is a function that represents the roughness of the
random process (naturally the variance in the derivative)
and depends entirely on the probe locations, smoothing
and auto-correlation r (and is independent of parameters
� and � because we z-normalized). For a rough random
process (when we perform little smoothing), the integral in
Equation 11 will be large and reflects the severity of
multiple testing.
Note that we do not concern ourselves with estimating

the full distribution of �ðH0
w , tÞ, but only the mean.

E½�ðH0
w , tÞ� is a sufficient statistic for calculating the

FDR (explained later). E½�ðH0
w , tÞ� is also an upper-bound

for the FWER and becomes tight for practical FWERs
(< 0:1) (14).
We specifically used Gaussian kernels in this work, but

Equation 11 hold for all kernels that are twice differenti-
able. For the application of detecting recurrent events, it is
desirable to use a symmetric kernel that drops to zero,
such as Gaussian, Student t, Cauchy or wavelet kernels.
As the kernel is implemented in a discrete setting, it is also
important to ensure that the kernel has a limited frequency
bandwidth so that the smoothed aggregated profile can be
sampled at a reasonable (Nyquist) rate.

Multi-scale detection

Previous sections indicate how we can control E½�ðH0
w , tÞ�

for a fixed kernel width. GISTIC2.0 performs no
smoothing on the aggregated profile (or effectively
smooth with a small kernel width) and relies on noise re-
duction through segmentation on single profiles. Figure 2
shows that for unsegmented profiles, we can gain power
by considering many kernel widths in parallel. For
example if we try to detect broad recurring events, we
gain power when increasing the kernel width. On the
other hand, large kernel widths will reduce the resolution
of profiles and estimated recurrent region boundaries will
be inaccurate and focal events lost. This is illustrated in
Figure 2. In Panel B, the resolution is high, resulting in
accurate boundaries but low power causing the broad
event to be shattered in many small events. In Panel D,
the power is high, but the boundaries are inaccurate. Panel
C shows a good compromise between boundary precision
and power. Therefore, it is desirable to restrict the size of
allowed kernels based on the size of detected events. To be
more specific, at any given scale (except the smallest kernel
width considered, as the resolution is assumed to be high),
all detected events that have a detected width smaller than
� ¼ 20 times the kernel width will be ignored because they
result in a poor resolution. Rather, these events are
detected at a smaller scale to ensure a proper accuracy
of the event boundaries. In fact, for � ¼ 20, at least
70% of any detected event will overlap with a real recur-
rent event (see the supplementary section entitled
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‘Details on multi-scale detection’). � can be set by the user,
and in the supplementary section entitled ‘Resolution
parameter � on simulated data’, we illustrate how differ-
ent settings of � influence results (see Supplementary
Figure S1).
Finally, the union of all the remaining significant

regions across all scales represents the recurring events
in the data. This multi-scale procedure will more likely
merge events that appear on the smallest scale than
create new ones on a larger scale. This enables us to
keep control over the number of detected events (see the
supplementary section entitled ‘Details on multi-scale de-
tection’ and Figure 5).

Updating the null parameters based on known
recurrent events

Parameters � , � and r will, in general, be conservative
estimates for the non-recurrent null hypothesis if
estimated on all probes, especially if a large proportion
of these probes are recurrent. Therefore, it is desirable to
ignore all probes that are known to be recurrent when
estimating the null parameters. This is done iteratively
by first calculating conservative parameter estimates
(with all probes considered) and then removing all the
probes that are deemed recurrent through the multi-scale
detection procedure. If we re-calculate the null parameters
(which will be less conservative) with the remaining probes
only, more recurring events will we found. This process is

repeated until no more new recurring events can be found
(see supplementary section ‘Details on updating the null
parameters’ commenting on the convergence behavior).
Although this method will drastically increase power, the
null parameters will either be slightly optimistic or remain
conservative if some recurrent events remain undetected.

Recursive multi-level detection of recurring aberrations

The events detected by the procedure as described thus far
include focal and broad events, but we are not yet able to
detect focal events that are embedded in broad events. To
find those, we propose a recursive scheme that finds new
events that are embedded in earlier detected events. For
example, lets say that we find (among other) one broad
recurrent gain that starts (ends) at genomic location gs ðgeÞ.
We re-estimate the null parameters � , � and r from all
probes between gs and ge and perform the multi-scale
analysis to find smaller events embedded within this
broad event. This procedure for finding a focal event
within a broad event is illustrated in Figure 3. Again we
iteratively update the null parameters until the null region
converges (a new null region inside the broad event). Note
that the boundaries of the detected broad event (gs and ge)
might be inaccurate and therefore embedded focal events
might be detected at the border of the initial broad event.
As these are a result of the boundary inaccuracy, we
simply ignore them (unless, e.g. it is a focal gain within
a gain). We repeat this recursive procedure until no more
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Figure 2. Illustration showing how power can be gained by considering multiple scales (levels of smoothing). (A) A simulated aggregated profile with
two broad recurring gains and one focal gain embedded in a broad event. (B) Significance level of the aggregated profile for little smoothing (small
kernel width). Owing to the small kernel width, the resolution is high and the boundaries on the detected regions are fairly accurate. This is at the
expense of power and results in hundreds of significant segments instead of two broad events. (C) Significant power is gained for intermediate kernel
widths and the two broad events are found as desired. Furthermore, the resolution is high enough (the segment size is much greater than the kernel
width) and therefore the boundaries of the significant events are sufficiently accurate (compared with the aberration size). (D) High power is observed
for large kernel widths (significance level exceeds the threshold by far) but the resolution is so low that two events are merged into one and boundary
estimates are poor. (E) We obtain the final estimate of recurring segments by taking the union of all detected events on all scales that reveal sufficient
resolution. Note that the focal events embedded in broad events are completely missed. Furthermore, significance in these figures is represented by
the expected number of events E½�� found across the whole genome (as predicted by the null hypothesis). The threshold is selected at E½�� ¼ 0:01, a
close upper-bound for the FWER of 0.01.
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events can be found and represent the results in recursive
levels.

On a final note, not only does the recursive multi-level
detection procedure allow us to detect recurring events
embedded in broad recurring events, but also helps to
improve our estimate on E½��, as explained in the supple-
mentary Data (see the section entitled ‘Details on recur-
sive multi-level detection’).

FDR control

As we are able to predict the expected number of events
found in the null hypothesis, we can also control the
event-based FDR, the expected proportion of detected
events that are false discoveries.

To see this, consider the Benjamini–Hochberg proced-
ure (15) that controls the FDR at level q for m independ-
ent or positive dependent tests: Let pð1Þ � pð2Þ � ::: � pðmÞ
be the ordered observed P-values and m0 the number of
true null hypotheses. If we reject the null hypotheses for
tests pð1Þ � pð2Þ � ::: � pðkÞ, where

k ¼ maxfi : m0 pðiÞ � iqg , ð13Þ

then FDR � q. If we reject all tests with a P-value lower
than �, then the expected number of false-positive tests
E�ð#FPÞ ¼ m0� (irrespective of the correlation that
might exist between tests). Therefore, Equation 13 can
be rewritten:

k ¼ maxfi : EpðiÞ ð#FPÞ � iqg ð14Þ

For our application, Equation 14 is intuitive. For the ith
detected event, if the ratio between the expected number of
false-positive events (Eð�Þ) and the number of events i
detected is smaller than the FDR (q), then the FDR will
be in control. We can lower the detection threshold until
the inequality in Equation 14 is violated.

We propose the following procedure to find an appro-
priate value for E½�� to control the FDR at level q:

. Set n ¼ 1 , E1½�� ¼ q and i1 ¼ 0;

. REPEAT:
– Detect recurrent events using ADMIRE with

thresholds corresponding to En½��. Count the
number of detected events in+1;

– IF in+1 � in: BREAK;
– Set En+1½�� ¼ ðin+1+1Þq;
– Set n ¼ n+1

This methodology is different from that performed in
GISTIC2.0. GISTIC2.0 regards each probe as an inde-
pendent test (owing to the random permutation scheme)
and uses the methodology proposed by Benjamini and
Hochberg (16) to control the probe-based FDR (i.e. the
proportion of false-positive probes). In contrast,
ADMIRE performs event-based FDR, and this subtle,
yet profound, difference is illustrated in Figure 4.

RESULTS

This section starts with an artificial, simulated dataset to
illustrate several properties of ADMIRE. We start off by

demonstrating that the theoretical estimate of the expected
number of events, E½��, is indeed a good approximation of
the empirically observed number of events under a wide
range of experimental conditions. Then we move on to
show that E½�� is a close upper-bound of the FWER and
that the ADMIRE algorithm does control event-based
FDR at the desired level. Finally, we demonstrate the
properties of ADMIRE on a real-world glioma dataset.

Datasets

Simulated datasets
We simulate aCGH profiles on a genome consisting of
2:4� 108 bps and randomly select 12 000 probe positions
for measurements. For each profile, we select 159 random
breakpoints (160 segments) on the genome, of which a
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random selection of 50% of the segments take on log
ratios of 0 (all probes in these segments). The remaining
segments randomly take on log ratios of �1 and+1, rep-
resenting passenger gains and deletions, respectively. We
also add random Gaussian (measurement) noise to each
profile (with variance �2n) for a specified signal to noise
ratio (SNR) defined as SNR ¼ 1=�2n . For example, an
SNR of 1099 implies negligible measurement noise.
When recurrent events are added, we typically specify a

width, location and frequency of recurrence across samples.
For simplicity, probes covered by recurrent events take on
values of �1 or+1 to represent recurrent gains or losses,
respectively. For example, we might decide to add a recur-
rent event centered at 1:2� 108 bps, 1� 106 bps wide with
a 30% frequency of occurrence across all samples.
In total, there are three global parameters that will be

varied across experiments: (i) the number of samples to
aggregate (s), (ii) the SNR and (iii) the number of recur-
rent aberrations. For every recurrent aberration, we also
specify the width, genomic location and frequency of
occurrence.
For a detailed description on how we typically generate

such a dataset, see the supplementary section entitled
‘KC-SMART vs. ADMIRE smoothing methodologies’
(under ‘Simulated data’).

The glioma dataset
To demonstrate the properties of ADMIRE on real data,
we used the dataset described by Beroukhim et al. (4) con-
sisting of 141 high-quality glioma samples (107 primary
Glioblastoma multiforme (GBM), 15 secondary GBMs
and 19 lower-grade gliomas) to aggregate. DNA was
hybridized on a Affymetrix � 100 000 SNP array
platform. Batch effects and systematic errors were
removed using the exact methodology described by
Beroukhim et al. (4) (see their Supporting information).
All samples were segmented using Gain and Loss Analysis
of DNA (GLAD) (17) to reduce measurement noise (this
was done for both GISTIC2.0 and ADMIRE), and all
known copy number variation probes were removed
from the analysis.

E½�� simulations

We simulate aCGH profiles using the methodology
proposed earlier; however, we do not add any recurrent
aberrations.
To investigate whether our theoretical model of the

expected number of detected events (E½��) is accurate for
different thresholds, noise levels and kernel widths, we
performed the following experiments. We varied the
number of samples to aggregate, S, such that
S 2 f2 , 5 , 10 , 50 , 100g; the SNR assumed two values,
SNR 2 f1 , 1� 1099g and the Gaussian kernel width
was set to w 2 f4� 104 , 8� 104 , 1:6� 105 , 3:2� 105 ,
6:4� 105 , 1:3� 106g. For combinations of these variables,
we simulated 1000 artificial datasets.
In Figure 5A, we show the relationship between the

analytical and empirical E½�� as the detection threshold
is varied for a fixed kernel width of 4� 104 bps
(two probes per kernel width, on average) and an SNR

of 1 (�2n ¼ 1 per sample). We show this result for all values
of s.

Figure 5B is similar to Figure 5A, except that we do not
add measurement noise. This serves to illustrate that our
approach can also be applied to segmented data.

The main conclusion drawn from Figure 5A and B is
that the analytically predicted E½�� becomes more accurate
as we increase the number of aggregated samples due to
the central limit theorem. For smaller sample sizes, the
theoretical estimate is conservative.

In Figure 5C, we fix s to 100 and the SNR to 1� 1099

and vary the kernel widths to show that the analytical
estimate of E½�� remains accurate for all kernel widths.
We also show that the empirical E½�� is smaller than the
analytical E½�� if we perform the multi-scale detection.

Next we investigated the relationship between the em-
pirical and theoretical estimate of E½�� on the glioma
dataset. To obtain an empirical estimate of E½��, we con-
structed a null hypothesis by repeating the cyclic permu-
tation procedure, aggregation and kernel smoothing as
outlined in Figure 1II., one thousand times on the
glioma dataset. The results for S ¼ 141 and all kernel
widths including the multi-scale analysis are depicted in
Figure 5D. Overall, the theoretical prediction serves as a
relatively tight upper-bound for the empirical estimate,
but depends on the kernel width. More specifically, the
estimate of E½�� becomes more accurate for larger
kernels owing to adjacent probes being averaged (and
again the central limit theorem suggests better
convergence).

Overall, this experiment shows that the analytical E½�� is
sufficiently accurate and that the multi-scale procedure
produces conservative results.

FWER simulations

We observed earlier that E½�� is a close upper-bound for
the FWER (14), and in this section, we perform simula-
tions to verify this fact. We simulated aCGH profiles using
the same methodology proposed earlier.

We fix the number of samples to aggregate to 100 and
only add one recurrent event centered at 120 Mbps with a
given width, wa, and a 30% chance of occurrence per
sample.

In every simulation, we also fix the kernel width and
therefore do not perform a multi-scale analysis. Neither
do we search for embedded events through recursion.
However, we do update the null parameters iteratively
based on known recurrences. See the supplementary
section entitled ‘FWER control for simulated data’ for a
detailed description of the experiment.

Figure 6.A depicts a typical power plot as a function of
aberration size and kernel width—for an elaborate collec-
tion of these plots for different SNRs, see Supplementary
Figure S3. This plot shows how the power changes (for the
analytical FWER fixed at 5%) for detecting recurring ab-
errations of different sizes (one event per simulation) while
varying the kernel width. We can observe that for a fixed
kernel width, the power decreases as the aberration size
decreases. In fact, there is an abrupt drop in power when
the aberration size equals the kernel width, as indicated by
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the diagonal ridge in the panel. In general, we can
conclude that as long as the aberration is larger than the
kernel width (region above the diagonal line), we have
more power to detect the aberration. Figure 6B shows
that the measured FWER (the chance of detecting one
or more false-positives) is close to that predicted by
E½��, as expected. From these simulations it is clear that
for any recurrent aberration of a fixed width, a fixed
kernel width can be selected to gain optimal power. If
the kernel width becomes too large, we observe a drastic
loss in power, as indicated by the lower right corner in
Figure 6A. Note that in contrast, Figure 2 suggests that
larger kernels increase the power, but if we extend

Figure 2 to show even larger kernels, the significance
levels will drop drastically.

FDR simulations

For the FDR experiments, we expanded the simulated
dataset described previously to include recurrent events
of different sizes and to have overlapping recurrent
events. This will allow the possibility to estimate the
capacity of the complete ADMIRE algorithm to control
the FDR. More specifically, we expanded the simulated
dataset by adding Nb ¼ 2 broad (20� 106 bps, 1000
probes, on average) and Nm ¼ 5 medium-size (2� 106
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Figure 5. Illustration of the relationship between the analytical estimates of E½�� (x-axis) and that measured across 1000 simulations (y-axis) of
aCGH profiles containing only passenger events. (A) We fix the kernel width to be small (40 kb) and the SNR at 1 to represent measurement noise.
We vary the number of samples to aggregate for each simulation experiment. (B) A similar experiment on simulated aCGH profiles where we added
no measurement noise (SNR ¼ 1� 1099) and therefore effectively work with segmented samples. The black line depicts the result obtained when
using cyclic permutation to create a null hypothesis on the glioma dataset. (C) The number of simulated samples to aggregate is fixed at 100 and the
kernel width is varied, showing good theoretical predictions for all kernels. The black line indicates the mean number of events detected when we
apply multi-scale selection. (D) Similar results are depicted when using cyclic permutations to create a null hypothesis on the glioma dataset. The
genome size for the simulated data is only 12� 108 bps, whereas the glioma dataset consists of all probes stretching from chromosome 1 to 22. Error
bars indicate the standard error of the empirical E½��.
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bps, 100 probes, on average) non-overlapping recurrent
events at random locations (albeit consistent between
samples) on the genome. Furthermore, we added a
varying number (Nf) of recurrent focal events (100 kb,
five probes, on average) across the genome (potentially
overlapping with the broad- and medium-size events).
For each recurrent event, we select a random frequency
(between 0 and 1) of occurrence across samples.
The complete ADMIRE algorithm has been applied

with a specified analytical FDR. The number of
samples to aggregate (s) is varied, as well as the SNR
and the number of focal recurring events (Nf). An event
is considered a true-positive if at least 70% of the
detected region overlaps with a true recurrent region
(the multi-scale detection procedure with � ¼ 20 filtering
guarantees an overlap of at least 70%). The number of
true-positive events is then the sum of the number of true
recurrent broad (maximum two), medium (maximum
five) and focal events found. The empirical FDR is
calculated by averaging the proportion of falsely
detected events across 1000 simulation experiments.
Likewise, the empirical power is the average proportion
of true recurring events that are detected. For example,
when we add only one recurring focal event, we hope to
detect eight true events (two broad, five medium and one
focal). If, for example, we detect four of the eight
recurrent events and one extra false event in one simula-
tion, the measured FDR would be 20% and the
power 50%.
In Figure 7A, we fix the number of samples to aggregate

to 200 and the SNR is set high (zero measurement noise
and profiles are segmented). We vary the number of focal
events and the analytical FDR and represent the measured
FDR and power. In Figure 7B, we fix the number of focal
recurrent events to 50 and the analytical FDR to 5%,
while varying the number of samples that are aggregated
and the SNR.

From Figures 7A and B, it is clear that the empirical
FDR is smaller than that predicted analytically. The
three main reasons for this are the following:

. Inaccurate estimation of the null random process par-
ameters � , � and r. The higher the number of true-
positives missed, the more conservative the null par-
ameter estimates are and the true FDR will be smaller
than predicted. Ultimately, this estimate will be most
conservative if we estimate null parameters across the
whole genome. In Figure 7A, we can clearly see that
the FDR decreases when we increase the number of
recurrent events. This is because for a fixed threshold,
the expected number of undetected events is propor-
tional to the total number of events (this is a simple
consequence of how we generated the data). Therefore,
for a larger number of recurrent events, the expected
number of events that go undetected will be large and
therefore the null parameters will be more conserva-
tive. This is especially noticeable in Figure 7B, where
the FDR is fixed at 5% and we vary the SNR. For an
SNR of zero, the null parameters will be accurate (as
recurrent events do not exist) and we expect the FDR
estimate to be close to the predicted value, whereas for
an SNR of one, the null parameters will include a
significant proportion of the recurrent signal. This
situation improves again for higher SNRs owing to
an increase in power;

. The multi-scale procedure in Figure 2 also ensures a
conservative estimate on E½��, as illustrated in
Figure 5C (and D);

. If the number of samples to aggregate (s) is small, the
Gaussian model becomes inaccurate for the null hy-
pothesis. This explains the reduced FDR for small
values of s values in Figure 7B. Note that for
SNR ¼ 0, the Gaussian model is accurate no matter
how many profiles we aggregate.
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The power curves in Figure 7A (right panel) counterin-
tuitively suggest that we lose power when increasing the
number of focal events. However, if we consider that
medium-size (Nm ¼ 5) and broad-size (Nb ¼ 2) events
are detected with much higher power, it becomes
obvious. For example, if we add only one focal event,
then 7/8 of all recurrent events are of medium or broad
size, whereas for 100 focal events, this ratio is only 7/107.

Application on glioma data

We compare the recurring events found by both
ADMIRE and the latest version of GISTIC2.0 at 25%
FDR on the glioma dataset described earlier. The results
in Figure 8 reveal that ADMIRE finds many more events
(in total 223 focal and broad events) than GISTIC2.0 (50
focal and broad events). All the known glioma tumor sup-
pressors and oncogenes found by GISTIC2.0 are also re-
covered by ADMIRE. Although GISTIC2.0 performs

probe-based FDR, and is therefore expected to be opti-
mistic (see Figure 4), there are many sources of power loss
that are overcome by ADMIRE as follows:

. Substantial power is gained, as regions that are known
to be significantly recurrent are ignored when
estimating the null parameters;

. We account for the auto-correlation in the genomic
profiles (in the null hypothesis), and as nearby
probes reveal high positive correlations, the severity
of multiple testing is reduced;

. By considering multiple scales (levels of smoothing),
we gain substantial power for detecting broader
events.

We give a multi-level representation of the events found
by both ADMIRE and GISTIC2.0 in Figure 8.
GISTIC2.0 dichotomizes events into focal and broad
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region found by ADMIRE containing the known glioma tumor suppressor gene CDKN2C that was missed by GISTIC2.0.
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(chromosome arm-length) recurrences. All events found
by GISTIC2.0 on a chromosome-arm level are indicated
on the first level (+1 for gains or �1 for losses). After
removing aberrations that stretch across whole chromo-
some arms, GISTIC2.0 also finds probes that are signifi-
cantly recurrent with q-values below the 25% probe-based
FDR level. All regions defined by these probes are repre-
sented on a second level (+2 for gains and �2 for losses).
GISTIC2.0 uses an arbitrated peel-off algorithm to
identify multiple potential target regions inside each sig-
nificant region below the q-value threshold. The
boundaries of these regions are then fine-tuned using an
algorithm called RegBounder (5). These regions are then
represented on the third level. In contrast, ADMIRE
makes no such distinction and simply adds levels until
convergence. ADMIRE only adds more focal regions on
a higher level if it can be proved significantly recurrent
(below 25% event-based FDR) with respect to its imme-
diate background (the level below).

Visually it is clear that ADMIRE shows an increase in
power for detecting broad events (due to the multi-scale
approach), as can be seen, for example, when looking at
the third level of recurrent deletions in chromosome 1p in
Figure 8B.III (containing CHD5). In contrast, GISTIC2.0
only finds a focal recurrent aberration (close to CHD5).
The aggregated profile in Figure 8B.II reveals that indeed
the broad event (third recursive level) detected by
ADMIRE is likely a real event (of the same width), but
it is difficult to prove significance of the focal event found
by GISTIC2.0 relative to this background. It is possible to
look for maximal peaks inside the broad event to help
guide us towards genes that are likely relevant, but
cannot be significantly distinguished from neighboring
genes. In this sense, ADMIRE is more conservative at
detecting focal events than GISTIC2.0.

One can argue that it is important to detect broad
events with high power (justifying the multi-scale method-
ology). To see why, consider a single scale analysis (with
little or no smoothing). One might not have the necessary
power to detect some broad events; however, random
(passenger/measurement noise) focal events that surpass
the threshold (in combination with the broad event) will
lead to shattered positives. In contrast, the multi-scale
procedure will likely detect the broad event, and if not,
we regard the overlapping focal events (that surpass the
threshold) to be non-random (with respect to its immedi-
ate background).

ADMIRE detects a number of focal events that are
missed by GISTIC2.0, including two events involving
known glioma tumor suppressor genes: CDKN2C and
NF1. The focal recurrent event overlapping with
CDKN2C is showcased in Figure 8D. NF1 is showcased
in Supplementary Figure S4.

DISCUSSION

ADMIRE is an algorithm designed to assist in the discov-
ery of broad and focal (potentially overlapping) recurring
events. It does not require segmentation of single sample
genomic profiles and therefore admits heterogeneous

samples that do not display clear breakpoints in copy
number. ADMIRE performs a kernel smoothing method-
ology on the aggregated profile that optimizes the power
for detecting recurring events if the null hypothesis closely
resembles a Gaussian random process. Our previous algo-
rithm, KC-SMART, is an example of another kernel
smoothing methodology. Compared with KC-SMART,
ADMIRE shows a drastic increase in power, especially
for focal aberrations, when we fix the FWER at 5% (see
Supplementary Figure S2).
Furthermore, ADMIRE performs analytical

event-based FDR control instead of probe-based FDR.
The user thus receives a list of recurrent regions for
which the expected proportion of false regions is lower
than that specified by the FDR.
From a technical perspective, ADMIRE gains power in

detecting recurring events by accounting for the
auto-correlation between probes (reduces the severity of
multiple testing), performing a multi-scale smoothing
methodology (especially helps for detecting broad
events) and perhaps most importantly by estimating the
behavior of passenger events (the null hypothesis) in
regions that do not contain known recurrent events.
Although it might be regarded as unimportant to detect
broad events with high power (as focal events are expected
to be of greater importance when searching for relevant
genes), we argue that this is of central importance, as one
might expect that for every broad event missed, a number
of potentially false focal events might be detected in this
region simply due to passenger events revealing peaks in
an elevated region (shattered events) in the aggregated
profile.
We introduced an analytical expression for the expected

Euler characteristic, which simply counts up-crossings and
not explicitly how long the signal remains above the amp-
litude threshold (the so-called sojourn time). Intuitively
this could present a problem, but ADMIRE solves the
problem by using the scale space to automatically tune
the power to match the aberration width.
We also introduced a method that allows us to control the

FDR (based on the expected Euler characteristic) without
resorting to time-consuming permutation tests. We are
therefore able to perform complex procedures, such as
updating the null-process parameters in the recursive
multi-level detection scheme, within a realistic time frame.
The methodology is justified from a theoretical perspec-

tive and justified with empirical simulations. Also when we
test the method on a glioblastoma dataset, we find many
more potentially interesting recurrent events (including
two known glioma tumor suppressors CDKN2C and
NF1) that approximately form a superset of those found
by GISTIC2.0. Note that ADMIRE does not make a
binary distinction between broad and focal events since
multiple levels of increasingly focal events are derived
from the data.
On a final note, the amount of primary memory used by

ADMIRE depends on the probe locations and the
minimum kernel width specified. If the whole human
genome is covered with probes (say 3 million or more
probes) and the minimum kernel width specified is 1 kb,
the maximum memory usage will be 2 GB, which might be
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smaller than the dataset itself. Computation time is largely
influenced by the number of recurrent aberrations
detected, which might take up to 8 h on an Intel Core
i7-950 processor for a dataset consisting of 3 million
probes, 200 samples and 200 recurrent events.

AVAILABILITY

ADMIRE can be downloaded at http://bioinformatics.
nki.nl/admire/. This includes a zipped file with the
required Matlab code and glioma dataset.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Methods, Supplementary Figures 1–4
and Supplementary References [18,19].
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