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Abstract

Change-point detection in health care data has recently obtained considerable attention due

to the increased availability of complex data in real-time. In many applications, the observed

data is an ordinal time series. Two kinds of test statistics are proposed to detect the struc-

tural change of cumulative logistic regression model, which is often used in applications for

the analysis of ordinal time series. One is the standardized efficient score vector, the other

one is the quadratic form of the efficient score vector with a weight function. Under the null

hypothesis, we derive the asymptotic distribution of the two test statistics, and prove the

consistency under the alternative hypothesis. We also study the consistency of the change-

point estimator, and a binary segmentation procedure is suggested for estimating the loca-

tions of possible multiple change-points. Simulation results show that the former statistic

performs better when the change-point occurs at the centre of the data, but the latter is pref-

erable when the change-point occurs at the beginning or end of the data. Furthermore, the

former statistic could find the reason for rejecting the null hypothesis. Finally, we apply the

two test statistics to a group of sleep data, the results show that there exists a structural

change in the data.

Introduction

In categorical data analysis, ordinal categorical variables are frequently encountered in many

contexts, such as health status (very good, good, so-so, bad, very bad), blood pressure (low,

normal, high). The data observed hourly or daily constitutes an ordinal time series. The cumu-

lative logistic regression model is often applied for analyzing the ordinal time series [1]. Some-

times the model may change at some unknown time moments (change-points) while it

remains stable between these points. Structural stability is of prime importance in statistical

modeling and inference. If the parameters have changed with the observed sample, inferences

can be severely biased, and forecasts lose accuracy. Because of the importance of parameter sta-

bility, it is necessary to detect the structural change. Studies of structural change detection has

been a popular research subject in statistics, see Csörgö and Horváth [2], Bai and Perron [3],
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Lee et al. [4], Perron [5], Gombay [6], Wang et al. [7], Chen et al. [8], Baranowski et al. [9],

Wang et al. [10], Chen [11] and Liu et al. [12] for reviews of the field.

Structural changes detection in categorical data have been considered as well. Höhle [13]

proposed a prospective CUSUM change-point detection procedure to detect a structural

change in categorical time series; Wang et al. [10] described a procedure based on high-dimen-

sional homogeneity test to detect and estimate multiple change-point in multinomial data;

Plasse and Adams [14] illustrated a multiple change-point detection method for categorical

data streams, which could adaptively monitor the category probabilities. As generalized linear

regression models for categorical time series allow for parsimonious modeling and incorpo-

ration of random time-dependent covariates, Fokianos and Kedem [15] suggested the general-

ized linear model for categorical time series modeling. For change-point detection in the

generalized linear model, Xia et al. [16] introduced two procedures to sequentially detect the

structural change in generalized linear models with assuming independence; Hudecová [17]

investigated the detection of change in autoregressive models for binary time series; Fokianos

et al. [18] provided a statistical procedure based on the partial likelihood score process to

detect a structural change in binary logistic regression model; Gombay et al. [19] and Li et al.

[20] discussed retrospective change detection and sequential change detection in multinom-

inal logistic regression model.

Score test for detection of changes in time series models has been studied by Gombay and

Serban [21], Gombay et al. [22]. The test statistic is usually computationally less demanding

than the likelihood ratio test statistic. In this paper, we first propose a test statistic based on the

efficient score vector to detect a structural change in cumulative logistic regression model,

which extends the change-point detection of Gombay et al. [19]. Simulation shows that the

empirical power of the proposed statistic is low when the change-point occurs at the beginning

or end of the data. To this end, we propose a new statistic, which is the quadratic form of the

efficient score vector and has a weight function. Under the null hypothesis of no change, we

derive the asymptotic distribution of the two statistics, and prove the consistency under the

alternative hypothesis. We also study the consistency of the change-point estimator, and a

binary segmentation procedure is suggested for estimating the locations of possible multiple

change-points. Simulation results show that the empirical size of the two statistics is close to

the significance level 0.05, and the empirical power is approximate to 1 when the sample size is

large. The empirical power of the former statistic is higher when the change-point is located at

the centre of the data, but the latter performs better when the change-point is located at the

beginning or end of the data. Furthermore, the former statistic could find the reason for reject-

ing the null hypothesis. Finally, we apply the two statistics to study a group of sleep data, and

find a structural change in the data.

The model and hypotheses

Consider a categorical time series {Yt} with m categories, Yt = (Yt1, . . ., Ytq)0, q = m − 1,

Ytj ¼
1; if the j category is observed at time t;

0; otherwise

(

for t = 1, 2, . . ., n and j = 1, . . ., q, Ytm ¼ 1 �
Pq

j¼1

Ytj. The vector of conditional probability πt =

(πt1, . . ., πtq)0 is defined by

ptj ¼ EðYtjjF t� 1Þ ¼ PðYtj ¼ 1jF t� 1Þ; j ¼ 1; . . . ; q;
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for every t, ptm ¼ 1 �
Pq

j¼1

ptj, where

F t� 1 ¼ sfY t� 1;Y t� 2; . . . ;Zt� 1;Zt� 2; . . .g;

{Zt−1} denotes the p × q covariate matrices.

Define an ordinal time series {Yt}, where Yt = j is equivalent to Ytj = 1 for j = 1, 2, . . ., m,

t = 1, 2, . . ., n. Let {Xt} be a latent variable time series, where Xt = −β0zt−1 + et, β 2 Rd, zt−1 is a

d-dimensional covariate vector, et is a white noise process with continuous cumulative distri-

bution function F. Suppose that −1 = α0 < α1 < � � �< αm =1 are threshold parameters, such

that Yt satisfies

Yt ¼ j if aj� 1 � Xt < aj

for j = 1, 2, . . ., m. According to the equivalence relation between Yt and Ytj, we have

ptj ¼ PðYtj ¼ 1jF t� 1Þ ¼ PðYt ¼ jjF t� 1Þ ¼ Pðaj� 1 � Xt < ajjF t� 1Þ

¼ Fðaj þ β0zt� 1Þ � Fðaj� 1 þ β0zt� 1Þ;

then

PðYt � jjF t� 1Þ ¼ Fðaj þ β0zt� 1Þ; j ¼ 1; 2; . . . ;m:

If F(x) is the logistic distribution function, then F−1 is the logistic link function log it(x),

where logit (x) = ln (x/(1 − x)), 0< x< 1. Thus we have

log itðPðYt � jjF t� 1ÞÞ ¼ aj þ β0zt� 1; j ¼ 1; 2; . . . ; q;

which is called the cumulative logistic regression model.

Let θ = (α1, . . ., αq, β0)0 be a p-dimensional parameter vector, p = q + d. In this paper we

wish to test if there exists a structural change in the parameter θ, that is,

H0 : θ ¼ θ0; t ¼ 1; 2; . . . ; n;

HA : θ ¼ θ0; t ¼ 1; 2; . . . ; k�; and θ ¼ θ�
0
; t ¼ k� þ 1; . . . ; n;

where θ0 is the true value of θ, k� denotes the change-point which occurs in some of the param-

eter θ, θ0 6¼ θ�
0
, θ0, θ�

0
and k� are unknown.

Next, we estimate the parameter vector θ by the partial likelihood method (Fokianos et al.

[18]). The partial likelihood function

PLðθÞ ¼
Yn

t¼1

f ðY t; θjF t� 1Þ ¼
Yn

t¼1

Ym

j¼1

p
Ytj
tj ðθÞ

and the partial log-likelihood function

lðθÞ ¼ logPLðθÞ ¼
Xn

t¼1

Xm

j¼1

Ytj logptjðθÞ ð1Þ

are defined in Gombay et al. [19]. Denote the partial score vector

SnðθÞ ¼ rl θð Þ ¼
@lðθÞ
@θ1

; . . . ;
@lðθÞ
@θp

 !0

¼
Xn

t¼1

Zt� 1U tðθÞðY t � ptðθÞÞ ¼
Xn

t¼1

Zt� 1DtðθÞS
� 1

t ðθÞðY t � ptðθÞÞ;
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where

Zt� 1 ¼

1 0 � � � 0

0 1 � � � 0

..

. ..
. ..

.

0

zt� 1

0

zt� 1

� � �

� � �

0

zt� 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

p�q

;

U tðθÞ ¼ DtðθÞΣ
� 1

t ðθÞ, Dt θð Þ ¼
@hðηtÞ
@η0t

, h(ηt) = (h1(ηt), . . ., hq(ηt))0, ηt ¼ Z0t� 1
θ ¼ ðZt1; . . . ; ZtqÞ

0
.

h1(ηt), . . ., hq(ηt) satisfies

pt1ðθÞ ¼ h1ðηt1Þ ¼ FðZt1Þ; . . . ;

ptjðθÞ ¼ hjðηtÞ ¼ FðZtjÞ � FðZtðj� 1ÞÞ; j ¼ 2; . . . ; q;

where F xð Þ ¼ 1

1þexpð� xÞ. St(θ) is the conditional covariance matrix of Yt with

Σði;jÞt θð Þ ¼

(
� ptiðθÞptjðθÞ; i 6¼ j;

ptiðθÞð1 � ptiðyÞÞ; i ¼ j;

for i, j = 1, . . ., q [23].

To obtain the existence, consistency and asymptotic normality of the maximum partial like-

lihood estimator, we give a few assumptions on the the covariate matrices {Zt} and parameter

vector θ.

Assumption 1 The parameter vector θ 2 O � Rp
, whereO is an open set.

Assumption 2 The link function h is twice continuously differentiable, and satisfies det(@ h
(ηt)/@ ηt) 6¼ 0, where ηt ¼ Z0t� 1

θ.

Assumption 3 The covariate matrix Zt−1 lies almost surely in a non-random compact subset

F of Rp�q such that P
�
λ0
�Pn

t¼1

Zt� 1Z
0

t� 1

�
λ > 0

�
¼ 1, Z0t� 1

θ lies almost surely in the domain H of

h for all Zt−1 2 F and θ 2 O, where λ 2 Rp
, λ 6¼ 0.

Assumptions 1 and 2 ensure that the second derivative of l(θ) is continuous, det(@ h(ηt)/@
ηt) 6¼ 0 implies that Ut(θ) is not singular (Fokianos and Kedem [24]). From Assumption 3,

GnðθÞ ¼
Xn

t¼1

Zt� 1U tðθÞΣtðθÞU
0

tðθÞZ
0

t� 1
:

is positive definite with probability one [24]. Since the likelihood estimation employs an

assumption regarding ergodicity of the joint process ðYT
t ; z

T
t Þ

T
(Fokianos and Truquet [25]),

let {Yt} be a time series taking values in a finite set E with cardinal m, and such that

PðYt ¼ ojY
�

t� 1
; zÞ ¼ qðojY �t� 1

; z�t� 1
Þ; t 2 Z;

where z ¼ fzt; t 2 Zg, Y �t� 1
¼ fYt� 1� j; j � 0g, z�t� 1

¼ fzt� 1� j; j � 0g, q is a transition kernel.

We assume that the applications ðo; y; xÞj ! qðojy; x�t� 1
Þ are measurable, as applications from

E� Em �D to (0, 1), where fxt; t 2 Zg is a sequence, x�t� 1
¼ fxt� 1� j; j � 0g, D 2 BðRd

Þ
�Z

is
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such that Pðz 2 DÞ ¼ 1. Assume that v1 and v2 are two probability measures on E, define

dTV v1; v2ð Þ ¼
1

2

X

f2E

jv1ðf Þ � v2ðf Þj:

For y, y0 2 Em and a positive integer s, we write y¼s y0 if yi ¼ y0i, 0� i� s − 1 (Truquet [26]).

Assumption 4 The d-dimensional covariate vector {zt−1} is stationary and ergodic.
Assumption 5 Setting for s� 0,

bs ¼ sup
n
dTVðqð�jy; x

�

t Þ; qð�jy
0; x�t ÞÞ : ðy; y0; xÞ 2 Em � Em �D; t 2 Z; y¼s y0

o
;

we have b0 < 1 and
X

s�0

bs <1.

Assumptions 4 and 5 guarantees that ðYT
t ; z

T
t Þ

T
is stationary and ergodic [26]. Assumptions

1–5 are required to obtain consistency and asymptotic normality of the maximum likelihood

estimator. However, existence of moments for the covariate process is still required to study

large sample properties of the maximum likelihood estimator [25]. So we have

Assumption 6 EjzðiÞt� 1j
4
<1, i = 1, 2, � � �, d, where zðiÞt� 1, 1� i� d are components of vector

zt–1.

The proposed testing procedure

Based on the partial likelihood score process, a test statistic is defined by

W1 ¼ max
1�k�n

n� 1=2T̂ � 1=2

n Skðθ̂nÞ

where T̂ n ¼
1

n Snðθ̂nÞS
0

nðθ̂nÞ, θ̂n is the maximum partial likelihood estimator of θ, which can be

obtained by maximizing the partial log-likelihood function (1) (see Fokianos and Kedem

[23]).

Under the null hypothesis of no change, we derive the asymptotic distribution of the pro-

posed test statistic.

Theorem 1 If Assumptions 1–6 and H0 hold, then we have

W1 ¼ max
1�k�n

n� 1=2T̂ � 1=2

n Skðθ̂nÞ!
d sup

0<t<1

B tð Þ;

where T̂ n ¼
1

n Snðθ̂nÞS
0

nðθ̂nÞ, B(t) is a p-dimensional vector of independent Brownian bridge,!d

means convergence in distribution.

Proof: Since Snðθ̂nÞ ¼ 0, we can write

n� 1=2ðSkðθ̂nÞÞ ¼ n� 1=2 Skðθ̂nÞ �
k
n
SnðŷnÞ

� �

;
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let SðiÞk denote the i-th element of Sk, i = 1, 2, . . ., p, θ0 is the true value of θ, then we have

n� 1=2SðiÞk θ̂n

� �
¼ n� 1=2 SðiÞk ðθ̂nÞ �

k
n
SðiÞn ðθ̂nÞ

� �

¼ n� 1=2 SðiÞk θ0ð Þ �
k
n
SðiÞn θ0ð Þ

� �

� n1=2
Xp

j¼1

ðθ̂ðjÞn � θðjÞ
0
Þ

�
1

n

Xk

t¼1

ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ
ðiÞ
ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ

ðjÞ

 

�
k
n

Xn

t¼1

ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ
ðiÞ
ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ

ðjÞ

!

þ EðiÞkn:

Next, it is similar to the proof of Proposition 3 in Gombay et al. [19], we can prove that

max
1�k�n

1

n

�
�
�
�

Xk

t¼1

ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ
ðiÞ
ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ

ðjÞ

�
k
n

Xn

t¼1

ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ
ðiÞ
ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ

ðjÞ
�
�
�
� ¼ oPð1Þ

By Theorem 4.1 of Fokianos and Kedem [23], we get

n1=2ðθ̂ðiÞn � θðiÞ
0
Þ ¼ OPð1Þ:

The error terms EðiÞkn have higher orders of products of ðθ̂ðiÞn � θðiÞ
0
Þ, it can be shown that

EðiÞkn ¼ oPð1Þ. According to Proposition 1 (Gombay et al. [19]) and Slutsky’s theorem, we get

max
1�k�n

n� 1=2T̂ � 1=2

n Skðθ̂nÞ!
d sup

0<t<1

BðtÞ

as n!1.

Remark 1 When using the above test, if there exists some i, 1� i� p,

max
1�k�n

n� 1=2

�
�
�
�ðT̂

� 1=2Skðθ̂nÞÞ
ðiÞ
�
�
�
� � Cða�Þ;

the null hypothesis is rejected and a change-point occurs, α� = 1 – (1 – α)1/p. Let B(u) be a one-

dimensional Brownian bridge, Csörgö and Révész [27] suggested that C(α�) could be obtained

by

P sup
0�u�1

jBðuÞj � x
� �

¼
X

k6¼0

ð� 1Þ
kþ1expð� 2k2x2Þ:

Simulation shows that W1 has poor performance at the boundaries. In particular, the limit-

ing Brownian bridge is tied down at t = 0 and t = 1 (meaning B(0) = B(1) = 0), and hampers

the ability of the test to detect the structural change occurring near the beginning or end of the

data. Many authors address this problem by adding a weight function [28]. Therefore, we con-

struct a new test statistic

W2 ¼ max
l<k

n<h

n� 1ξ0kξk
k=nð1 � k=nÞ

;
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which is the quadratic form of the efficient score vector and has a weight function, where

ξk ¼ T̂ � 1=2

n SkðŷnÞ
� �ði1Þ

; . . . ; T̂ � 1=2

n SkðŷnÞ
� �ðijÞ

� �0

;

{i1, i2, . . ., ij}� {1, 2, . . ., p}, j = 1, 2, . . ., p, 0< l< h< 1.

Theorem 2 If Assumptions 1–6 and H0 hold, then we have

W2 ¼ max
l<k

n<h

n� 1x
0

kxk
k=nð1 � k=nÞ

!
d sup

l<t<h

Pj

i¼1

B2
i ðtÞ

tð1 � tÞ

for each 0< l< h< 1, Bi(t), i = 1, . . ., j are independent one-dimensional Brownian bridges.
The conclusion of Theorem 2 can be deduced directly from Theorem 1. To obtain the critial

values of the asymptotic distribution, Csörgö and Horváth [2] used a result of Vostrikova [29]

to show that

P sup
l<t<h

Pj

i¼1

B2
i ðtÞ

tð1 � tÞ
� x

8
>><

>>:

9
>>=

>>;

¼
xj=2e� x=2

2j=2Gðj=2Þ
1 �

j
x

� �

log
ð1 � lÞh
lð1 � hÞ

þ
4

x
þ O

1

x2

� �� �

as x!1. For example, when α = 0.05, l = 0.05, h = 0.95, j = 2, the critical value C(α) = 13.1.

Under the alternative hypothesis, there exists a structural change in the model, then we will

prove the consistency of the two statistics.

Theorem 3 Suppose Assumptions 1–6 and HA hold, if the coefficient changes from θ0 to θ�0 at
k�, θ�ðjÞ

0
¼ θðjÞ

0
þ d, θðjÞ

0
is the jth component of θ0, j 2 {1, 2, . . ., p}, where δ is a constant, δ 6¼ 0,

then we have

(i).

W1 ¼ max
1�k�n

n� 1=2 T̂ � 1=2

n SkðŷnÞ
�
�
�

�
�
�!

P
1;

(ii).

W2 ¼ max
l<k

n<h

n� 1x
0

kxk
k=nð1 � k=nÞ

!
P
1;

where 0< l< h< 1, k�k denotes the Euclidean norm of a vector,!P means convergence in
probability.

Proof: Under the alternative hypothesis θ = θ0, t = 1, 2, . . ., k�, θ ¼ θ�
0
, t = k� + 1, . . ., n.

Suppose that the coefficient changes from θ0 to θ�
0

at k�, θ�ðjÞ
0
¼ θðjÞ

0
þ d, θðjÞ

0
is the j-th compo-

nent of θ0, 1< j< p, where δ is a constant, δ 6¼ 0.

When k� < k< n,

n� 1=2Skðθ̂nÞ ¼ n� 1=2ðS1kðθ̂nÞ þ S2kðθ̂nÞÞ;

where S1k ¼
Xk�

t¼1

Zt� 1U tðθ̂nÞðY t � ptðθ̂nÞÞ, S2k ¼
Xk

t¼k�þ1

Zt� 1U tðθ̂nÞðY t � ptðθ̂nÞÞ. For the ith
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component of S1kðθ̂nÞ, 1< i< p, we have

n� 1=2SðiÞ1kðθ̂nÞ ¼ n� 1=2SðiÞ1kðθ0Þ þ n1=2
Xp

j¼1

ðθ̂ðjÞn � θðjÞ
0
Þ

�
1

n

Xk�

t¼1

ðZt� 1U tðθ0ÞðY � ptðθ0ÞÞÞ
ðiÞ
ðZt� 1U tðθ0ÞðY � ptðθ0ÞÞÞ

ðjÞ
þ EðiÞ1k

n� 1=2SðiÞ2kðθ̂nÞ ¼ n� 1=2SðiÞ2kðθ
�

0
Þ þ n1=2

Xp

j¼1

ðθ̂ðjÞn � θ�ðjÞ
0
Þ

�
1

n

Xk

t¼k�þ1

ðZt� 1U tðθ
�

0
ÞðY � ptðθ

�

0
ÞÞÞ
ðiÞ
ðZt� 1U tðθ

�

0
ÞðY � ptðθ

�

0
ÞÞÞ
ðjÞ
þ EðiÞ2k

where EðiÞ1k has two orders of products of ðθ̂n

ðjÞ
� θðjÞ

0
Þ, EðiÞ2k has two orders of products of

ðθ̂ðjÞn � θ�ðjÞ
0
Þ. By Theorem 1 we have

n� 1=2SðiÞ2kðθ
�

0
Þ ¼ OPð1Þ

as n!1. Following Assumptions 1–6, we conclude that

1

n

Xk

t¼k�þ1

ðZt� 1U tðθ
�

0
ÞðY � ptðθ

�

0
ÞÞÞ
ðiÞ
ðZt� 1U tðθ

�

0
ÞðY � ptðθ

�

0
ÞÞÞ
ðjÞ
¼ OPð1Þ:

Since δ 6¼ 0, we have

n1=2ðθ̂ðjÞn � θ�ðjÞ
0
Þ ¼ n1=2ðθ̂ðjÞn � θðjÞ

0
� dÞ!

P
1

as n!1. When 1< k< k�, the proof is similar. The proof of (ii) is similar to the proof of (i).

Once the null hypothesis is rejected, indicating there may exist a change-point, then we

locate the change-point position by

k̂� ¼ min k : max
1�k�n

n� 1=2 ðT̂ � 1=2

n SkðŷnÞÞ
ðiÞ

�
�
�

�
�
�; 1 � i � p

� �

: ð2Þ

The following theorem shows that the change-point estimator k̂� is consistent for the true

change-point k�, as n!1.

Theorem 4 Let k� be the true position of change-point under the alternative hypothesis HA

and k̂� be the estimate of k� given by (2). Under Assumptions 1–6, then k̂� is consistent to k�, as

n!1.

Proof: First we note that

n� 1=2SðiÞk θ̂n

� �
¼ n� 1=2 SðiÞk ðθ̂nÞ �

k
n
SðiÞn ðθ̂nÞ

� �

¼ n� 1=2 SðiÞk θ0ð Þ �
k
n
SðiÞn θ0ð Þ

� �

� n1=2
Xqþd

j¼1

ðθ̂ðjÞn � θðjÞ
0
Þ

�
1

n

Xk

t¼1

ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ
ðiÞ
ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ

ðjÞ

 

�
k
n

Xn

t¼1

ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ
ðiÞ
ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ

ðjÞ

!

þ EðiÞkn;
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where i = 1, 2, . . ., p. Since

SðiÞk ðθ0Þ �
k
n
SðiÞn ðθ0Þ ¼

kðn � kÞ
n

SðiÞk ðθ0Þ

k
�
SðiÞn� kðθ0Þ

n � k

 !

;

where Sn� kðθ0Þ ¼
Pn

t¼kþ1

Zt� 1U tðθ0ÞðY t � ptðθ0ÞÞ. And because

EðYtjjF t� 1Þ ¼ ptjðy0Þ; t ¼ 1; 2; � � � ; k�; j ¼ 1; 2; � � � ;m � 1;

EðYtjjF t� 1Þ ¼ ptjðy
�

0
Þ; t ¼ k� þ 1; k� þ 2; � � � ; n; j ¼ 1; 2; � � � ;m � 1;

Therefore E SðiÞk ðθ0Þ �
k
n S
ðiÞ
n ðθ0Þ

� �
increases as k = 1, 2, � � �, k�, and decrease as k = k� + 1, k�

+ 2, � � �, n, then we take (2) as the change-point estimator.

By the proof of Theorem 1, we have

� n1=2
Xp

j¼1

ðθ̂ðjÞn � θðjÞ
0
Þ

�
1

n

Xk

t¼1

ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ
ðiÞ
ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ

ðjÞ

 

�
k
n

Xn

t¼1

ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ
ðiÞ
ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ

ðjÞ

!

¼ oP 1ð Þ

and EðiÞkn ¼ oPð1Þ. By Theorem 2 of Gombay [6], to prove (2) it is enough to show that

lim
K!1

lim sup
n!1

P max
1<k�k�� K

fk � max
k�� K<k�k�þK

fk

� �

¼ 0; ð3Þ

and

lim
K!1

lim sup
n!1

P max
k�þK<k�n

fk � max
k�� K<k�k�þK

fk

� �

¼ 0; ð4Þ

where fk ¼ n� 1=2 SðiÞk ðθ̂nÞ �
k
n S
ðiÞ
n ðθ̂nÞ

� �
. To prove (3), assume that there exists a constant K, K

< k�,

P
�

max
1<k�k�� K

n� 1=2 SðiÞk ðθ̂nÞ �
k
n
SðiÞn ðθ̂nÞ

� �

> max
k�� K<k�k�þK

n� 1=2 SðiÞk ðθ̂nÞ �
k
n
SðiÞn ðθ̂nÞ

� ��

� P
�

max
1<k�k�� K

n� 1=2 SðiÞk ðθ̂nÞ �
k
n
SðiÞn ðθ̂nÞ

� �

> max
k�� K<k�k�

n� 1=2 SðiÞk ðθ̂nÞ �
k
n
SðiÞn ðθ̂nÞ

� ��

¼ P
�

9k : 1 < k � k� � K; max
1�r�k�� k

n� 1=2 SðiÞr ðθ̂nÞ �
r
n
SðiÞn ðθ̂nÞ

� �
� 0

�

� P
�

n� 1=2 SðiÞK ðθ̂nÞ �
K
n
SðiÞn ðθ̂nÞ

� �

< 0

�

¼ P
�

n� 1=2 SðiÞK ðθ0Þ �
K
n
SðiÞn ðθ0Þ

� �

þ S�ðiÞK < 0

�

;
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where

S�ðiÞK ¼ � n
1=2
Xp

j¼1

ðθ̂ðjÞn � θðjÞ
0
Þ

�
1

n

Xk

t¼1

ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ
ðiÞ
ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ

ðjÞ

 

�
k
n

Xn

t¼1

ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ
ðiÞ
ðZt� 1U tðθ0ÞðY t � ptðθ0ÞÞÞ

ðjÞ

!

þ EðiÞkn ¼ oP 1ð Þ:

By Theorem 1, choosing δ> 0 arbitrarily

lim
n!1

P n� 1=2 SðiÞK ðθ0Þ �
K
n
SðiÞn ðθ0Þ

� �

þ S�ðiÞK < 0

� �

< d:

if K is large enough, so (3) is proven. The proof of (4) is the same by symmetry.

If we consider detecting multiple structural changes in the sequences, we can employ the

binary segmentation method [30]. First use the single change test. If H0 is rejected, then find

k̂�ð1Þ by (2). Next divide the sample into two subsamples fYt; 1 � t � k̂�ð1Þg and

fYt; k̂�ð1Þ > t � ng, and test both subsamples for further changes. One continues this seg-

mentation procedure until no subsamples contain further change-points.

Simulation

To evaluate the finite sample performance of the proposed two test statistics (W1 and W2), we

first simulate an ordinal time series {Yt} with m = 3 categories and length n = 100, 200, 500,

1000. The data are generated by

ln
PðYt � 1Þ

PðYt > 1Þ
¼ a1 � b1 cos ð2pt=12Þ � b2Yðt� 1Þ1 � b3Yðt� 1Þ2;

ln
PðYt � 2Þ

PðYt > 2Þ
¼ a2 � b1 cos ð2pt=12Þ � b2Yðt� 1Þ1 � b3Yðt� 1Þ2;

where α1 = −0.5, α2 = 0.2, (β1, β2, β3)0 = (2, 0.5, 1)0, then the parameter vector θ = (α1, α2, β1, β2,

β3)0. All simulation results are based on 1000 replications at the 0.05 significance level.

Suppose that we are only interested in α1 and β1, the others are nuisance parameters.

Table 1 shows the empirical size of the two statistics under the null hypothesis H0. W1
1

and W2
1

denote the empirical size of W1 when testing for change in each of α1 and β1, respectively. W1

and W2 denote the empirical size of W1 and W2 when testing for change in both α1 and β1,

respectively.

It can be seen from Table 1 that the empirical size increases as the historical sample size n
increases. When the sample size n = 1000, the empirical size of W1 and W2 is close to the

Table 1. The empirical size of W1 and W2 under the null hypothesis H0.

n 100 200 500 1000

W1
1

0.013 0.014 0.018 0.019

W2
1

0.01 0.018 0.02 0.014

W1 0.038 0.027 0.046 0.037

W2 0.038 0.045 0.033 0.047

https://doi.org/10.1371/journal.pone.0256128.t001
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significance level 0.05. In addition, based on the relation between the probability of type I

errors when detecting α1 or β1 and the overall probability of type I errors, that is W1
1
, W2

1
and

W1 should satisfy 1 � W1 ¼ ð1 � W1
1
Þð1 � W2

1
Þ. The results show that

1 � W1 � ð1 � W1
1
Þð1 � W2

1
Þ, which confirms the above inference.

Under the alternative hypothesis HA, we consider the following three different situations:

Hð1ÞA : a1 changes from � 0:5 to � 1 at k�; b1 changes from 2 to 3 at k�;

Hð2ÞA : a1 changes from � 0:5 to � 1 at k�;

Hð3ÞA : b1 changes from 2 to 3 at k�:

where k� = 0.1n, . . ., 0.9n. Tables 2–4 summarize the empirical power of W1 and W2 under the

alternative hypotheses Hð1ÞA , Hð2ÞA and Hð3ÞA when k� = 0.1n, 0.5n, 0.8n. W1
1

and W2
1

denote the

empirical power when testing for change in each of α1 and β1, respectively. W1 and W2 denote

the empirical power of W1 and W2 when testing for change in both α1 and β1. From the simu-

lation results, it can be seen that the empirical power of the two statistics increases with the

sample size n, and is close to 1 when n = 1000. In addition, The empirical power of the two sta-

tistics varies according to different change-point locations, and reaches maximum when k� =

0.5n. Fig 1 describes the empirical power of the two statistics when k� = 0.1n, . . ., 0.9n. It is

Table 2. The empirical power of W1 and W2 under the alternative hypothesis Hð1ÞA .

k� = 0.1n k� = 0.5n k� = 0.8n

n 100 200 500 1000 100 200 500 1000 100 200 500 1000

W1
1

0.016 0.016 0.032 0.057 0.055 0.092 0.292 0.6 0.027 0.04 0.094 0.208

W2
1

0.01 0.028 0.089 0.14 0.069 0.186 0.502 0.859 0.027 0.042 0.112 0.33

W1 0.037 0.059 0.102 0.215 0.117 0.264 0.66 0.946 0.029 0.077 0.213 0.454

W2 0.084 0.153 0.3 0.541 0.068 0.168 0.569 0.924 0.03 0.064 0.259 0.643

https://doi.org/10.1371/journal.pone.0256128.t002

Table 4. The empirical power of W1 and W2 under the alternative hypothesis Hð3ÞA .

k� = 0.1n k� = 0.5n k� = 0.8n

n 100 200 500 1000 100 200 500 1000 100 200 500 1000

W1
1

0.006 0.017 0.019 0.029 0.013 0.026 0.029 0.037 0.011 0.015 0.02 0.029

W2
1

0.02 0.031 0.077 0.158 0.059 0.19 0.599 0.901 0.014 0.039 0.13 0.415

W1 0.032 0.059 0.097 0.203 0.078 0.231 0.615 0.921 0.037 0.061 0.178 0.433

W2 0.1 0.142 0.265 0.436 0.052 0.142 0.461 0.813 0.022 0.036 0.145 0.429

https://doi.org/10.1371/journal.pone.0256128.t004

Table 3. The empirical power of W1 and W2 under the alternative hypothesis Hð2ÞA .

k� = 0.1n k� = 0.5n k� = 0.8n

n 100 200 500 1000 100 200 500 1000 100 200 500 1000

W1
1

0.018 0.021 0.052 0.086 0.084 0.192 0.541 0.857 0.031 0.084 0.184 0.495

W2
1

0.012 0.017 0.018 0.026 0.016 0.01 0.028 0.028 0.016 0.022 0.026 0.019

W1 0.028 0.044 0.082 0.098 0.104 0.201 0.545 0.873 0.053 0.067 0.215 0.498

W2 0.029 0.047 0.086 0.222 0.064 0.127 0.394 0.805 0.064 0.095 0.252 0.565

https://doi.org/10.1371/journal.pone.0256128.t003
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showed that the empirical power of W1 is higher than that of W2 when the change-point is

located at the centre of the data, but W2 performs better when the change-point is located at

the beginning or end of the data.

In simulation for Table 2 both α1 and β1 change, whereas in Tables 3 and 4 only α1 and β1

changes at different change-points. Tables 3 and 4 indicate that most power stems from the

parameter that is changed, which means W1 that could not only detect change in parameters,

but also find the reason for rejecting the null hypothesis.

Application to real data

To illustrate the applicability of our results, we use 1000 sleep data (Yt) collected from the sleep

state measurements of a newborn infant sampled every 30 seconds (Fokianos and Kedem

[23]). The sleep states are classified as follows: (1) quiet sleep, (2) indeterminate sleep, (3) active

sleep, (4) awake (Fig 2). According to the newborn’s sleep pattern, the sleep states have the fol-

lowing order: “(4)” < “(1)” < “(2)” < “(3)”, which means {Yt} is an ordinal time series. One

goal of analyzing these data is to establish a correct model, and predict the sleep state based on

the covariate information. Refer to example 6.3 of [23], Yt−1 = (Y(t−1)1, Y(t−1)2, Y(t−1)3)0 is a sig-

nificant predictor, which can be considered as a covariate. Then these data could be modeled

by a cumulative logistic regression model

ln
PðYt � 1Þ

PðYt > 1Þ
¼ a1 þ b1Yðt� 1Þ1 þ b2Yðt� 1Þ2 þ b3Yðt� 1Þ3;

ln
PðYt � 2Þ

PðYt > 2Þ
¼ a2 þ b1Yðt� 1Þ1 þ b2Yðt� 1Þ2 þ b3Yðt� 1Þ3;

ln
PðYt � 3Þ

PðYt > 3Þ
¼ a3 þ b1Yðt� 1Þ1 þ b2Yðt� 1Þ2 þ b3Yðt� 1Þ3;

where α1 = −14.722, α2 = −10.389, α3 = −4.078, β1 = 18.663, β2 = 12.173, β3 = 7.566.

Let θ = (α1, α2, α3, β1, β2, β3)0, then testing whether there exists a structural change in θ, the

result finds that a structural change occurs in θ by computing the test statistics W1 and W2.

Fig 1. The empirical power of W1 and W2 under Hð1ÞA when k� = 100, 200, . . ., 900, n = 1000.

https://doi.org/10.1371/journal.pone.0256128.g001
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After this, using W1 to check which parameter occurs a structural change, the result shows that

there exists a structural change in α2 at 596. Specifically, the maximum of W1 is 3.446, and the

critical value is 1.35 when p = 1, α = 0.05, which gives a significant result (Fig 3). Re-estimate

the parameters based on the first 596 samples and the last 404 samples, we have â2 ¼ � 10:799

for the former and â2 ¼ � 8:57 for the latter. We obtain AIC = 1646.65 for the adjusted model,

and AIC = 1652.89 when assuming there is no change-point, which means to improve the

model in some extent, so that we can make accurate predictions.

Concluding remark

Cumulative logistic regression model is a generalized linear model, and has a wide application

in health care. In this paper, two test statistics based on the efficient score vector are proposed

to detect the structural change of cumulative logistic regression model. Under the null hypoth-

esis of no change, we derive the asymptotic distribution of the two test statistics, and prove the

consistency under the alternative hypothesis. Furthermore, we prove the consistency of the

Fig 2. 1000 sleep data (Yt) collected from the sleep state measurements of a newborn infant sampled every 30

seconds.

https://doi.org/10.1371/journal.pone.0256128.g002

Fig 3. The value of W1 when testing for α2, the critical value at α = 0.05 is 1.35, and the location of change-point is

596.

https://doi.org/10.1371/journal.pone.0256128.g003
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change-point estimator, and a binary segmentation procedure is provided for estimating the

locations of possible multiple change-points. The finite sample performance is investigate by a

monte carlo simulation, the results shows that the empirical size of the two statistics is close to

the significance level 0.05, and the empirical power is approximate to 1 when the sample size is

large. From the empirical power of view, the two test statistics have different advantages when

the change-point occurs at different locations. Furthermore, the proposed statistic W1 could

find the reason for rejecting the null hypothesis. Finally we apply the two test statistics to study

1000 sleep data collected from the sleep state measurements of a newborn infant sampled

every 30 seconds, the results shows there exists a structural change in the model.
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