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A prediction model for COVID-19 liver dysfunction in
patients with normal hepatic biochemical parameters
Jianfeng Bao1,*, Shourong Liu1,*, Xiao Liang2,3,4,* , Congcong Wang5, Lili Cao6, Zhaoyi Li5, Furong Wei5, Ai Fu5,
Yingqiu Shi2,3,4, Bo Shen7, Xiaoli Zhu7, Yuge Zhao8, Hong Liu8, Liangbin Miao5, Yi Wang5, Shuang Liang2,3,4, Linyan Wu6,
Jinsong Huang1 , Tiannan Guo2,3,4 , Fang Liu5

Coronavirus disease 2019 (COVID-19) patients with liver dys-
function (LD) have a higher chance of developing severe and
critical disease. The routine hepatic biochemical parameters ALT,
AST, GGT, and TBIL have limitations in reflecting COVID-19–related
LD. In this study, we performed proteomic analysis on 397 serum
samples from 98 COVID-19 patients to identify new biomarkers for
LD. We then established 19 simple machine learning models using
proteomic measurements and clinical variables to predict LD in a
development cohort of 74 COVID-19 patients with normal hepatic
biochemical parameters. Themodel based on the biomarker ANGL3
and sex (AS) exhibited the best discrimination (time-dependent
AUCs: 0.60–0.80), calibration, and net benefit in the development
cohort, and the accuracy of this model was 69.0–73.8% in an in-
dependent cohort. The AS model exhibits great potential in sup-
porting optimization of therapeutic strategies for COVID-19
patients with a high risk of LD. This model is publicly available at
https://xixihospital-liufang.shinyapps.io/DynNomapp/.
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Introduction

Coronavirus disease 2019 (COVID-19), which is caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has be-
come a pandemic. Different levels of liver disease have been re-
ported in more than half of the infected population (Cai et al, 2020;
Jothimani et al, 2020) and are recognized as an essential compo-
nent of COVID-19 (Marjot et al, 2021).

In the early stage of COVID-19, some patients with normal hepatic
biochemical parameters (alanine aminotransferase, aspartate

aminotransferase, γ-glutamyl transferase, and total bilirubin) ex-
perience progression to liver dysfunction (LD) after the initiation of
hepatotoxic-antiviral drugs, with even dramatic progression to liver
failure without predictable circumstances (Carothers et al, 2020;
Weber et al, 2020). With the reduction in the rate of COVID-19–
related severity and death, a means of decreasing the incidence of
non-SARS-CoV-2–related complications has become increasingly
important for patients with mild disease.

Given the important role of the liver in drug metabolism, co-
agulation, albumin synthesis, and the generation of acute-phase
reactants, abnormal liver function can influence the pathologic
course of the systemic disease COVID-19. Accumulating evidence
suggests that elevated expression of serum hepatic biochemical pa-
rameters is related to adverse events, including mechanical ventila-
tion, shock, and increased risk of death (Cai et al, 2020; Ding et al, 2021;
Mao et al, 2020; Weber et al, 2021; Yadav et al, 2021; Yip et al, 2021).
However, hepatic abnormalities involve various manifestations, in-
cluding liver congestion, inflammatory response, drug-induced liver
damage, and hepatocyte infection (Marjot et al, 2021), with associated
difficulty in identifying susceptible patients at an early stage. Con-
sidering the limitations of common hepatic biochemical parameters in
representing the actual liver function status of COVID-19 patients, early
identification of subgroups with a high risk of COVID-19–based LD
through new biomarkers is needed for medical intervention. However,
there is no reliable strategy thus far for effective prediction of sub-
sequent LD among COVID-19 patients at admission.

Proteomics profiling has the ability to shed light on molecular
changes reflected in sera from COVID-19 patients (Nie et al, 2021;
Shen et al, 2020). In this study, we developed and validated an
exceptionally parsimonious model through proteomic analysis to
predict subsequent risk of liver damage among COVID-19 patients
with normal hepatic biochemical parameters on admission, in
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accordance with Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis Or Diagnosis (TRIPOD)
standards.

Currently, many clinical predictive models might not have wide
adaptability in clinical practice, often because of modeling of
complex and multiple variables. In addition, most such models
have been classified as having a high risk of bias and might not be
generalizable, which is often caused by nonadherence to reporting
standards and best practice methods during model development
(Wolff et al, 2019; Wynants et al, 2020). The model reported here
includes only two variables, namely, sex and angiopoietin-like 3
(ANGL3), which is a liver-specific secreted protein (Gaudet et al,
2017) screened by random forest (RF) and CoxBoost algorithm
analyses from 1,517 proteins of proteomic data. The generalizability
concerning discrimination, calibration, and clinical utility of this
prediction model was comprehensively evaluated according to

TRIPOD guidelines. We call this the protein-based AS LD model. The
prediction tool and model parameters are freely available online to
facilitate risk stratification for therapeutic interventions.

Results

Baseline clinical characteristics of the discovery cohort

As shown in Fig 1, 109 participants were recruited between January
2020 and April 2020. During this period, 660 samples were collected
from all of these patients. Ninety-eight (89.9%) individuals with
available liver outcomes were included in the discovery cohort. A
total of 397 serum samples from these individuals were designated
as a source of material for identifying biomarkers. The baseline
characteristics of the discovery cohort are shown as stratification

Figure 1. Study design and modeling
flowchart.
RF, random forest; MDA, the mean decrease of
accuracy; ROC, receiver operator characteristic
curve.
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for LD (Table S1); 52 (53.1%) of the patients experienced LD, with a
median follow-up time of 19 (median value and interquartile range
[IQR]: 10.2–31.0) days. Significant differences were observed in sex
and body mass index (BMI) (P < 0.05).

Protein selection

Proteomic analysis identified 1,517 proteins from the serum sam-
ples. 20 proteins were preliminarily screened by a RF algorithm with
a mean decrease in accuracy (MDA) of higher than 3 (Fig S1). The
expression patterns of these 20 proteins among different grades of
LD samples were compared using principal coordinates analysis
(PCoA) mapping (Fig S2). The first and second principal components
(PCoA1 accounted for 43.16% of the variance and PCoA2 for 11.01%)
were plotted using the proteomic data, revealing a certain degree of
distinction among the four groups.

A heat map was plotted to illustrate the expression patterns of
the above 20 proteins in different grades of LD samples (Fig 2A).
AL1A1 was first removed owing to a negligible difference between
the LD groups. Thirteen proteins were retained according to the
following rules: AUC > 0.70 for any grade of LD (Fig 2B) and significant
multivariable associations with LD (P < 0.05) (Fig 2C). To minimize
potential collinearity and overfitting for variables in the finalmodel,
we removed six proteins (FAAA, PSA7, PSB1, PSA5, PSA3, and PSA1)
that correlated strongly with ALDOB and PSA4 (Spearman corre-
lation coefficient > 0.6) (Fig 2D).

Levels of the retained proteins (ANGL3, ALDOB, ADH4, ACY1,
ADH1B, ARLY, and PSA4) were significantly different between the
normal and LD groups (Fig 3A). Patients in the LD group exhibited higher
levels of ANGL3 (median IQR: 1.06 [1.27–0.95] versus 1.03 [1.11–0.89], P <
0.01), ALDOB (median IQR: 1.52 [1.91–1.07] versus0.84 [1.02–0.68],P <0.001),
ADH4 (median IQR: 0.59 [1.11–0.59] versus 0.59 [0.59–0.41], P < 0.001), ACY1
(median IQR: 0.56 [0.79–0.56] versus 0.56 [0.56–0.43], P < 0.001), ADH1B
(median IQR: 0.99 [1.50–0.82] versus0.79 [0.82–0.51],P <0.001), ARLY (median
IQR: 0.75 [1.02–0.75] versus 0.75 [0.75–0.61], P < 0.001), and PSA4 (median IQR:
0.96 [1.32–0.85] versus 0.81 [0.90–0.68], P < 0.001).

Baseline characteristics of the development cohort

In the development cohort, 30 patients (40.5%) experienced LD
within a median follow-up of 22.0 (11.0–32.0) days (Table 1). No
significant differences were observed between the patients with
normal liver function and those who experienced LD during the
follow-up period.

Predictor selection

Baseline measurements included 31 clinical variables at admission
and peak values of seven prioritized proteins within 7 d of hos-
pitalization, which were simultaneously introduced into the Cox-
Boost model for predictor selection. After CoxBoost processing, 10
variables remained as significant predictors of LD, including ADH4,
hypertension, sex, fever, ANGL3, cough, feebleness, smoking,
Hepatis B virus (HBV), and chest computed tomography (CT) (Fig S3).
The step number and the penalty of the CoxBoost classifier were 101
and 198, respectively.

Model selection

To maximize the clinical convenience and applicability of our
prediction model, we limited the predictors to two in the final
model and constructed 19 models as follows: ANGL3.Sex (ANGL3.SE),
ANGL3.HBV (ANGL3.HB), ANGL3.Hypertension (ANGL3.HY), ANGL3.S-
moking (ANGL3.SM), ANGL3.Chest CT (ANGL3.CT), ANGL3.Fever
(ANGL3.FEV), ANGL3.Cough (ANGL3.CO), ANGL3.Feebleness (ANGL3.-
FEE), ANGL3.ADH4, ANGL3, ADH4.Sex (ADH4.SE), ADH4.HBV (ADH4.HB),
ADH4.Hypertension (ADH4.HY), ADH4.Smoking (ADH4.SM), ADH4.Chest
CT (ADH4.CT), ADH4.Fever (ADH4.FEV), ADH4.Cough (ADH4.CO), ADH4.-
Feebleness (ADH4.FEE), and ADH4 (Fig 3C).

To assess the model performance over the entire period, we
calculated the time-dependent areas under the curves (AUCs) and
presented them by graphical visualization (Figs 3B and S4). The
ANGL3-based and ADH4-based models yielded AUC values from
0.48–0.83 to 0.53–0.81 over time, respectively. The calibration curves
of ANGL3-based models showed better performance than those of
ADH4-based models (Figs 3B and S5). The discrimination and
calibration of the model ADH4 could not be calculated.

Decision curve analyses of the 19models at a point estimate of 28
d are shown in Fig 3C. Threshold probabilities for the net benefit
associated with the application of the ANGL3-based and ADH4-
based models in detecting LD ranged from 0.00–0.78 and 0.00–0.46,
respectively. Notably, the ANGL3.SE (AS) model showed a higher net
benefit than any other ANGL3-basedmodel and the treat all or treat
none strategies.

After performing an omni-ensemble analysis with discrimina-
tion, calibration, and clinical utility assessment, we prioritized the
best-of-state AS model as the final LD prediction model for COVID-
19 patients. As shown in Fig 3B, the time-dependent AUCs were
0.60–0.80 for predicting LD, indicating favorable discrimination by
the AS model. The calibration curves of the AS model showed
adequate agreement between the predicted and observed prob-
ability in the development cohort. Decision curves revealed that the
AS model achieved more net benefits than others for a broad range
of threshold probabilities in the development cohort (Fig 3C).

Model validation

Internal validation
We validated the discrimination of the AS model internally using
bootstrapping of 1,000 resamples and the multiple fractional
polynomial regression model (Fig S6). The time-dependent AUCs
showed results similar to those of the primary analyses.

External validation
The external validation–independent cohort included 13 patients
with a median follow-up time of 22.0 (15.2–32.8) days and a median
number of 2.0 (1.0–3.0) measurements; 6 (46.2%) were male (Table
S2). The outcome of LD eventually occurred in 7 (53.8%) of these
patients, and significant differences in sex were observed. Applying
the AS model to the data for 42 serum samples led to the correct
assignment 29 (69.0%), 29 (69.0%), and 31 (73.8%) times when the
cutoff was defined as 0.3, 0.5, and 0.7, respectively (Fig 4A). The
accuracies of the AS model in the external cohort were approxi-
mately 70%, similar to the AUCs for the development cohort (Fig 3B).
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Figure 2. Liver dysfunction (LD) associates with a set of dysregulated proteins in the discovery cohort.
(A)Heat map of 20 proteins identified by random forest algorithm in the four grades of LD. (B) The AUC assesses the discriminating accuracy of each of the 20 proteins in
differentiating LD from COVID-19 patients. (C) The association analysis between each of the 20 proteins and LD using the Cox model. (D) Correlation analysis between the
20 proteins. LD, liver dysfunction.
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Figure 3. Differentially expressed proteins between groups in the discovery cohort and the AS model for prediction of COVID-19–related liver dysfunction (LD) in the
development cohort.
(A) Violin plot showing the expression values of the seven retained proteins between the normal and LD group. The black dot represents the median value. The error bar
represents the interquartile range. (B) The discrimination and calibration of the AS model in the development cohort. (C) Decision curve analyses for the 18 candidate
models in the development cohort. Net benefit is shown with piecewise linear function for each candidate model compared with the treat all and treat none
approaches. LD, liver dysfunction; ANGL3.SE, ANGL3.Sex; ANGL3.HB, ANGL3.HBV; ANGL3.HY, ANGL3.Hypertension; ANGL3.SM, ANGL3.Smoking; ANGL3.CT, ANGL3.Chest CT,
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Construction of the nomogram and web-based calculator

Based on the final AS model, a nomogram at 14, 21, 28, 35, and 42 d
after hospitalization was constructed using the Cox model (Fig 4B).
Fig S7 describes the use of the nomogram to determine the total
score and risk of LD in a patient from the development cohort.

A free calculator was established online to enable clinicians to
automatically acquire a survival plot and survival probabilities (with
95% CI) of normal liver function in COVID-19 patients by entering
values for ANGL3 and sex (https://xixihospital-liufang.shinyapps.io/
DynNomapp/) (Fig 4C).

Discussion

In this study, we developed and validated an AS model and built a
free online calculator for the prediction of LD in COVID-19 patients
with normal hepatic biochemical parameters on admission. Notably,
the AS model only integrates two predictors, namely, a novel bio-
marker ANGL3 and sex, with maximized generalization and simplicity.
The prediction model can be freely accessed at an online web server
(https://xixihospital-liufang.shinyapps.io/DynNomapp/).

The predictor ANGL3 obtained among 1,517 proteins is a specific
secreted protein originally expressed in the liver, enhancing ex-
pression of plasma cholesterol (Gaudet et al, 2017). Interestingly, it
has been speculated that cholesterol facilitates SARS-CoV-2 in-
fection by promoting viral spike protein–mediated entry via ACE2
and furin processing (Shoemark et al, 2021). Previous reports have
also highlighted the pivotal role of host cholesterol metabolism in
the viral life cycle during HCV infection (Foka et al, 2014). Taken
together, ANGL3 might indirectly participate in SARS-CoV-2 viral
replication through cholesterol metabolism, leading to aggravated
LD. The positive association of ANGL3 with LD incidence observed in
our study confirms this hypothesis.

The protein ADH4, one of the markers screened by the CoxBoost
algorithm, is an enzyme involved in reducing retinaldehyde, which
also regulates cholesterol metabolism (Pares et al, 2008). In this
study, ADH4-based model calibration did not perform well, poten-
tially because ADH4 is not a liver-specific enzyme and is expressed in
many epithelial tissues of the body, such as the blood vessels, skin,
cornea, and gastrointestinal mucosa (Pares et al, 2008).

Another predictor of the ASmodel was sex. Previous studies have
reported that males are more prone to LD (Hundt et al, 2020; Wang
et al, 2020), consistent with our results (Fig S3), probably resulting
from smoking and alcohol use. Moreover, the net benefit com-
parison between the AS and the ANGL3.SM model showed com-
parable performance above a threshold of 0.35, suggesting that
smoking might be a critical factor in LD.

In the present study, the AS model development followed the
principle of at least 10 events per variable (Mallett et al, 2010;
Peduzzi et al, 1996) to reduce the risk of overfitting caused by the
small sample size of our cohort. With few exceptions, most

published COVID-19 prediction models lack comprehensive eval-
uation of calibration, clinical utility, and external applicability
(Wynants et al, 2020). Our study followed the TRIPOD guidelines for
model development and evaluated all three aspects mentioned
above. We also retained ANGL3 as a continuous variable without
arbitrary categorization to avoid loss of information (Gupta et al,
2021). Furthermore, time-dependent discrimination of the ASmodel
provides a dynamic reference for clinicians to predict the appro-
priate incidence of LD for clinical decision-making.

Our study has several limitations. First, as a single-center and
small sample size study, more extensive multicenter clinical re-
search works are required to further validate the potential of the AS
model for predicting COVID-19–related LD. Second, although the AS
model–based nomogram and online calculator can identify indi-
viduals at high risk of LD among COVID-19 patients with normal
hepatic biochemical parameters, our study cannot ascertain which
treatment strategy might improve the outcomes of these patients.
Third, to conclude, the simple AS model presented in this study can
predict the incidence of LD earlier than the routine biochemical
parameters alanine aminotransferase, aspartate aminotransferase,
γ-glutamyl transferase, and total bilirubin. The nomogram and free
web-based calculator make the prediction model easily accessible.
COVID-19 patients with normal hepatic biochemistry might benefit
from early prediction of the probability of subsequent LD to inform
clinical decision-making.

Materials and Methods

Participants and outcome definitions

The retrospective study cohort was recruited from the Affiliated
Hangzhou Xixi Hospital, Zhejiang University School of Medicine
(Zhejiang, Southeast China; simplified as Xixi Hospital) from January
2020 to April 2020. Proteomic experiments were conducted among
660 serum samples from 109 COVID-19 patients at the Key Labo-
ratory of Structural Biology of Zhejiang Province, School of Life
Sciences, Westlake University (Zhejiang, Southeast China). All serum
samples were collected concurrently with clinical blood exami-
nation by nurses and subsequently stored at −80°C by two labo-
ratory technicians. Demographic, clinical, and outcome data were
collected from the Data Center Laboratory of Xixi Hospital.

Patients with PCR-confirmed positive SARS-CoV-2 RNA (according to
the test methods described previously) (Liu et al, 2020) were
screened for eligibility. This study is reported following TRIPOD
guidance (Collins et al, 2015); it was approved by the Institutional
Review Board of Xixi Hospital. Informed consent was waived be-
cause of the retrospective nature of this study.

The primary outcome was the subsequent LD after 7 d of ad-
mission. Definitions and diagnostic criteria of normal liver function,
LD, and its grade (mild, moderate, severe) are summarized in Table
S3 (Cai et al, 2020; Liu et al, 2021).

ANGL3.FEV, ANGL3.Fever; ANGL3.CO, ANGL3.Cough; ANGL3.FEE, ANGL3.Feebleness; ADH4.SE, ADH4.Sex; ADH4.HB, ADH4.HBV; ADH4.HY, ADH4.Hypertension; ADH4.SM,
ADH4.Smoking; ADH4.CT, ADH4.Chest CT; ADH4.FEV, ADH4.Fever; ADH4.CO, ADH4.Cough; ADH4.FEE, ADH4.Feebleness.
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Table 1. Characteristic of the candidate predictors considered during CoxBoost variable selection among COVID-19 patients with normal hepatic
biochemical parameters at baseline.

Characteristic Total
Liver dysfunction

No Yes P-value

No. 74 44 (59.5%) 30 (40.5%)

Sex 0.116

Male 29 (39.2%) 14 (31.8%) 15 (50.0%)

Female 45 (60.8%) 30 (68.2%) 15 (50.0%)

Age (years) 36.0 (26.0–47.8) 36.5 (25.0–51.0) 34.5 (29.0–46.8) 0.864

BMI (kg/m2) 21.4 (20.3–24.3) 21.1 (19.7–23.6) 22.5 (20.7–25.3) 0.061

Smoking 6 (8.1%) 4 (9.1%) 2 (6.7%) 0.708

Highest temperature 37.5 (36.9–38.0) 37.6 (36.9–38.0) 37.5 (37.0–38.0) 0.697

SBP 126.5 (115.2–135.0) 121.0 (115.0–134.2) 130.0 (117.2–135.8) 0.709

DBP 76.0 (69.0–85.8) 76.0 (69.0–87.0) 76.5 (70.0–84.8) 0.786

Medication days* 4.0 (1.0–6.0) 4.5 (1.0–6.0) 4.0 (1.0–6.0) 0.603

Comorbidities

HBV 2 (2.7%) 2 (4.5%) 0 (0.0%) 0.236

Hypertension 5 (6.8%) 5 (11.4%) 0 (0.0%) 0.056

CVD 2 (2.7%) 2 (4.5%) 0 (0.0%) 0.236

Tumor 1 (1.4%) 0 (0.0%) 1 (3.3%) 0.223

HIV 0 (0%) 0 (0%) 0 (0%)

HCV 0 (0%) 0 (0%) 0 (0%)

COPD 0 (0%) 0 (0%) 0 (0%)

Diabetes 2 (2.7%) 2 (4.5%) 0 (0.0%) 0.236

Symptoms

Cough 41 (55.4%) 23 (52.3%) 18 (60.0%) 0.511

Rhinorrhea 3 (4.1%) 3 (6.8%) 0 (0.0%) 0.144

Fever 44 (59.5%) 29 (65.9%) 15 (50.0%) 0.171

Diarrhea 5 (6.8%) 3 (6.8%) 2 (6.7%) 0.98

Rigor 0 (0%) 0 (0%) 0 (0%)

Nausea 0 (0%) 0 (0%) 0 (0%)

Dyspnea 3 (4.1%) 2 (4.5%) 1 (3.3%) 0.795

Muscular soreness 3 (4.1%) 1 (2.3%) 2 (6.7%) 0.347

Feebleness 9 (12.2%) 3 (6.8%) 6 (20.0%) 0.089

Headache 9 (12.2%) 6 (13.6%) 3 (10.0%) 0.638

Chest congestion 6 (8.1%) 5 (11.4%) 1 (3.3%) 0.214

Sore throat 21 (28.4%) 11 (25.0%) 10 (33.3%) 0.435

Sputum 18 (24.3%) 11 (25.0%) 7 (23.3%) 0.87

Chest CT 0.236

Single pneumonia 28 (37.8%) 18 (40.9%) 10 (33.3%)

Double pneumonia 33 (44.6%) 21 (47.7%) 12 (40.0%)

Clinical classification 0.664

Asymptomatic 1 (1.4%) 0 (0.0%) 1 (3.3%)

Mild 15 (20.3%) 9 (20.5%) 6 (20.0%)

Moderate 56 (75.7%) 34 (77.3%) 22 (73.3%)

(Continued on following page)
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Proteome analysis

Proteome experiment
Serum samples were inactivated and sterilized at 56°C for 30 min
and processed as in the previous study with some modifications
(Shen et al, 2020). Briefly, 4 μl serum from each sample was de-
pleted using High Select Top-14 Abundant Protein Depletion
MiniSpin Columns (Thermo Fisher Scientific). Then elutes were
denatured, reduced, and alkylated to derive protein lysates. The
solutions were diluted with 200 μl 100 mM triethylammonium bi-
carbonate followed by a double-step trypsinization (enzyme-to-
substrate ratio kept at 1:40 in each step). 10% TFA was added to each
sample to quench the enzymatic reaction. Digested peptides were
cleaned up with SOLAμ (Thermo Fisher Scientific) according to the
manufacturer’s instructions and labeled by TMTpro 16plex reagents
(Thermo Fisher Scientific). The reagents were all MS grade. 660
samples in total (633 serum samples for experiment and 27 ran-
domly selected serum samples for quality control) were divided
into 44 batches for the labeling experiment, each batch containing
15 samples and one pool. The labeled samples in each batch were
combined and fractionated. Each sample was separated into 30
fractions and then consolidated into 10 fractions; dried and re-
dissolved fractions with 2% acetonitrile (ACN)/0.1% formic acid of
MS grade. The re-dissolved peptides were analyzed with a U3000
HPLC system coupled to an Orbitrap Exploris 480 (Thermo Fisher
Scientific) in data-dependent acquisition mode combined to a
front-end high-field asymmetric waveform ion mobility spectrometry
(FAIMS). Peptides of each fraction were loaded onto a pre-column
(3 μm, 100 Å, 20 mm × 75 mm i.d.) and separated with a 75 min LC
gradient at a flow rate of 300 nl/min (analytical column: 1.9mm, 120 Å,
150 mm × 75 mm i.d.; buffer A: 2% ACN, 98% H2O containing 0.1% FA;
buffer B: 98% ACN, 2%H2O containing 0.1% FA). FAIMSwas operated at
two different CVs, −48 and −68 V, respectively. For MS acquisition, the
RF level was set at 50% and ion transfer tube temperature at 320°C.
The turbo-TMT mode was enabled. The scan range of MS1 was
350–1,800 m/z. Resolutions were set to 60,000 for MS1 and 30,000 for
MS2. Normalized AGC target was set at 300% for MS1 and 200% for
MS2. Themaximum injection time was set as 50ms for MS1 and 86ms
forMS2. Dynamic exclusionwas on, andmass tolerancewas set to ±10
ppm. Intensity threshold was set at 20,000 for MS1, and HCD collision
energy was fixed to 38%. MS/MS data were recorded in centroid
mode. Isolation window was set to 0.7 m/z.

Proteomic data analysis
MS data for proteomics were processed with Proteome Discoverer
(version 2.4.0.305; Thermo Fisher Scientific) against a manually an-
notated and reviewed Homo sapiens protein FASTA database (Swiss-
Prot, 27 April 2020). For parameter settings, enzyme digestionwas set to
full-specific trypsin with two missed cleavages. Static modifications
were TMTpro of lysine residues and N-terminus peptides and car-
bamidomethylation of cysteine. Dynamic modifications were set to
oxidation of methionine and acetylation of N-terminus peptides. Mass
tolerance for precursors and product ions was fixed at 10 ppmand 0.02
Da, respectively. The peptide–spectrum match allowed 1% target false
discovery rate (strict) and 5% target false discovery rate (relaxed). 1,517
proteins in total were quantified. The protein abundance ratio of
samples to the pooled sample within each batch was considered as
the relative protein abundance ratio for the subsequent analysis.

Quality control of proteome data
Multiple quality control of proteome data was performed as pre-
viously stated (Shen et al, 2020). Briefly, mouse liver digest was used
as a standard sample for instrument performance evaluation. To
avoid carry-over, a blank sample (buffer A) was run between every
four sample injections. A pooled peptide sample labeled by TMT
pro-126 was contained in each batch for aligning data from dif-
ferent batches and evaluation of quantitative accuracy. We first
evaluated the quantitative ratio distribution of 633 samples. The
outliers (above upper quartile) were imputed as two times the
interquartile. Then we checked the correlation of 27 technical
replicates by Pearson correlation coefficient (Fig S8A). R package
limma was used to remove batch effects from experiments and
instruments. There were no significant differences between 44
batches using principal component analysis (Fig S8B).

Candidate protein selection

Ninety-eight of the 109 patients with LD outcomes were enrolled as
the discovery cohort for identifying biomarkers. We estimated the
MDA for each of the 1,517 quantified proteins by the RF algorithm in
the discovery cohort and prioritized 20 proteins with an MDA larger
than 3 for subsequent analysis (Fig S1). In RF analysis, 500 trees were
built with 10-fold cross-validation, and this was repeated 100 times.

We performed univariable and multivariate Cox models, in-
cluding age, sex, and BMI, and AUCs (equal to the concordance

Table 1. Continued

Characteristic Total
Liver dysfunction

No Yes P-value

Severe 2 (2.7%) 1 (2.3%) 1 (3.3%)

Measurements#

Total 294 155 (52.7%) 139 (47.3%)

Per patient 3.0 (1.2–4.8) 2.0 (1.0–4.0) 3.0 (2.0–5.0) 0.695

Follow-up time 18.5 (10.0–32.0) 16.0 (9.5–31.0) 22.0 (11.0–32.0) 0.108

Data are n (%) or median (interquartile range) unless otherwise indicated. The asterisk (*) represents the medication days of COVID-19 patients within 7 d of
admission. The pound (#) represents the test times of hepatic biochemical parameters in total. BMI, body mass index; COPD, chronic obstructive pulmonary
disease; CVD, cardiovascular disease; DBP, diastolic blood pressure; SBP, systolic blood pressure.
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Figure 4. External validation, nomogram, and online web-based calculator of AS model.
(A) The external discrimination validation of the AS model using another dataset from Taizhou hospital. Predicted probability comes from the AS model. Observed
events represent the actual occurrences of LD in the external cohort. (B) Characteristics in the nomogram to predict the risk of liver dysfunction (LD) in COVID-19 patients
with normal liver biochemical parameters on admission. Patient predictive values are located on the axis of each variable; a line is then drawn upwards at a 90° angle to
determine the number of points for that particular variable. The sum of these numbers is located on the total score axis, and a line is drawn at a 90° angle downward to
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statistics) to estimate the ability of each protein to discriminate LD
versus normal (Fig 2B and C). A protein–protein correlation plot was
constructed for the 20 proteins (Fig 2D). Some strong-correlation
proteins were eliminated from candidate variates to minimize
potential collinearity and overfitting bias. ANGL3, ALDOB, ADH4,
ACY1, ADH1B, ARLY, and PSA4 were eventually retained (Fig 3A).

Selection of potential clinical predictors and model development

We included multiple clinical characteristics in the model devel-
opment, including demographic variables, medical history, symptoms,
and chest CT results onhospital admission. The demographic variables
examined included age, sex, BMI, smoking status, highest temperature,
systolic blood pressure, and diastolic blood pressure. Medical history
included medications, HBV, hypertension, cardiovascular disease,
tumor, HIV, HCV, chronic obstructive pulmonary disease, and diabetes.
We also considered symptoms, such as cough, rhinorrhea, fever,
pidiarrhea, rigor, nausea, dyspnea, muscular soreness, feebleness,
headache, chest congestion, sore throat, and sputum. Chest CT re-
sults included normal, single pneumonia, and double pneumonia.

Of 98 individuals in the discovery cohort, 74 patients hospitalizedwith
normal liver function for 7 d were selected as the development cohort.
Peak values of ANGL3, ALDOB, ADH4, ACY1, ADH1B, ARLY, and PSA4 within
7 d of admission to the hospital were subject to next-stage selection
together with the other 31 clinical variables, as described above.

Given that time may affect the discrimination of the prediction
model, the CoxBoost algorithm (an XGBoost-based survival esti-
mator model) (Unterhuber et al, 2021) was applied to select the
most potent predictors that could be retained in the final model. To
maximize the generalizability and simplicity of the prediction
model, we restricted the number of variables to 2, and the com-
bination was set to contain at least one protein marker. Each
combination was introduced into a Cox regression model in view of
the long-term horizon for predictions (during inpatient and non-
inpatient periods) to quantify AUC values for given times.

Model selection

During selection, the discrimination (ability to distinguish individuals
who will develop LD from those whowill not, as quantified as the AUC),
calibration (consistency between the predicted and observed prob-
ability, as evaluated by a calibration plot), and clinical utility (as
quantifiedby the net benefit of a decision curve)were assessedamong
the above-combined predictionmodels (Steyerberg & Vergouwe 2014).
An ideal calibration slope is 1, which suggests that the risk of observed
outcomes matches the risk predicted. Decision curve analysis permits
evaluation of clinical utility by quantifying the trade-off between
correct discrimination of true positives and incorrect discrimination of
false positives, as weighted based on the threshold probability (Vickers
et al, 2019). The threshold probability represents the benefit ratio for
the intervention. In this article, decision curve analysis was conducted
at 28 d after hospital admission to quantify the net benefit of
implementing the model in clinical practice. For all of the decision

curves, data were fitted with a piecewise linear function among all
replicates with the following algorithm: double yi1, yi2;

yi1 = a1+k1xi1 ;

yi2 = yi1+k2 ðxi2 − xi1Þ;

if ðx < xi1Þ

y = a1+k1x

else if ðx < xi2Þ

y = yi1+k2 ðx − xi1Þ;

else

y = yi2+k3 ðx − xi2Þ;

Finally, the model that performed comprehensively best across discrimi-
nation, calibration, and clinical utility was used to construct a dynamic
nomogram plot, which was then used to build a free online calculator.

Model validation

We utilized bootstrapping of 1,000 resamples (with replacement)
and multiple fractional polynomial regression modeling to inter-
nally validate the stability of the final model using complete de-
velopment case data.

To further validate the generalizability of the AS model, we
collected 42 serum samples from 13 COVID-19 patients with normal
hepatic biochemical parameters at Taizhou Hospital of Zhejiang
province, affiliated to Wenzhou Medical University between January
2020 and February 2020 at the time of hospitalization for the external
validation cohort. The sex information and the maximum values of
ANGL3 within 7 d of hospital admission were selected for validation.

A result was considered statistically significant when the two-
tailed P-value was below 0.05. R software versions 3.6.3 and 4.0.5
(www.r-project.org) were used for the statistical analyses.

Data Availability Statement

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be di-
rected to the corresponding authors.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202201576.

the LD risk axes. (C) The free online tool for identifying the patients with low risk of liver dysfunction (LD) in COVID-19 patients. Male was represented at an arbitrary value
of 1 (female = 2). ANGL3 represents the relative expression during proteomics analysis. LD, liver dysfunction.
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