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Abstract
Aims: Maternal metabolic disorders place the mother at risk for negative preg-
nancy outcomes with potentially long-term health impacts for the child. Metabolic 
syndrome,	 a	 cluster	 of	 features	 associated	with	 increased	 risk	 of	metabolic	 disor-
ders,	such	as	cardiovascular	disease,	diabetes	and	stroke,	affects	roughly	one	in	five	
Canadians. Metabolomics is a relatively new technique that may be a useful tool to 
identify	women	at	risk	of	metabolic	disorders.	This	study	set	out	to	characterize	uri-
nary metabolic biomarkers of pregnant women with obesity and of pregnant women 
who	later	developed	gestational	diabetes	mellitus	(pre-GDM),	compared	to	controls.
Methods and Materials: Second	trimester	urine	samples	were	collected	through	the	
Alberta	Pregnancy	Outcomes	and	Nutrition	(APrON)	cohort	and	examined	with	1H 
nuclear	magnetic	resonance	(NMR)	spectroscopy.	Multivariate	analysis	was	used	to	
examine	group	differences,	and	machine	 learning	 feature	selection	 tools	 identified	
the metabolites contributing to separation.
Results: Obesity	and	pre-GDM	metabolomes	were	distinct	from	controls	and	from	
each	other.	In	each	comparison,	the	glycine,	serine	and	threonine	pathways	were	the	
most	impacted.	Pantothenate,	formic	acid	and	glycine	were	downregulated	by	obe-
sity,	while	formic	acid,	dimethylamine	and	galactose	were	downregulated	in	pre-GDM.	
The	three	most	impacted	metabolites	for	the	comparison	of	obesity	versus	pre-GDM	
groups	were	upregulated	creatine/caffeine,	downregulated	sarcosine/dimethylamine	
and	upregulated	maltose/sucrose	in	individuals	who	later	developed	GDM.
Conclusion: These findings suggest a role for urinary metabolomics in the prediction 
of	GDM	and	metabolic	marker	identification	for	potential	diagnostics	and	prognostics	
in women at risk.
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1  | INTRODUC TION

An	estimated	20%	of	Canadians	are	currently	diagnosed	with	meta-
bolic	syndrome,	a	cluster	of	features	that	puts	an	individual	at	higher	
risk	 of	 developing	 diabetes	 and	 cardiovascular	 disease	 (CVD).1 
During	pregnancy,	metabolic	disorders	 such	as	obesity	 and	gesta-
tional	 diabetes	mellitus	 (GDM)	have	potentially	 adverse	 long-term	
consequences	for	both	mother	and	child,	such	as	increasing	the	risk	
of	preeclampsia,	preterm	birth,	caesarean	section	and	neonatal	 in-
tensive care unit admissions.2,3	Obesity	 can	 be	 a	 consequence	 of	
metabolic	dysfunction,	or	a	precursor	to	metabolic	syndrome	as	 it	
increases an individual's risk of developing other metabolic condi-
tions,	 such	 as	GDM	or	 hypertension.3	During	 pregnancy,	 the	 rec-
ommended weight gain for a woman of normal weight is between 
25	 and	 35	 pounds	 (11-16	 kg),	 this	 amount	 decreases	 with	 higher	
pre-pregnancy	body	mass	 index	 (BMI).4 Weight gain beyond these 
recommendations,	 or	 preexisting	 obesity,	 may	 lead	 to	 adverse	
pregnancy	outcomes	such	as	preeclampsia,	miscarriage,	congenital	
anomalies,	preterm	birth	and/or	foetal	complications	(eg,	macroso-
mia).5	Furthermore,	poor	post-partum	weight	loss	serves	as	a	predic-
tor of future obesity.6

Gestational	diabetes	mellitus	 is	 characterized	by	glucose	 intol-
erance	with	onset	or	 first	 recognition	during	pregnancy,	 and	 it	 af-
fects	an	estimated	3.7%	of	all	pregnancies	 in	Alberta.7 Despite its 
prevalence,	the	initial	pathogenic	mechanisms	of	GDM	are	not	fully	
understood.	While	 GDM	 is	 strongly	 associated	with	 the	 develop-
ment	of	type	2	diabetes	later	in	life,	many	individuals	diagnosed	with	
GDM	have	no	prior	known	metabolic	dysfunction.8	Inter-	and	trans-
generational	inheritance	of	GDM	risk,	however,	has	previously	been	
suggested.9,10	While	 both	GDM	and	 obesity	 are	 individually	 asso-
ciated	with	adverse	pregnancy	outcomes,	in	conjunction	they	have	
synergistic	 effects.	 Hence,	 the	 2012	 Hyperglycemia	 and	 Adverse	
Pregnancy	Outcome	(HAPO)	study	reported	that	mothers	with	both	
GDM	and	obesity	had	significantly	increased	birth	weight,	newborn	
body	fat,	caesarean	delivery	rates	and	prevalence	of	preeclampsia	
when	compared	to	individuals	with	only	one,	or	neither,	risk	factor.11

Despite the increased risk of the said adverse health outcomes 
associated	 with	 metabolic	 syndrome,	 obesity	 or	 GDM,	 not	 all	 in-
dividuals with either condition go on to develop these disorders. 
The underlying mechanisms that cause conditions to worsen in 
some	individuals	but	not	others	are	not	fully	understood;	however,	
cross-sectional analysis of at-risk individuals may address this gap 
by identifying factors of risk that have not yet been considered.12-14 
In	many	cases,	such	as	prediabetes,	mitigation	of	these	factors	can	
improve	health	outcomes,	and	even	prevent	 the	disease	state.13,15 
Metabolomics,	 the	 study	 of	 the	metabolism	 and	 associated	 path-
ways,	 presents	 an	 effective	 tool	 for	 biomarker	 discovery	 to	 iden-
tify high-risk individuals for targeted interventions and disease 

prevention.16,17	 A	 recent	 study	 investigating	 the	 early	 pregnancy	
serum metabolomic profile of overweight and obese women iden-
tified	several	biomarkers	that	predict	risk	of	developing	GDM,these	
included	 small	 high-density	 lipid	 (HDL)	 particles,	 branched	 chain	
amino	acids	(BCAAs)	and	inflammatory	markers.18

The present study aims to identify robust biomarkers associated 
with	obesity	 and	GDM	status	 in	 the	urinary	metabolome.	Urinary	
metabolomics enables the noninvasive detection of metabolic dis-
eases during pregnancy without the need for a blood test. This 
study uses 1H	nuclear	magnetic	resonance	 (NMR)	spectroscopy	to	
investigate	metabolomic	 signatures	 linked	 to	 obesity	 and	GDM	 in	
the urine of pregnant women collected in the second trimester from 
the	 Alberta	 Pregnancy	 Outcomes	 and	 Nutrition	 (APrON)	 study.19 
We	hypothesized	that	women	with	obesity	or	GDM	will	show	char-
acteristic urinary metabolomic signatures that differ from controls.

2  | MATERIAL S AND METHODS

2.1 | Study design

Urine	samples	were	collected	from	pregnant	women	in	the	Alberta	
Pregnancy	 Outcomes	 and	 Nutrition	 (APrON)	 study,	 a	 Canadian	
pregnancy cohort study.20	The	APrON	study	was	created	to	exam-
ine	the	links	between	perinatal	nutrition	intake	and	birth	outcomes,	
child	 development,	 and	maternal	 mental	 health.19 The full cohort 
consists	of	2140	women,	2172	 infants	and	1417	biological	 fathers	
recruited	in	Calgary	(population	1.1	million)	and	Edmonton	(popula-
tion	0.9	million),	Alberta,	Canada.	The	methodology	details	for	the	
APrON	study	have	been	published	elsewhere.19,20

The present study used urine samples collected between 14 and 
27	weeks	of	pregnancy	from	29	women	with	obesity,	37	with	GDM	
and	36	healthy	controls.	The	three	groups	were	identified	as	follows:	
(a)	 pregnant	women	 (nondiabetic)	with	 obesity	were	 classified	 ac-
cording	 to	BMI	status	>30,	or	waist	 circumference	>30);	 (b)	preg-
nant	women	with	GDM	were	extracted	from	hospital	records	whose	
diagnosis	of	GDM	came	from	routine	prenatal	screening	 for	GDM	
according	to	the	Canadian	Diabetes	Association	criteria;	(c)	controls	
were	pregnant	women	without	obesity	or	diabetes,	matched	for	age,	
family	income,	education.	Pregnant	women	were	screened	for	GDM	
according	to	the	Canadian	Diabetes	Association	criteria	of	a	1-hour	
plasma	 glucose	 (1hPG)	measurement	 following	 a	 50-gram	 glucose	
load	given	at	any	time	of	day.	If	the	1hPG	was	≥10.3	mmol/L,	or	if	
it was >7.9	mmol/L	and	a	subsequent	2	hour	75	g	glucose	load	was	
positive,	GDM	was	confirmed.	Screening	for	GDM	is	part	of	routine	
prenatal care at ~24-28	weeks	gestation.	The	GDM	cases	were	iden-
tified	based	on	hospital	records.	Each	case	of	obesity	or	GDM	was	
counted only once. Women with obesity did not go on to develop 
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GDM	in	the	selected	cases.	Nine	of	the	37	GDM	cases	(23.7%)	had	
a	pre-pregnancy	BMI	>30.	Controls	were	matched	by	age-,	income-	
and education level. Table 1 provides the characteristics of the par-
ticipants in this study.

2.2 | Sample collection and preparation

Urine samples were obtained midstream during the first passage 
of the day following an overnight fasting period. The samples were 
stored	at	−80°C.	Samples	were	 thawed	at	 room	 temperature,	 and	
400 μL	of	urine	was	added	to	200	μL	of	phosphate	buffer	contain-
ing	a	4:1	ratio	of	dibasic	potassium	phosphate	(K2HPO4)	to	monoba-
sic	potassium	phosphate	 (KH2PO4)	with	a	combined	concentration	
of	0.5	M	 (pH	7.4)	 in	80%	H2O	and	20%	D2O.	The	D2O	contained	
0.03%	 (w/v)	3-(trimethylsilyl)propionic	acid	 (TSP)	 to	be	used	as	an	
internal chemical shift reference and quantification standard. Three 
mmol/L	of	sodium	azide	(NaN3)	were	added	as	anti-microbial	agent.	
The urine/buffer mixture was gently vortexed until homogenous 
and then centrifuged at 10 600 g	 for	5	minutes	at	4°C.	550	μL	of	
supernatant was pipetted into 5 mm NMR tubes before proceeding 
with 1H-NMR spectroscopy.

2.3 | NMR data acquisition and processing

Nuclear magnetic resonance spectra of the urine samples were ac-
quired	at	room	temperature	using	a	700	MHz	Bruker	Avance	III	HD	
NMR	Spectrometer	(Bruker)	equipped	with	a	5	mm	triple	resonance	
TBO-Z	probe.	The	one-dimensional	NOESY	gradient	water	suppres-
sion	pulse	sequence	 (noesygppr1d)	was	utilized	with	the	following	
parameters:	mixing	 time	 of	 10	ms;	 128	 k	 data	 points	 (TD);	 sweet	
width	 (SW)	 of	 20.52	 ppm,	 acquisition	 time	 (AQ)	 of	 4.56	 seconds,	
transmitter	offset	(o1p)	of	4.6	ppm;	recycle	delay	(D1)	of	1	second;	
128	 scans	 (NS).	 Spectra	were	 then	 processed	 using	 zero-filling	 to	
256	k	points,	line	broadening	with	a	0.3	Hz	exponential	multiplica-
tion,	automatic	phased	and	baseline-correction,	and	chemical	shift	
referenced	with	respect	to	the	TSP	peak	at	0	ppm.	All	spectra	were	
converted	to	ascii	 files	and	exported	to	MATLAB	(MathWorks)	for	
further	analysis.	The	spectra	underwent	dynamic	adaptive	binning,21 
followed by manual adjustment to correct for any errors in the algo-
rithm. The bins containing the water and urea peaks were removed 
resulting in a total of 277 bins for all urine spectra. The spectra were 
normalized	to	 the	total	area	of	all	bins	 (the	total	metabolome),	 log	
transformed and Pareto scaled.22

2.4 | Statistical analyses

For	each	comparison	 (obese	vs	control;	GDM	vs	control;	obese	vs	
GDM),	 bins	 underwent	 both	 univariate	 and	 multivariate	 testing.	
Univariate testing provides a statistical measure by which each of 
the spectral bins can be tested to determine whether it has been 
significantly altered across the comparison groups on an individual 
basis. Multivariate testing offers a method by which each of the bins 
can be statistically assessed with respect to their importance to class 
separation when considered as part of a complete set of variables. 
Thus,	univariate	and	multivariate	testing	provide	complementary	in-
formation	about	the	importance	of	a	bin,	or	metabolite,	to	observed	
group differences.

2.4.1 | Univariate	testing

The	decision	tree	algorithm	outlined	by	Goodpaster	et	al23	was	utilized	
to ensure that the appropriate univariate test was applied to the bins. 
This	decision	tree	algorithm	first	uses	a	Shapiro-Wilk	test	to	determine	
whether	the	bins	are	normally	distributed.	If	the	bins	follow	a	non-nor-
mal	distribution,	they	undergo	a	Mann-Whitney	U	test	(MW)	for	sig-
nificance.	In	the	case	of	this	study,	the	data	were	determined	to	follow	
non-normal distributions and the Mann-Whitney U test was applied.

2.4.2 | Multivariate	testing

Variable	 Importance	Analysis	 based	 on	 random	Variable	 Combination	
(VIAVC)24	was	utilized	to	assess	variable	significance	when	considered	

TA B L E  1   Characteristics of the participants in this study

Participant Information
Control 
(n = 36)

GDM 
(n = 37)

Obese 
(n = 29)

Age

Mean	(standard	deviation) 33.4	(4.5) 33.8	(3.9) 32.8	(4.2)

Pre-pregnancy	BMI

Mean	(standard	deviation	) 23.1	(2.2) 27.7	(6.5) 33.2	(4.0)

Income

$20	000-$39	999 2 3 3

$40 000-$69 999 9 7 4

$70 000-$99 999 11 11 11

$100 000 or More 14 16 11

Education

Completed	High	School	
Diploma

3 5 3

Completed	Trade,	
Technical

5 6 4

Completed University 16 15 13

Completed	Post-Grad 12 11 9

Marital status

Single 0 0 2

Married 35 36 26

Common-Law 1 0 1

Unknown 1

Ethnicity

Caucasian 28 28 26

Other 8 9 3
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as	part	of	the	total	set	of	variables.	The	VIAVC	algorithm	utilizes	binary	
matrix resampling to create several random subsets of variables contain-
ing	50%	of	the	original	bins.	In	the	case	of	this	study,	1000	subsets	of	
random variables were used. Binary matrix resampling ensures that each 
variable has been selected with the same probability when creating the 
random subsets. The importance of each bin is then assessed by calculat-
ing	the	corresponding	area	under	the	curve	(AUC)	for	the	receiver	opera-
tor	characteristic	(ROC)	curve	with	and	without	a	variable	included	in	the	
model.	 If	 the	 inclusion	of	 the	variable	 increases	or	decreases	 the	area	
under	the	curve,	 it	 is	either	retained	or	removed	from	the	overall	data	
set,	respectively.	This	process	is	repeated	until	no	more	variables	can	be	
removed and the resulting list of bins is known as the best subset. By 
doing	this,	the	VIAVC	algorithm	can	determine	if	any	synergistic	effects	
exist between variables that appear nonsignificant based on traditional 
univariate	and	multivariate	measures.	In	addition,	it	can	remove	bins	that	
are significant based on a univariate test but reduce group seperation 
when they are included in the whole set of variables. This machine learn-
ing approach is an ideal method for determining the subset of variables 
which lead to the best separation between two classes or groups.

Metaboanalyst25,26	 was	 utilized	 to	 carry	 out	 and	 visualize	
both the orthogonal partial least squares discriminant analysis 
(OPLS-DA)	 and	 receiver	 operating	 characteristic	 (ROC)	 curves.	
The former was carried out using bins identified as significant by 
the	MW	or	VIAVC	tests.	The	latter	was	performed	using	only	the	
bins	identified	as	significant	by	the	VIAVC	test.	All	modelling	un-
derwent	permutation	testing	(2000	permutations)	and	double	ten-
fold cross-validation.27

2.4.3 | Metabolite	identification	and	
pathway analysis

Both	Chenomx	 (Chenomx)	 and	 the	Human	Metabolome	Database	
(HMDB)28-31 were used to identify the metabolites present in each 

of the significant bins. The complete list of metabolites identified as 
significantly	altered	by	either	the	MW	test	or	VIAVC	algorithm	were	
used for pathway topology analysis.32 Pathway topology analysis 
was carried out in Metaboanalyst by selecting the hypergeometric 
test	for	the	over-representation	analysis,	relative-betweenness	cen-
trality	for	the	topology	analysis,	and	using	the	Kyoto	Encyclopedia	
of	Genes	 and	Genomes	 (KEGG)	database	 for	Homo sapiens33-35 as 
the pathway library.

3  | RESULTS

Of	the	277	total	spectral	bins,	both	VIAVC	and	MW	tests	identi-
fied	which	bins	led	to	significant	group	separation.	Analyses	were	
applied to three comparison groups and resulted in the following 
number	of	significant	bins:	obesity	vs.	control	(33	MW,	31	VIAVC	
and	nine	common	bins);	GDM	vs	control	(61	MW,	30	VIAVC	and	12	
common	bins);	and	obesity	vs	GDM	(30	MW,	19	VIAVC	and	eight	
common	bin).	The	supervised	OPLS-DA	comparisons	of	the	obese	
and	control	 (Figure	1A),	GDM	and	control	 (Figure	1B),	and	GDM	
and	 obesity	 (Figure	 1C)	 all	 showed	 significant	 group	 separation	
with the largest separation between the obese and control groups. 
Permutation and cross-validation tests confirmed this observed 
separation for the three comparisons (P <	 .05).	 Receiver	 opera-
tor	characteristic	(ROC)	curves	were	used	to	determine	the	speci-
ficity,	 sensitivity	 and	 accuracy	 of	 each	 comparison	model	 based	
on	metabolites	 identified	 as	 significant	 by	VIAVC.	 The	 compari-
sons	 between	obesity	 and	 control,	GDM	and	 control,	 and	GDM	
and	 obesity	 gave	 an	 area	 under	 the	 curve	 (AUC)	 and	 predictive	
accuracy	(in	brackets)	of	0.906	(80.8%),	0.803	(74.5%)	and	0.846	
(75.9%),	respectively	(Figure	2).

Tables	 S1-S3	 provide	 the	 metabolites	 that	 were	 found	 to	 be	
significantly altered by either Mann-Whitney U	or	VIAVC.	The	last	
column on each table indicates whether the metabolite was up- or 

F I G U R E  1  Orthogonal	partial	least	squares	discriminant	analysis	(OPLS-DA)	score	plots	showing	supervised	group	seperation	between	
(A)	obesity	and	controls	(R2X =	0.89,	Q2 =	0.574,	R2Y	P-value =	.0005,	Q2	P-value =	.0005),	(B)	GDM	and	controls	(R2X =	0.722,	Q2 =	0.277,	
R2Y P-value =	.0005,	Q2	P-value =	.0005),	and	(C)	obesity	and	GDM	(R2X =	0.465,	Q2 =	0.258,	R2Y	P-value =	.0005,	Q2	P-value =	.0005).	
Each	triangle	or	cross	represents	one	individual	under	study,	plotted	using	a	list	of	urinary	metabolites	found	to	be	statistically	significant	by	
either	MW	or	VIAVC	testing.	The	x-axis and y-axis	show	the	predictive	(across	group	variation)	and	orthogonal	(within	group)	components,	
respectively
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F I G U R E  2  Receiver	operating	characteristic	(ROC)	curve	(A,	C,	E)	and	predictive	accuracy	(B,	D,	F)	for	the	comparison	of	(A,	B)	obesity	
and	controls,	(C,	D)	GDM	and	controls,	and	(E,	F)	obesity	and	GDM.	These	figures	were	created	using	the	best	subset	of	metabolites	as	
determined	by	the	VIAVC	analysis.	The	95%	confidence	intervals	for	A,	C	and	E	are	0.772-0.986,	0.655-0.942	and	0.603-0.962,	respectively
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downregulated.	A	total	of	58	metabolite	bins	significantly	contrib-
uted	 to	 the	 distinction	 between	 the	 obesity	 vs	 control	 group,	 79	
GDM	vs	control	group	and	41	to	the	obesity	vs	GDM	comparison.	
A	 total	of	50	out	of	58	and	65	out	of	79	significantly	altered	bins	
were downregulated compared to the controls in both the obesity 
and	GDM	groups,	respectively.	No	such	trend	was	observed	in	the	
obesity	vs	GDM	comparison.

The most impacted three metabolites for the comparison of obe-
sity	and	control	groups	were	pantothenate,	formic	acid	and	glycine	
with all three metabolites downregulated in the obesity group. The 
top	three	metabolites	for	the	comparison	of	GMD	and	control	groups	
were	formic	acid,	dimethylamine	and	galactose	with	all	three	metab-
olites	downregulated	in	the	GDM	group.	The	top	three	metabolites	

for	the	comparison	of	GDM	and	obesity	groups	were	creatine/caf-
feine,	sarcosine/dimethylamine	and	maltose/sucrose.

For	 the	 obese	 and	 control	 comparison,	 the	 metabolomic	
pathway analysis identified 10 significantly altered pathways 
(Figure	 3A),	 with	 glycine,	 serine	 and	 threonine	 metabolism	
(P <	 .05),	 phenylalanine	metabolism	 (P <	 .05),	 and	methane	me-
tabolism (P <	.05)	being	the	most	significantly	altered.	In	the	GDM	
and	 control	 comparison,	 13	 significantly	 altered	 pathways	 were	
identified	(Figure	3B),	including	glycine,	serine	and	threonine	me-
tabolism (P <	 .05),	galactose	metabolism	 (P <	 .05),	and	phenylal-
anine metabolism (P <	 .05).	In	the	obesity	and	GDM	comparison,	
16	metabolic	pathways	were	significantly	altered	(Figure	3C),	with	
the	greatest	 impact	on	glycine,	serine	and	threonine	metabolism	

F I G U R E  3   Metabolomic pathway 
analysis for the comparison of the obesity 
vs	control	groups	(A),	GDM	vs	control	
groups	(B),	and	obesity	vs	GDM	groups	
(C).	A	higher	value	on	the	y-axis	indicates	
a lower P-value for the pathway. The 
x-axis	gives	the	pathway	impact,	which	
indicates how affected the pathway is by 
the metabolites identified as significantly 
altered.	Only	metabolic	pathways	with	
P < .05 are labelled. This figure was 
created using the lists of metabolites 
identified as significantly altered between 
the obese and control groups by either 
MW	or	VIAVC	testing
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(P <	.05),	starch	and	sucrose	metabolism	(P <	.05),	and	the	citrate	
cycle (P <	.05).

4  | DISCUSSION

This study demonstrated that 1H-NMR metabolomics can be used to 
distinguish and compare the urinary metabolomes of healthy preg-
nant woman to those diagnosed with obesity and may be predictive 
of	women	who	develop	GDM.	Metabolites	 or	 impacted	pathways	
found	to	be	distinct	between	groups	may	serve	as	indicators	of	risk,	
allowing for the use of early clinical or lifestyle intervention prior to 
manifestation of a disease state.36	Characterization	of	the	metabolic	
processes	altered	by	obesity	and	GDM	makes	an	important	contri-
bution to understanding their pathogenic mechanisms.8 The present 
results provide insight into the comorbidity existing between obesity 
and	GDM.	The	similarity	of	the	metabolomes	between	these	disease	
states indicates shared biochemical pathway disruptions which may 
be detectable in individuals prior to the development of associated 
adverse health outcomes.

The	high	predictive	accuracy	of	the	three	ROC	curves	resulting	
from	 this	 study	 (80.8%	 for	 obesity	 vs	 control,	 74.5%	 for	GDM	vs	
control	and	75.9%	for	obesity	vs	GDM)	demonstrates	that	the	best	
subset	of	metabolites	as	determined	by	the	VIAVC	analysis	can	be	
used to distinguish between the groups. While the R2X values for 
the	GDM	vs	control	 comparisons	and	obesity	vs	control	 indicated	
a large degree of variability (>0.7),	the	obesity	vs	GDM	comparison	
was	0.465,	demonstrating	only	a	moderate	difference	between	the	
groups. This indicates the presence of similar underlying mechanisms 
and	metabolic	disturbances	shared	between	obesity	and	GDM.	No	
single metabolite or pathway was responsible for the majority of this 
separation,	which	was	 not	 surprising	 considering	 the	multifaceted	
pathogenic	 mechanisms	 underlying	 obesity	 and	 GDM.	 While	 the	
best subset of metabolites provides the most accurate diagnostic 
tool,	examining	the	metabolites	and	pathways	individually	provides	
insight	 into	 the	 underlying	mechanisms	 of	 obesity	 and	GDM,	 and	
can help provide a better understanding of the risk factors behind 
each condition.

While multiple metabolic pathways were impacted by the pres-
ence	of	obesity	and	GDM,	altered	glycine,	serine	and	threonine	me-
tabolism pathway function was among the most distinct signatures 
for	both	conditions.	 In	 this	pathway,	serine	 is	derived	from	glycol-
ysis and in turn is converted into glycine. Threonine is an essential 
amino	acid	derived	from	diet,	which	is	also	converted	into	glycine.37 
Glycine	deficiency	in	particular	has	been	found	to	be	associated	with	
increased	abdominal	adipose	tissue,38 potentially contributing to the 
downregulation of the metabolite observed in the obese group.

The phenylalanine metabolism was found in the top three signifi-
cantly	impacted	pathways	when	comparing	both	obesity	and	GDM	
to control groups. Phenylalanine is an aromatic amino acid that acts 
as	 a	 precursor	 to	 tyrosine,	 along	with	multiple	 catecholamines	 in-
cluding	epinephrine,	norepinephrine	and	dopamine.	Metabolic	disor-
ders	such	as	obesity	and	GDM	have	been	found	to	lead	to	elevations	

in phenylalanine and several of its metabolic products.39 Elevated 
levels of aromatic amino acids have been associated with obesity12 
and the development of insulin resistance in nondiabetic individu-
als.40	 BCAAs,	 particularly	 valine,	 leucine	 and	 isoleucine,	 are	 often	
presented as indicators of risk for insulin resistance alongside aro-
matic amino acids41,42 and have been implicated in the development 
of	GDM	in	overweight	and	obese	pregnant	women.18	In	this	study's	
comparison	between	individuals	with	obesity	and	GDM,	the	BCAA	
leucine	was	 significantly	upregulated	 in	 the	GDM	group	alongside	
phenylalanine	(Table	S3),	and	valine	was	found	to	be	higher	in	indi-
viduals	with	GDM	versus	their	control	counterparts	(Table	S2),	sup-
porting	the	role	of	BCAAs	in	the	development	of	insulin	resistance.	
Thus,	phenylalanine,	leucine	and	valine	provide	valuable	urinary	bio-
markers	of	GDM	risk	in	obese	individuals.

It	should	be	noted	that	caution	must	be	taken	when	comparing	
studies	using	different	biofluids,	 as	metabolite	 expression	 can	de-
pend	on	a	variety	of	cohort	factors	such	as	circadian	rhythms,	diet	
and	 physical	 activity.	 In	 the	 present	 study,	 the	 downregulation	 of	
galactose	in	individuals	with	GDM	seemingly	conflicts	with	previous	
findings that serum d-galactose is upregulated in response to the 
disease.43	 In	 addition,	 pantothenate,	 the	most	 impacted	 individual	
metabolite	in	the	obesity	vs	control	comparison,	represents	another	
case of discrepancy between serum and urinary expression. While 
the present downregulation of urinary pantothenate may serve as a 
urinary	indicator	of	obesity,	serum	pantothenate	has	been	found	to	
be upregulated in response to obesity.44	As	mentioned	above,	these	
discrepancies may be due to differences between the study cohorts. 
It	 cannot	be	 ruled	out,	however,	 that	excreted	galactose	and	pan-
tothenate	in	the	urine	may	reflect	serum	levels.	For	example,	a	me-
tabolite being upregulated in blood may indicate increased demand 
for	the	metabolite,	which	would	result	 in	reduced	excretion	of	the	
metabolite	in	the	urine.	As	mentioned	earlier,	urinary	metabolomics	
enables the noninvasive detection of metabolites during pregnancy 
without	the	need	for	a	blood	test.	 In	addition,	NMR-based	urinary	
metabolomics provides information on 209 metabolites compared 
to only 49 metabolites via serum metabolomics.45,46

The regulation of sucrose expression appears to also vary be-
tween	 the	 serum	 and	 urinary	 metabolomes.	 Increased	 intake	 of	
sucrose has been linked to insulin resistance in mice.47	 However,	
both	the	obese	and	GDM	groups	of	this	study	experienced	reduced	
urinary sucrose levels when compared to control individuals. This 
may	 be	 partially	 explained	 by	 sex	 differences,sucrose-induced	 in-
sulin-resistant models have only been successfully created in male 
animals,	and	females	appear	to	be	resistant	to	sucrose-induced	insu-
lin resistance.48 When comparing individuals with obesity to those 
with	GDM,	sucrose	was	the	third	most	impacted	metabolite,	being	
increased	in	GDM	individuals.	This	finding	indicates	that	starch	and	
sucrose metabolism does indeed affect females and potentially con-
tributes	to	the	development	of	GDM,	which	highlights	the	need	for	
a better understanding of sex differences in diabetes-related health 
outcomes,	such	as	coronary	heart	disease.49

The most impacted pathway distinction between obesity and 
GDM	concerned	starch	and	sucrose	metabolism.	High	starch	diets	
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appear to have the opposite effect of sucrose on insulin resis-
tance,	reducing	its	severity	and	decreasing	adipose	tissue	weight.50 
Variations in starch and sucrose metabolism may reflect dietary vari-
ations	in	the	subjects,	which	in	turn	may	correlate	with	the	presence	
of	obesity	and	GDM	states.51	It	should	also	be	noted	that,	while	this	
study	controlled	for	age,	 income	and	education	 level,	 subjects	un-
derwent	no	dietary	restrictions	prior	to	sampling,	so	impacts	of	diet	
on the metabolome act as a potential confound.

The results of this study allow for further analysis of the co-
morbidity	 of	 obesity	 and	GDM	with	 their	 associated	 health	 risks.	
Preeclampsia is one of the most severe pregnancy complications 
associated	with	GDM.	The	high	blood	pressure	of	this	complication	
results from the improper formation of blood vessels in the pla-
centa,	and	can	cause	organ	damage,	and	even	maternal	and	foetal	
death	 if	not	 addressed.	The	presence	of	GDM	more	 than	doubles	
the risk of a mother developing preeclampsia.52	Several	of	the	most	
impacted	 urinary	metabolites	 in	 the	GDM	vs	 control	 (formic	 acid,	
ethanol	and	propylene	glycol)	and	obesity	vs	control	(formic	acid	and	
glycine)	comparisons	of	this	study	are	known	to	be	associated	with	
alterations to the serum metabolome found in early preeclampsia53 
and may be indicative of shared pathway disruptions between the 
conditions.

Spontaneous	preterm	birth,	when	the	infant	is	delivered	prior	to	
37	weeks	of	gestation,	is	another	pregnancy	complication	that	is	as-
sociated	with	metabolic	syndrome,	obesity	and	GDM	obesity.2,54,55 
Previous urinary metabolic analysis of preterm birth revealed an 
association between spontaneous preterm birth and decreased lev-
els of formic acid.56 This trend was also observed in the obese and 
GDM	groups	 of	 this	 study	when	 compared	 to	 control	 individuals.	
The mechanisms by which this trend is associated with preterm birth 
are	not	yet	known,	but	it	was	suggested	that	diminished	urinary	for-
mic	acid	raises	the	risk	of	hypertension,57 which in turn is positively 
associated with preterm birth.2

4.1 | Synthesis and conclusion

This exploratory study contributes to the understanding of the bio-
chemical	mechanisms	of	both	obesity	and	GDM	and	supports	 the	
role of 1H NMR spectroscopy metabolomics in the developing field 
of precision medicine. The individual metabolites that contributed 
most to separation between disease groups have the highest po-
tential to provide simple diagnostic tests. The creation of new tests 
for precision medicine approaches for intervention necessitates a 
deeper understanding of the underlying metabolic mechanisms be-
hind	obesity,	GDM	and	pregnancy.	The	identified	pathways	provide	
insight	into	the	underlying	mechanisms	of	obesity	and	GDM	and	po-
tential therapeutic targets.

While the present findings suggest a composite metabolic profile 
to	be	the	most	robust	predictor,	the	findings	also	indicate	that	the	
glycine,	serine	and	threonine	metabolism	pathway	may	provide	the	
most feasible potential to provide a single component biomarker to 
distinguish	obesity	and	GDM	from	healthy	individuals.	Moreover,	the	

starch and sucrose metabolism pathway provides the most distinc-
tion	between	the	urinary	metabolome	of	individuals	with	GDM	and	
those	who	are	obese.	The	upregulation	of	BCAA	and	aromatic	amino	
acids also provides an effective biomarker for the development of 
GDM	in	obese	individuals	and	suggests	possible	causal	mechanisms	
for insulin resistance. This study also supports further investigation 
of	the	urinary	metabolome	as	a	noninvasive	diagnostic	tool,	as	it	de-
livers powerful results without the need for a serum sample. Using 
biomarkers to determine and potentially prevent metabolic disease 
ultimately may not only improve quality of life for mothers and their 
children,	but	also	assist	in	the	transition	to	preventative	and	preci-
sion medicine.
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