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Abstract

Many of the most important functions in the cell are carried out by proteins organized in large molecular machines. Cryo-
electron microscopy (cryo-EM) is increasingly being used to obtain low resolution density maps of these large assemblies. A
new method, ATTRACT-EM, for the computational assembly of molecular assemblies from their components has been
developed. Based on concepts from the protein-protein docking field, it utilizes cryo-EM density maps to assemble
molecular subunits at near atomic detail, starting from millions of initial subunit configurations. The search efficiency was
further enhanced by recombining partial solutions, the inclusion of symmetry information, and refinement using a
molecular force field. The approach was tested on the GroES-GroEL system, using an experimental cryo-EM map at 23.5 Å
resolution, and on several smaller complexes. Inclusion of experimental information on the symmetry of the systems and
the application of a new gradient vector matching algorithm allowed the efficient identification of docked assemblies in
close agreement with experiment. Application to the GroES-GroEL complex resulted in a top ranked model with a deviation
of 4.6 Å (and a 2.8 Å model within the top 10) from the GroES-GroEL crystal structure, a significant improvement over
existing methods.
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Introduction

Proteins are the clockwork of the complex molecular machinery

that underlies human life [1]. Numerous diseases, including

cancer, Alzheimer and AIDS, can be directly attributed to

mechanisms operating at the protein level. Many of the most

important functions in the cell are carried out by proteins

organized in molecular machines: large, dynamic, macromolecu-

lar assemblies such as the ribosome, the proteasome, the

spliceosome and the nuclear pore complex [2–5]. A mechanistic,

atomic-resolution understanding of molecular machines is needed

for rational drug design against the diseases associated with their

mechanisms. Unfortunately, atomic-resolution techniques such as

X-ray crystallography and Nuclear Magnetic Resonance (NMR)

are often difficult to apply to large and dynamic macromolecular

assemblies, implicating that other techniques are necessary.

Over the last decades, cryo-electron microscopy (cryo-EM) has

emerged as an important technique in the study of these molecular

machines [6–8]. Like crystallography, cryo-EM ultimately pro-

duces a three-dimensional map where the value of each voxel is

proportional to the electron density. Unfortunately, cryo-EM

maps typically have a much lower resolution than crystallographic

maps. Still, insight at the atomic level can be obtained if the

molecular machine can be assembled computationally from pre-

existing atomic structures using the cryo-EM map [9–11]. In

general, two approaches are possible. When a density map of

sufficiently high resolution and a good initial estimate of the

assembly structure are available, flexible fitting can be attempted

[6–16]. Otherwise, however, one has to resort to de novo assembly

of the individual components. Many different algorithms have

been developed for sequential, rigid fitting of single components

into cryo-EM maps [6,17–28].

Many rigid fitting methods use simplified, feature-based

representations of the protein components that are fitted into the

density map. Typically, clustering and spatial feature detection

reduces both the protein and the cryo-EM map to a number of

centroids, Gaussians or other feature points (feature-to-feature

fitting) [6,19,29–31]. Alternatively, in the COLORES method

[20], the density map is kept but the protein is converted to a grid

representation, which is overlaid onto the density map grid (grid-

to-grid fitting). The simplified protein representations used in rigid

fitting methods are in contrast to flexible fitting methods, which

typically preserve full atomic representation of the protein (atom-

to-grid fitting) [7–15]. However, the atom-to-grid fitting approach

is also taken by some rigid fitting methods [21].

At lower map resolutions, the sequential fitting of components

has the disadvantage that a component can simply drift to the

center of a large electron density map [20]. To overcome this

problem, COLORES has a contour-matching (Laplacian) mode,

which replaces the electron density map with a map that contains

the magnitudes of the electron density curvature. Still, there are
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limits to sequential fitting [30,31], and contour-matching can

overcome them only to a certain extent [32].

More recently, several methods have appeared that fit multiple

(rigid) components simultaneously into an electron density map, in

particular MultiFit [30], GMFit [29], and IQP [31]. These

methods are based on feature detection, and perform very well on

assemblies with few (2–7) components, using simulated electron

density data. In addition, in the recent version of Situs, a multi-

component steepest ascent method has been developed, aimed at

the refinement of previously placed models in a visual environ-

ment [33].

However, the assembly of molecular machines into cryo-EM

maps is a very difficult problem, and the amount of progress so far

has been very limited. It is a useful computational exercise to take

the components of a crystallized complex and re-assemble them

(bound docking), using a cryo-EM density map simulated from the

crystallized complex. However, in a real-life situation, neither

simulated cryo-EM density nor the bound coordinates of the

components would be available. Also, the molecular machine

would be large, because cryo-EM currently has a lower size limit

of hundreds of KDa. Unfortunately, all three simultaneous

assembly methods have only been successful for simulated cryo-

EM data, and only MultiFit has been applied to a system without

using the bound coordinates.

The bacterial chaperone GroES-GroEL is an excellent model

system for large molecular machines. It consists of 21 components

arranged in three symmetric homoheptameric rings: GroES, the

GroEL cis ring and the GroEL trans ring. The assembly has been

crystallized as a whole (PDB code 1AON [34]), providing a

reference state to which assembled models can be compared. In

addition, several cryo-electron maps for GroES-GroEL have been

obtained [35–38]; of these, the 23.5 Å map by Ranson et al. [35]

(EM databank [39,40] code 1046) has been used in several studies

as a test case for rigid fitting [23,24,29,31]. Unfortunately, the

components of GroES and GroEL have not been crystallized in

monomeric forms, making it still necessary to use the bound

coordinates from 1AON.

In contrast with smaller assemblies, GroES-GroEL has proven

to be a very challenging case, and previous attempts to assemble it

into the EMD-1046 map have had only limited success.

Assembling just the GroEL cis-ring, the IQP method [31]

achieved an accuracy of 8.6 Å root-mean square deviation

(RMSD), whereas GMFit [29] was used in an attempt to assemble

the full GroES-GroEL, achieving an accuracy of 14.7 Å RMSD,

with the GroES ring completely flipped. This suggests that when it

comes to assembling large molecular machines using experimental

cryo-EM density maps (rather than small assemblies with

simulated density), there is considerable room for improvement,

even for computational exercises like GroES-GroEL.

Protein-protein docking is the computational discipline that tries

to assemble molecular machines from their protein subunits, with

or without experimental data. Like cryo-EM fitting methods,

docking methods can use either simplified [41–45] or atom-based

representations [46–52,53]. A simplified representation allows a

global, exhaustive search, while atom-based docking methods rely

on local, heuristic searches using either energy minimization or a

Monte Carlo approach. However, atom-based docking methods

are inherently flexible, in the sense that additional energy terms

(including, but certainly not limited to, actual atomic flexibility)

can easily be added to the docking framework.

In recent years, docking methods have made considerable

progress in the blind prediction of protein complexes [54,55]. In

fact, since docking scores often have a physical basis, there is an

active interest in their application to other biophysical problems,

such as protein design and the prediction of binding affinities [56–

58]. For cryo-EM fitting, there is a need for methods that

efficiently explore both conformational and configurational space

[59], and large and flexible complexes remain a formidable

challenge for docking programs [60]. Therefore, integration of

cryo-EM fitting and protein-protein docking methodology might

be beneficial, especially for very large and dynamic molecular

machines where either method alone fails.

Here we present ATTRACT-EM, a new computational

method for the simultaneous assembly of multiple components

into cryo-EM density maps. The method is based upon

ATTRACT, an atom-based protein-protein docking program

[51,52], which has been recently extended to deal with multiple

molecules and with symmetry (De Vries and Zacharias, to be

published). Unique among docking programs, ATTRACT uses a

coarse-grained forcefield, where proteins are represented by up to

4 (pseudo-)atoms per amino acid. Building upon this, an atom-to-

grid cryo-EM fitting protocol was developed, using ATTRACT’s

coarse-grained atom model and energy minimizer to assemble all

components simultaneously into the electron density map. Initial

models are fitted using low-resolution data and then re-scored

using a novel gradient vector matching algorithm. Finally, the best

models are refined with a higher resolution density map, using the

ATTRACT force field to optimize the interfaces.

ATTRACT-EM aims to cover the middle ground between rigid

fitting methods and flexible fitting methods, in terms of speed,

accuracy and level of detail. Therefore, ATTRACT-EM could be

applicable in scenarios where cryo-EM alone does not provide the

answer, and additional sources of information are available. In

addition, although we did not investigate this possibility in the

current study, the ATTRACT program offers normal-mode based

flexibility, which can be added to the assembly protocol during or

after the initial assembly stage. ATTRACT-EM is aimed

specifically at large molecular machines, where methodological

improvements regarding in silico assembly would be the most

beneficial in providing new biological insights.

In order to assess the performance of ATTRACT-EM, it was

applied to the GroES-GroEL complex and a number of smaller

complexes. Successful application to the test systems required the

inclusion of experimental information on the symmetry of the

systems, or, in case of small dimeric complexes, the approximate

location of the subunits in the electron density. For the GroES-

GroEL cis ring (using a simulated electron density), the best-

ranked ATTRACT-EM model had an RMSD of only 2.4 Å from

the crystal structure. For the entire GroES-GroEL complex, with

experimental electron density data, the best-ranked model had an

RMSD of 4.6 Å, and a 2.8 Å model was ranked in the top 10.

This is a significant improvement over existing methods for

simultaneous rigid fitting, and was possible mainly through a new

method, gradient vector matching (GVM), for scoring the

agreement between model and density map.

Materials and Methods

General assembly protocol
The ATTRACT-EM assembly protocol consists of the follow-

ing five stages. Stage 2, 3 and 5a–5d are energy minimization

stages. Details of the methodology of the different stages of the

protocol are discussed in the rest of the section. A flowchart of the

protocol is shown in figure 1.

1. Generation of the starting structures (typically 1
million). The most straightforward way to do this is to

generate positions and orientations for each of the components

ATTRACT-EM: Assembly Using Cryo-EM Maps
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randomly. However, ATTRACT-EM can start from any

structure. Therefore, it is possible to use some biological

information in the generation of starting structures, for

example symmetry or approximate location. Finally, the

structures could also come from an external source, e.g. the

output of a rigid fitting program.

2. Pre-assembly stage. This stage is meant to impose

symmetry upon random starting structures, and can be

skipped. All atomic and cryo-EM forces are turned off. The

symmetry penalty is minimized, while either the position of the

structures is kept fixed, or they experience weak distance

restraints to keep them at a reasonable distance from each

other. Typically, 500 000 structures are selected after this

stage.

3. Assembly stage. All components are assembled into the

electron density map using a Gaussian overlap model. The

density map is down-sampled to low resolution (typically 40 Å),

making the Gaussians long-range and smooth. In addition, a

weak center-of-mass distance restraint (‘‘gravity’’) is added to

further facilitate the assembly process. Finally, a ‘‘voxel atom

density’’ energy term is added to prevent excessive overlap

between the components. Atomic forces are still turned off.

4. Scoring (re-ranking) stage. First, the structures are sorted

according to the final score from the assembly stage and the top

100 000 structures are taken. Those structures are then sorted

according to Gradient Vector Matching (GVM) energy, using

the original density map (20 Å or 23.5 Å in the current study)

5. Refinement stage. The top scoring structures (typically

1000) are subjected to a multi-stage refinement, each stage

consisting of re-minimization of the structure.

a. An energy term for the original density map is added

b. Atomic forces (from the ATTRACT force field) are

turned on, with a weight of 0.01.

c. Atomic forces are set to full weight. To prevent

disintegration of the structure, the cryo-EM density

overlap terms are scaled with a weight of 50.

d. Both atomic forces and EM density overlap have their

weights set to 1

After the refinement stage, the final structures are scored and re-

ranked according to their GVM energy.

Gaussian overlap model
ATTRACT-EM is based on the idea that each atom should

have a degree of overlap with the cryo-EM map, or else should

experience an attractive force into the map. In ATTRACT-EM,

each (coarse-grained) atom of each component is represented by a

Gaussian. The experimental (or simulated) cryo-EM map is

represented as well as a set of Gaussians, positioned at the center of

each voxel of the map. To obtain this representation, a

deconvolution algorithm was applied to the original density

map, using the Clarity deconvolution library [61].

The advantage of this representation is that the overlap O

between two Gaussians is itself a Gaussian, which can be

computed efficiently and independently of orientation:

O(D)~A1A2e

{s1s2

s1zs2
D2

where D is the distance between the Gaussians, A1 and A2 are the

amplitudes of the Gaussians, and s1 and s2 are decay factors

derived from the standard deviations s1 and s2 of the Gaussians:

s~
1

2s2

Here, we choose the standard deviations of all Gaussians, both

atomic and voxel Gaussians, to be half the resolution of the cryo-

EM density map, divided by
ffiffiffi
3
p

for the three Cartesian

dimensions.

The derivative of this function is then as follows:

dO

dD
~{2

s1s2

s1zs2
D:O

This derivative function is computed in each of the Cartesian

dimensions X, Y and Z, which is required for energy minimiza-

tion.

The next step is to compute the maximum possible overlap that

an atom can experience. Any atom that experiences less than this

overlap should then experience a force, with its direction defined

by the Cartesian derivative computed above. The magnitude of

the force was defined to be linearly proportional to the deficiency

in overlap (harmonic potential).

Unfortunately, the computation of the maximum overlap is not

trivial. If we were fitting one atom to a density map of one atom,

the maximum overlap would be simply 1. However, for a multi-

atom assembly the maximum overlap will be much more: since the

distance between atoms is much smaller than the resolution, there

is considerable ‘‘spillover’’ overlap from neighbouring atoms, in

particular for atoms in the core. Therefore, for each protein

component, the maximum overlap values were determined by

computing the overlap of the component with itself. To do this, a

simulated density map was generated for the component, which

was then deconvoluted. For each atom, the actual overlap with this

Figure 1. Flowchart of the ATTRACT-EM protocol.
doi:10.1371/journal.pone.0049733.g001
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map was computed, and this value was considered the maximum

possible overlap for this atom. These maximum overlap values for

all components were concatenated into a single file.

However, these per-component maximum overlap values are

correct only if a single component, accounting for the complete

electron density, is fitted into the map. Although the introduction

of flexibility may cause some inaccuracies in these values, these

inaccuracies should be limited as long as one deviates not too

much from the starting conformation. In contrast, for multi-

component cases, atoms experience significant spillover from a

different source, coming this time from adjacent subunits

(intermolecular spillover; in addition to the intramolecular

spillover accounted for above). The actual amount of intermolec-

ular spillover is dependent on the resolution of the map, and also

of the compactness and arrangement of the subunits in the map. In

this study, for simplicity, we chose to model this spillover as a

single parameter that scales the intramolecular maximum overlap

with a factor F. To determine F, the reference structure was

inspected and the value was estimated where the restraint violation

energy started to rise sharply. For the GroEL cis ring, F was found

to be 5.1 (for the 40 Å map; F was 1.7 for the 20 Å map); for the

full GroES-GroEL complex, the factor F was found to be 7.0 (for

the 40 Å map). Finally, for the experimental GroES-GroEL map,

F was found to be 9.8 (for the 44.8 Å map). We are fully aware

that in a real-world situation, F is not known, and that in any case

a single factor is a too simplistic model: in reality, inter-component

spillover will vary between components and between regions

within a component. Therefore, estimation of the maximum

expected overlap is something that should be properly optimized

in each situation, based on a priori knowledge on topology, radius

of gyration, and knowledge on which regions of a subunit interact

with other subunits (hence receiving a higher intermolecular

spillover). However, this is only necessary for low-resolution data.

In contrast, density maps with a resolution that is much better than

the size of a single component will not experience much

intermolecular spillover, and here F can be set to 1.

In ATTRACT-EM, in addition to achieving an overlap of

100% of the maximum overlap with F = 1 (with a large violation

energy penalty if this overlap is not achieved), the structure also

has to match an overlap that was multiplied by F as estimated

above, associated with a much smaller energy penalty.

Note that the Gaussian overlap function and the F parameter

are only used during the assembly and refinement stages, not

during the scoring (re-ranking) stage, when only the GVM energy

is used (see below).

Pre-computation
At runtime, the overlap of an atom can be computed by

summing the overlap of an atom with each voxel (or, to be more

exact, voxel-centered Gaussian) of the electron density map. For

this, we expected it to be sufficient to take into account only the

nearest voxels. However, this turned out to be false, with far voxels

providing a non-negligible contribution to the overlap (results not

shown); taking this into account severely hampered the speed of

the overlap function. Therefore, a pre-computing step was

introduced. For each voxel in the density map, the overlap (and

its gradient) was computed between a hypothetical atom, placed at

the center of the voxel, and the entire density map. During the

fitting, the overlap of an atom was computed by trilinear

interpolation: the eight neighboring voxels of an atom were

determined and each voxel’s pre-computed overlap was weighted

proportionally in approximating the total overlap. This effectively

‘‘divides’’ the atom fractionally among all eight neighboring

voxels, with relative weights inversely proportional to the distance.

Due to the smoothness of the Gaussian function, and its flat

plateau near the center, this approximation is extremely accurate

(results not shown).

Voxel atom density
A final issue in the simultaneous fitting of multiple components

is the fact that the components should not clash or overlap with

one another. To prevent this, we introduced a simple per-voxel

atom density term. Since the fitting algorithm already ‘‘divides’’

each atom among the neighboring voxels (see above), these atom

weights are simply accumulated during the fitting process,

measuring the ‘‘voxel atom density’’, i.e. how many atoms are

present in a voxel. These densities were then compared with

standard maximum atom densities, and a repulsive force was

applied to all atoms in a voxel were the atom density was too high.

The standard densities were determined from the reference

complex of the cis ring (18 for 40 Å maps, lowered to 16 during

refinement; 4 for 20 Å maps), but they are expected to be universal

for folded proteins with normal packing (for a given voxel size). To

verify this, we used the average protein packing densities of Tsai et

al. [62] and the average weight of an ATTRACT pseudo-atom to

calculate the standard atom density value (see Supporting Analysis

6 in Supporting File S1). The standard voxel atom density was

calculated to be 14 per voxel on average for the protein interior,

with some fluctuations. Our value of 16 (and 18 during the

assembly stage) accounts for these fluctuations (and allows for

limited clashes between the components in the assembly stage).

For the simulated GroES-GroEL complex, the same maximum

density values were used. For the experimental map, slightly larger

values were used in accordance with the larger voxel size (19 for

the 44.8 Å map, 4.4 for the 23.5 Å map). Several small control

complexes exhibited abnormal packing (see Supporting Analysis 1

in Supporting File S1) and the maximum voxel densities were

increased to improve the sampling.

Gradient Vector Matching (GVM) energy
For every voxel Mx,y,z in a grid, a gradient V can be defined that

captures the difference in electron density with its neighbors. In

principle, such a gradient can be computed with the Laplacian

filter method as follows:

V~
Xxz1

xx~x{1

Xyz1

yy~y{1

Xzz1

zz~z{1

Mxx,yy,zz{9Mx,y,z

However, unlike the Laplacian filter, which aims only to capture

only the magnitude of curvature, we aimed to capture the direction of

the density gradient as well. In other words, the aim is to compute

V as a Cartesian gradient vector, which can be done in the

following manner:

Vx~Mxz1,y,z{Mx{1,y,z

Vy~Mx,yz1,z{Mx,y{1,z

Vz~Mx,y,zz1{Mx,y,z{1

However, since this formula no longer averages over multiple

voxels, it is even more sensitive to noise than a Laplacian filter.

Therefore, to reduce the noise, the surrounding voxels were taken

into account for the calculation of V, leading to the following final

formula, which is also known as the 3D Prewitt operator:

ATTRACT-EM: Assembly Using Cryo-EM Maps
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Vx~
Xyz1

yy~y{1

Xzz1

zz~z{1

Mxz1,yy,zz{Mx{1,yy,zz

Vy~
Xxz1

xx~x{1

Xzz1

zz~z{1

Mxx,yz1,zz{Mxx,y{1,zz

Vz~
Xxz1

xx~x{1

Xyz1

yy~y{1

Mxx,yy,zz1{Mxx,yy,z{1

During the GVM scoring, this formula was then applied to two

different grids M, resulting in two different assessments of V for

each voxel. First, the experimental gradient vector (Vexp) was

computed with M being the experimental (or simulated) electron

density map at 20 Å (or 23.5 Å) resolution. Then, the model

gradient vector (Vmodel) was computed with M being the grid of

voxel atom densities, i.e. the summated fractional atom occupancy

of each voxel. The Vmodel vectors were found to be systematically

smaller by a factor of about 1.35 than those derived from electron

density, and were scaled accordingly.

The deviation between Vexp and Vmodel was converted into an

energy term. For all voxels with a significant magnitude of Vexp,

the difference between Vexp and Vmodel was computed. The

threshold for significant magnitude was chosen to be 2 units

throughout the study. For the cis ring, for each xyz component, a

deviation of 2 units was tolerated, but further deviation was

penalized with an energy proportional to the square of the

deviation. For later experiments with the entire GroES-GroEL

complex, for which the gradients were larger and much more

numerous, the tolerance threshold was increased to 20.

System
The method was tested on the GroES-GroEL complex (PDB

code 1AON [34]). This assembly consists of 21 components,

organized in three symmetric, homoheptameric rings: GroES

(chain O-N), GroEL cis (chain A-G) and GroEL trans (chain H-N).

During fitting, seven copies of chains A, O and/or N were

assembled into the electron density: generated models were

compared to a reference structure, which was built by fitting

coordinates of each of the three chains seven times onto the

coordinates of 1AON using PyMol [63]. Since there are minor

differences between the intra-ring components, there is a minor

RMSD of 0.4 Å (C-alpha RMSD) between the reference structure

and 1AON.

In addition, C7 symmetry restraints were imposed in the form of

distance restraints (see below). Since the symmetry in 1AON is

non-crystallographic and not completely perfect, even the

reference structure had a small symmetry violation energy, but

this did not interfere with the fitting process.

An experimental cryo-EM density map for GroES-GroEL was

taken from the EM databank (code 1046, resolution 23.5 Å).

Adaptation of this map to ATTRACT-EM, however, presented a

number of complications. First, all our simulated maps had a

resolution-to-voxel ratio of 4, and we discovered that the assembly

and in particular the GVM scoring do not work well otherwise. In

contrast, the experimental map has a voxel size of 2.8 Å at a

resolution of 23.5, which is a ratio of about 8. Therefore,

neighbouring voxels in the original experimental map were joined,

doubling the voxel size to 5.6 Å, and this processed map was used

in lieu of the 20 Å map in the simulated run. Repeating this

procedure yielded voxels of 11.2 Å, and the resulting map was

filtered down to 44.8 Å resolution using the EMAN program

[64,65]. This second processed map was used in the initial fitting,

in lieu of the 40 Å map in the simulated run. Both maps were

rescaled to have the same density sum values as the combined

simulated maps of the components.

As with the simulated maps in the previous runs, a Gaussian

deconvolution was performed on the two experimental maps.

However, the noise in these maps produced so many deconvolu-

tion artifacts that the deconvolution step was omitted and the non-

deconvoluted maps were used instead. It is to be investigated if this

omission of the deconvolution step is to be used with experimental

maps in general or if it is specific to the EMD-1046 map.

Finally, since the experimental EMD-1046 map is in a different

coordinate frame than 1AON, a transformation matrix had to be

determined. This matrix was obtained by fitting the reference

structure to 1GRU, the fitted structure provided by the authors of

the GroES-GroEL density map [35]. This transformation matrix

was applied to each component prior to fitting with experimental

data, and the reverse transformation was applied afterwards.

Generation of starting structures for the full GroES-GroEL
complex

Basic information from the experimental cryo-EM density map

(EMD code 1046) (Figure S1 in Supporting Information File S1)

was used in the generation of starting structures for the full GroES-

GroEL map.

Figure S1 shows clearly that GroES-GroEL has the form of an

elongated igloo, consisting of two hollow rings (the GroEL rings)

covered by a smaller cap. The axis of symmetry is easily

determined; in fact, the experimental cryo-EM map has the

symmetry axis already aligned to the Z axis.

In the reference structure, the three rings (GroES, GroEL cis

and GroEL trans) have a Z position of 264.4 Å+/20.2, 0.0 Å+/

20.1, and 71.4 Å+/20.1, respectively (average position of the

center of mass of the seven components of each ring). In the

starting conformations, each component was placed at this Z

position with a random displacement of 25 to 5 Å (the same

displacement for each component within a ring, different

displacements per ring and per structure).

In the reference structure, the three rings have a radius in the xy

plane of 26.6 Å+/20.4, 46.0 Å+/20.3 and 46.8 Å+/20.4,

respectively. For the generation of starting conformations, for

each of the three rings, a random radius of 35 Å+/215 was

chosen. The x and y coordinates of each ring’s first component

were chosen at random and scaled to conform to the chosen

radius; the other components were then arranged forming an

evenly spaced circle in the xy plane. Finally, each component was

oriented at random.

These radius and random component parameters were all initial

guesses and not optimized in any way. As usual, 1 million

structures were generated and subjected to a pre-assembly

minimization stage to impose symmetry; however, since the

symmetry was already perfect in terms of position, positions were

fixed and only the orientation was minimized. As usual, the

structures were ranked according to symmetry energy and the best

500 000 structures were subjected to the assembly stage.

Symmetry restraints
C7 symmetry was imposed upon each of the three rings in the

form of harmonic distance equality restraints, using the same

algorithm as the docking program HADDOCK [46,48], and also

similar to the distance restraints used in GMFit [29]. This

algorithm does not require the explicit definition of symmetry

axes. The algorithm was implemented and generalized to enforce

CX symmetry distance restraints for any number of monomers X.

ATTRACT-EM: Assembly Using Cryo-EM Maps
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First, all C-alpha atoms C are arranged into pairs, each pair

containing atom A = Ci and atom B = Cp2i, where p is the total

number of C-alpha atoms in a monomer, and i iterates over all

positive integers where i#p2i. Then, for each atom A and B in a

pair, one or more equalities are imposed. Equality Sk is defined as

d(An, Bn+k);d(An+1, Bn+k+1);d(An+2, Bn+k+2) …, where n iterates over

X, and d(Aj1, Bj2) is the distance between atom A in monomer j1

and B in monomer j2. j1 and j2 are modulo monomer indices, i.e.

if X = 7, A8;A1. k is an integer whose allowed values depend on X,

with 0,k,K X.

Thus, for C7 symmetry, for each pair, three equalities S1, S2 and

S3 are imposed, with S1 defined as d(A1, B2);d(A2, B3);d(A3,

B4);d(A4, B5);d(A5, B6);d(A6, B7);d(A7, B1).

We also implemented D4 restraints (for the tetramer 7CAT, see

Supporting Analysis 1 in Supporting File S1), using the three

distance equalities d(A1, B2);d(A3, B4) ; d(A1, B3);d(A2, B4); d(A1,

B4);d(A2, B3).

Each equality is enforced through a harmonic distance restraint

on each of the distances in the equality distance set. First, the

average distance in the set is computed, and for each distance in

the set, the deviation D is computed. A harmonic force F = 2 c *

D and the corresponding energy E = 2 * c * D are then computed,

with a force constant c = 0.005 kcal/mol/Å. While this force

constant is small, the number of harmonic restraints scales both

with the number of components (quadratically) and the number of

C-alpha atoms (linearly), causing several thousands of restraints to

be defined, even for just the GroEL cis ring.

Location restraints
For each monomer in each of the assembled structures, three

random offsets were chosen, between 25 and 5 Å. These offsets

were added to the XYZ components of the true location, leading

to an average displacement of 4.8 Å. During minimization, the

center-of-mass position was restrained to this location using a

harmonic potential with a force constant of 0.5 kcal/mol/Å.

RMSD calculations
The overall Root Mean Square Deviation (RMSD) was simply

computed as the RMSD between all heavy atoms in the model

and the reference structure, without any coordinate fitting or

optimization. In addition, the ligand RMSD between adjacent

components was computed, measuring not the absolute but the

relative positioning of the components. For each pair of adjacent

components, the coordinates were extracted from both the model

and the reference structure, and the ligand RMSD was computed

in the standard way [54,55]: the model coordinates of the first

component (the ‘‘receptor’’) were fitted onto the reference, and for

the second component (the ‘‘ligand’’), the RMSD between the

model and reference coordinates was computed. Reported ligand

RMSD values are the average of the ligand RMSDs of all seven

equivalent component pairs.

Results

Method
Our aim is to develop a cryo-EM fitting function that can be

added as an energy term to ATTRACT, acting in synergy with the

existing intermolecular energies (van der Waals, electrostatic and

symmetry energies). This allows the fitting to be optimized using

ATTRACT’s existing energy minimizer. It also allows a multi-

stage protocol: first, the initial fitting is performed with low

resolution cryo-EM data (sampling/searching); then, gradually

more detail is added, in the form of atomic intermolecular forces

and higher resolution cryo-EM data, in order to refine the results

and to discriminate correct from incorrect solutions (re-ranking/

scoring). This subdivision of the problem into sampling, ranking

(scoring) and refinement is common in the protein docking field

and has proven its merit [66].

However, this does impose a number of requirements on the

cryo-EM fitting function. First, it must be described in terms of

energies and forces that act on individual atoms. Second, even in

simple two-body docking, energy minimization is repeated tens of

thousands of times with different initial conformations, and this

number must be vastly greater for large assemblies; therefore, the

function should be computed relatively fast. Third, the function

must not get trapped easily in local energy minima, so forces

should be long-range and smooth. Finally, it is not our aim to

develop a global cryo-EM fitting method, which attempts to

maximize the overlap with the electron density; rather, the fitting

function should restrict the conformational space that is available

to the ATTRACT docking program. Therefore, it should not be

overly restrictive, allowing components to move around within

regions of high electron density, so that they can adapt to each

other by forces of symmetry and ATTRACT intermolecular

energies. This also means that the fitting function should be local,

taking into account the local electron density environment of each

component, rather than the overall global fit; as a beneficial side

effect, a local fitting function also allows the sum of all components

to be smaller than the cryo-EM map.

A fitting function fulfilling the requirements above was

developed and coded into ATTRACT, based on the overlap

between Gaussians (see Materials and Methods). To avoid any

reliance on clustering or feature detection, each individual atom of

the protein and each individual voxel of the density map is

represented by a separate Gaussian. We found that at 40 Å

resolution, the Gaussian overlap function is very smooth and long-

range, enough to pull the components into the map. During the

fitting, each atom is ‘‘divided’’ (with proportional weights) among

the eight closest voxels in the electron density grid. This allows us

to pre-calculate all possible atom-grid interactions, which increases

both speed and accuracy (see Materials and Methods). It also

allows to keep track of the ‘‘voxel atom density’’, i.e. the amount of

atoms that are present in any given grid voxel. By introducing an

additional energy term that penalizes excessive voxel atom

densities, interpenetration between the components is prevented.

This is because during the initial fitting stage, the ATTRACT

force field is disabled to smoothen the overall energy landscape.

This Gaussian overlap function and voxel atom density function

were used in all computational assembly experiments performed in

this study.

Application to the GroES-GroEL cis ring
For an initial test, the method was applied to the homo-

heptameric GroEL cis ring. The ring was isolated from 1AON and

the coordinates were centered. Simulated density maps of 20 Å

and 40 Å were generated from the coordinates using the Situs

pdb2vol tool [6]. The seven components were then assembled into

the density map by energy minimization using ATTRACT, in

three stages. First, starting conformations were generated by

placing each component at a random position and orientation.

Then, a pre-assembly stage was used to impose symmetry onto the

starting conformations. Note that the symmetry only restrains the

relative orientations of the monomers, not their absolute

positioning. To allow the necessary rearrangements to take place,

all other forces were turned off and the proteins were allowed to

move freely through one another; however, a weak, long-range

attractive force and a strong, short-range repulsive force were

applied between the centers of mass in order to preserve a

ATTRACT-EM: Assembly Using Cryo-EM Maps
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reasonable distance between the components. The pre-assembly

stage is shown in Supporting Information Movie S1.

Finally, out of the 1 million generated structures, 500 000

structures with the lowest symmetry violation energy were selected

and subjected to the actual assembly stage. In the assembly stage,

each atom of each component was fitted into the 40 Å simulated

cryo-EM map using the Gaussian overlap paradigm described

above, using voxel atom density to prevent major clashes between

the components. The ATTRACT intermolecular forces were still

disabled, but symmetry restraints were maintained during the

fitting process: therefore, the minimized energy is the sum of the

density fitting energy towards the 40 Å map, and the symmetry

energy. The assembly stage is shown in Supporting Information

Movie S2.

Figure 2a shows the results of the initial assembly stage, with the

models ranked by the total energy, and the rank plotted against the

RMSD towards the reference structure. Figure 2a shows that a

40 Å map is in principle enough to generate models with a low

RMSD, although not many of these structures are generated: only

37 out of 500 000 structured had an RMSD better than 10 Å. In

addition, it places virtually all of those structures (35/37) in the top

10 000 (top 2%) and many of them (11/37) even in the top 1000,

including the structure with the best RMSD (4.7 Å RMSD).

Table 1 shows the RMSD values of the top 10 models and also

their ligand RMSD values, which describes their relative

positioning. However, none of these structures have an RMSD

under 10 Å, although the 4th structure comes close.

The 20 Å density map was deliberately not used in the initial

assembly stage: while its higher resolution provides somewhat

more details, it is also less smooth and therefore less potent in

pulling components into the map from a long range. To confirm

this, a comparison run was performed where the 20 Å map was

used already in the initial assembly stage, which led to much

poorer RMSD values (results not shown). In addition, refinement

with the 20 Å density map led to somewhat improved solutions,

but still with wrong solutions at the top (see Supporting Analysis 2

in Supporting File S1). Clearly, our implementation of the

Gaussian-overlap fitting function (in combination with the

ATTRACT energy minimizer) is suitable for the sampling of

correct solutions; however, when it comes to scoring and ranking,

the function is unable to fully distinguish correct solutions from

wrong ones.

It occurred to us that the Gaussian-overlap fitting algorithm

does not completely grasp the features of the density map. It is easy

to see that the wrong solutions do not fit the map, because the

contours of the map are very different from that of the model:

however, the Gaussian-overlap function only takes into account

the values of the density map voxels. Chacon and Wriggers [20]

developed a Laplacian filter to emphasize the contours of a density

map, interpreting ‘‘contours’’ as the regions where the electron

density undergoes steep changes (i.e. with high magnitude of its

second derivative). However, the Laplacian filter may be sensitive

to high-resolution noise [20,67], and it computes only the location

and magnitude of a contour, not its orientation. In addition, it was

designed for grid-to-grid fitting whereas our method performs

atom-to-grid fitting. Therefore, we developed a different contour-

matching algorithm, which we dub ‘‘gradient vector matching’’

(GVM), with several modifications to the Laplacian filter of

Chacon and Wriggers. We reasoned that for an atomic

representation, the contours are where the protein surface starts,

i.e. where the number of atoms in a certain region suddenly

changes. Since the fitting procedure already computes the voxel

atom density of the model, we decided to use these values and

compare them to the actual EM density values of the map.

Second, we wanted to calculate not only the magnitude of changes

in atom density/electron density, but also their direction: in this,

we interpret a contour as a polygon, or part of a contour plane,

where the gradient vector of the electron density/atom density

corresponds to the contour plane’s normal vector, defining its

orientation in space. This vector can be computed by taking the

difference between neighbouring voxels in the X, Y and Z

directions (3D Prewitt operator; see Materials and Methods). This

vector interpretation of contours is conceptually (but not

computationally) similar to the normal/gradient vectors in the

3SOM fitting method [23] and in the MOTIF-EM superposition

tool [68]. The gradient vector representation is shown in two

dimensions in figure 3.

Supporting Analysis 3 in Supporting File S1 shows the

correlation between computed and experimental gradient vectors.

The mismatch between the two was converted to an energy term

(see Materials and Methods).

Figure 2b and table 2 show the RMSD statistics for all the initial

models sorted by GVM energy. Despite the fact that only 37 out of

200 000 structures had an RMSD,10 Å, the entire top 10

consists of these structures, and all of them were scored in the top

1000. Moreover, there were only 7 structures with RMSD,7 Å,

and these were ranked 1–6 and 13. The top scored model has an

RMSD of only 5.4 Å, and figure 2c shows an overlay of this model

with the reference structure.

Molecular refinement
In order to further improve the accuracy of the models, a multi-

stage refinement procedure was employed. First, the 20 Å map

was added to the fitting energy and the top structures were re-

minimized and re-ranked using GVM energy. A large gap in

energy was observed between the first 32 structures (GVM energy:

44–2164) and the next structure (GVM energy: 17 413). These

first 32 structures, with RMSD values between 2.9 and 10.7 Å,

were selected and refined using the ATTRACT intermolecular

force field. In the first stage, the intermolecular forces were turned

on, but scaled by a factor of 0.01. In the next stage, full

intermolecular forces were used but the fitting energy was scaled

up by a factor 50 to prevent the structure from disassembling. In

the final stage, both intermolecular and fitting energies were scaled

normally. The final structures were then scored and re-ranked

according to the GVM energy, without any weighting scheme.

The molecular refinement is shown in Supporting Information

Movie S3.

Table 3 shows the result of the refinement procedure. The top

ranked model is highly accurate, showing an overall RMSD of

only 2.5 Å, with interfaces that are essentially perfect (ligand

RMSD 1.0 Å). Figure 2d shows the overlay between this model

and the reference structure. In addition to having the best GVM

score, this structure also had the most favored ATTRACT force

field energy.

In general, the molecular refinement did not much affect the

overall RMSDs, but ligand RMSDs showed a dramatic improve-

ment. In fact, in several cases (for example the structure with rank

#8), the strong intermolecular forces caused the components to

shift within the ring plane, leading to a degradation of overall

RMSD even while the interfaces were assembled perfectly.

The 2.5 Å RMSD of the top-ranked model is a large

improvement over previous attempts of Zhang et al. [31], who

also assembled the cis ring using their IQP method, achieving an

RMSD of 8.6 Å. In contrast, our method achieves an RMSD of

5.4 Å after initial fitting and scoring, and 2.5 Å after refinement.

For a fair comparison, it must be mentioned that Zhang et al. used

a segment of the experimental EMD-1046 density map. Simulated
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data was used in our study to exclude any possible artifacts arising

from incomplete separation of the rings at low resolution.

Application to the full GroES-GroEL, simulated data
Next, the method was tested on the full GroES-GroEL complex,

assembling 21 components simultaneously. Again, 20 Å and 40 Å

electron density maps were simulated using Situs, and random

starting structures were generated as before, using the seven-fold

symmetry of each ring as distance restraints. However, we found

that for 21 components, brute force fitting of random starting

conformations did not produce any structures of good RMSD, not

even when the number of structures was increased by an order of

magnitude (results not shown). Therefore, the three-ring topology

and symmetry axis were used in the generation of starting

structures (see Materials and Methods). The GroES-GroEL system

serves as a test system to evaluate the approach, and one may

argue that such information may not be available in other cases.

For GroES-GroEL, however, the approximate locations of the

rings are evident from the cryo-EM map, as shown by figure S1 in

Supporting Information S1. In fact, the approximate location of

Figure 2. Assembly results for the GroEL cis ring. A) RMSD values of all generated models compared to the reference structure; models were
fitted (energy-minimized) using a 40 Å simulated density map and ranked by the same energy. B) RMSD values of the generated models compared to
the reference structure; the top 20% models from A) were rescored with GVM using a 20 Å simulated density map. C) Overlay of the best-scoring
structure from B) (green) on the reference structure (cyan) (RMSD: 5.4 Å). Image was generated with PyMol [63]. D) Overlay of the best-scoring refined
structure (green) on the reference structure (cyan) (RMSD: 2.5 Å). Structures from C) were refined using the ATTRACT force field and rescored with
GVM. Image was generated with PyMol [63].
doi:10.1371/journal.pone.0049733.g002
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the rings had been inferred from negative stain EM already long

before the X-ray or cryo-EM structure of the assembly became

available [69]. No absolute positions or any other information

from the crystal structure were used.

The results of the initial fitting were similar to those for the cis

ring alone, except that sampling was worse: out of 500 000

structures, only five had an RMSD under 10 Å (Table S2 in

Supporting Information File S1).

Figure 4a shows the ranking of the generated structures by

GVM energy. This shows that GVM works equally well for the full

GroES-GroEL complex as for the cis ring. Three of the structures

under 10 Å are in the top 10, including the best generated

structure (RMSD 8.4 Å, rank #3).

RMSDs were also calculated separately for each of the three

rings (table 4). This shows that the RMSDs of the cis ring are in

fact similar to the previous computational assembly experiment;

the trans ring, too, has low RMSDs similar to the cis ring, but the

small GroES ring is placed very poorly. Still, several structures

with a correct GroES ring were generated; however, in none of

these structures, both rings of GroEL were correctly placed as well.

Due to the small size and smooth features of the GroES density,

structures with good GroEL placement but poor GroES place-

ments were favored by the GVM scoring over structures where the

opposite was the case. Still, we hoped that the GVM would be able

to pick out structures where all three rings were placed correctly,

so we sought to improve the sampling in order to generate such

structures.

Apart from the intra-ring contacts, which are symmetrical and

therefore highly interdependent, GroES-GroEL contains two

interfaces that are independent from another: GroES/GroEL-cis

and GroEL-cis/GroEL-trans. Therefore, it was decided to take the

top 100 structures and recombine them, iterating over all possible

pairs of structures and taking two adjacent rings from one

structure and the third ring from the other.

This resulted in 19 800 recombined structures, which were

pooled with the 100 original ones, and re-scored and re-ranked

according to the GVM energy. Figure 4b and table 5 show that the

sampling is indeed much improved. Moreover, GVM is able to

select the correct structures: the structures in the top 10 have

excellent RMSD values, with the top-ranked structure at 4.0 Å.

The rings are assembled correctly, not only regarding their

absolute position in the map, but also the relative positioning of

the components within the ring. Most of the residual error comes

from the inter-ring positioning, in particular between GroES and

cis-GroEL. This is not surprising since the interface between

GroES and cis-GroEL is very small (825 Å2 per component,

versus 3226 Å2 between adjacent cis-GroEL components).

Application to the full GroES-GroEL, experimental data
Finally, the fitting of the full GroES-GroEL complex was

repeated, but now using a 23.5 Å experimental cryo-EM map (EM

databank code 1046), adapting the experimental map to be

compatible with our computational assembly protocol (see

Materials and Methods).

The initial sampling was somewhat poorer than for the

simulated run, producing only 4 structures of RMSD better than

10 Å, the best structure being no better than 9.2 Å. We proceeded

Table 1. Top 10 RMSD values for the GroEL cis ring after the
assembly stage.

Rank Overall RMSD ligand RMSD

1 57.4 58.3

2 48.3 33.5

3 56.5 68.1

4 11.9 8.4

5 17.3 16.6

6 53.8 64.2

7 27.4 57.0

8 36.0 49.9

9 58.2 35.6

10 32.8 54.3

RMSD and ligand RMSD values of the top 10 models for the GroEL cis ring (in Å),
compared to the reference structure; models were fitted (energy-minimized)
using a 40 Å simulated density map and ranked by the same energy.
doi:10.1371/journal.pone.0049733.t001

Figure 3. The gradient vector representation. A) A simple
reference shape. B) The reference shape with a Laplacian filter applied
to it. C) The gradient vector representation of the reference shape. The
direction of the arrow indicates the direction of the gradient vector,
whereas the size of the arrow shows its magnitude.
doi:10.1371/journal.pone.0049733.g003
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to score and re-rank all generated structures using GVM

(figure 5a). Three out of four structures with RMSD,10 Å were

ranked in the top 100 and one of them in the top 10 (table 6).

Breakdown of the RMSD values per component (table 6) shows

that the cis ring was equally well assembled as in the simulated run

(and GroES equally badly), but the trans ring much less so. Rings

were again recombined, which improved the sampling (figure 5b), but

much less than for the simulated run: in the top structures, both

GroEL rings were now correctly assembled, but not GroES.

Therefore, another round of ring recombination was carried out,

taking again the top 100 structures and recombining them. This

resulted in 3102 unique structures with an excellent sampling around

the reference structure (figure 5c). Table 7 shows a breakdown of the

top 10 in terms of RMSD. The top ranked structure has an overall

RMSD of 5.0 Å, and all three rings are correctly assembled. The first

six structures are all similar to the top ranked structure. All structures

in the top 10 have the correct GroEL rings assembled, and only three

of them have an incorrect GroES structure.

Finally, the top 1000 structures were refined with the full map

and the ATTRACT force field. The top 10 structures are shown

in table 8. As expected, overall RMSD did not change

dramatically; as before, most, but not all, structures in the top

10 have the correct GroES ring, while both rings of GroEL are

assembled correctly for all of them. In contrast, significant

improvements were observed for the ligand RMSD, mostly within

the GroEL cis ring and between the GroEL rings.

The top-ranked structure is shown in figure 5d. Its overall

RMSD is slightly improved to 4.6 Å, and a 2.8 Å structure was

generated and ranked #10. The cis and trans rings are well-

assembled, with RMSDs of around 1 Å, with intra-GroEL and cis-

trans RMSDs around 3 Å. Note that for the cis ring, these RMSD

values are no less accurate than for the first assembly run, even

though in that run, only one ring was assembled, and simulated,

noise-free data was used.

In contrast to the other interfaces (but in accordance with the

run with simulated data), the small GroES-cis-GroEL interface

could not be assembled with a (ligand) RMSD better than 5 Å,

neither in the top structure nor in other top 10 structures. In fact,

the improved assembly of the larger interfaces during refinement

made the small GroES-cis-GroEL interface somewhat worse. In

using low resolution cryo-EM data to assemble GroES-GroEL

with the highest possible accuracy, modeling the GroES-cis-

GroEL interface is clearly the limiting factor for our method.

In conclusion, we were able to generate a structural model for the

GroES-GroEL complex with an overall accuracy of 4.6 Å RMSD,

and an even better structure (2.8 Å) is present in the top 10. This is

much better than the 14.7 Å structure that was generated by GMFit

[29]. Comparing figure 4b and 5b, GVM scoring with experimental

data works equally well for experimental and simulated maps.

Although in both cases, initial sampling is poor, it is shown that

sampling difficulties can be overcome by ring recombination, and

that the resulting structures are selected by GVM, equally reliably

with the experimental map as with simulated data.

Additional experiments and controls on GroES-GroEL
In order to test the robustness of the method, two additional

control experiments were performed on GroES-GroEL.

First, it was found that GVM scoring works even at very low

resolution. Using only the experimental GroES-GroEL map

filtered down to 44.8 Å resolution, a structure with 5.3 Å RMSD

could be scored in the top 10 (see Supporting Analysis 4 in

Supporting File S1). In general, non-reliance on structural details

also indicates a (strong) resistance to structural noise.

Second, we performed a negative control by swapping the initial

positioning of the cis and trans ring components in the starting

structures. The resulting assembled models had a much poorer

GVM score, showing that our method can distinguish between the

correct and the wrong ring order (see Supporting Analysis 5 in

Supporting File S1).

Application to symmetric oligomers
ATTRACT-EM was also applied to four other complexes that

have been used as test cases in existing methods for simultaneous

multi-component cryo-EM fitting [29,31] (table 9; more details

about these complexes are provided in Supporting Analysis 1 in

Supporting File S1). This revealed that the performance of

ATTRACT-EM is overall similar to existing methods for these

small complexes. ATTRACT-EM worked particularly well for the

trimer (2NIC), and for the hexamer (2REC), even though in the

latter case, no molecular refinement could be performed due to a

lack of an atomic-resolution structure.

Table 2. Top 10 RMSD values for the GroEL cis ring after the
scoring stage.

Rank Overall RMSD ligand RMSD

1 5.4 6.3

2 6.2 13.1

3 4.7 7.9

4 6.8 10.5

5 5.9 11.2

6 6.2 7.7

7 8.7 7.7

8 8.3 17.1

9 7.2 13.6

10 8.0 14.9

RMSD and ligand RMSD values of the top 10 models for the GroEL cis ring (in Å),
compared to the reference structure; models were fitted (energy-minimized)
using a 40 Å simulated density map and the top 20% structures were ranked by
gradient matching using a 20 Å simulated density map.
doi:10.1371/journal.pone.0049733.t002

Table 3. Top 10 RMSD values for the GroEL cis ring after the
refinement stage.

Rank Overall RMSD ligand RMSD

1 2.5 1.0

2 6.2 7.5

3 6.6 4.8

4 7.2 11.1

5 6.2 9.8

6 8.1 12.5

7 7.1 11.0

8 7.1 1.0

9 7.2 7.5

10 7.8 4.8

RMSD and ligand RMSD values of the top 10 models for the GroEL cis ring (in Å),
compared to the reference structure; models were fitted (energy-minimized)
using a 40 Å simulated density map, ranked by gradient matching using a 20 Å
simulated density map, and refined using the ATTRACT force field.
doi:10.1371/journal.pone.0049733.t003
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Molecular refinement could also not be performed for the

tetramer (7CAT): the topology of the tetramer, containing long

wrapping tails, led to more clashes in the initial models than the

ATTRACT forcefield could deal with. The initial model had

nevertheless a reasonable RMSD (5.4 Å), albeit worse than GMFit

(2.3 Å). The performance for the dimer (1AFW) was disappointing;

while the relative placement (0.7 Å ligand RMSD) was excellent,

the absolute placement (6.8 Å) was inferior to other methods.

Application to dimers
In principle, for ATTRACT-EM (or any fitting method), the

fitting of small dimers is out of scope, since cryo-EM density maps

cannot be obtained for complexes smaller than a few hundred

kilodaltons. However, small dimers are the only available source of

asymmetric complexes where the individual components have

been crystallized in the free form (unbound structures). Therefore,

to investigate the effect of symmetry and bound/unbound forms,

ATTRACT-EM was applied to a number of small dimers. The

1AFW dimer was assembled with and without symmetry

restraints. In addition, three non-symmetrical dimers from the

protein-protein docking benchmark [70] were assembled, using

their unbound crystal structures. For 1WQ1 (which has the highest

conformational change of the three, belonging to the ‘‘medium’’

category of the docking benchmark), assembly using the bound

forms was also tested for comparison.

Table 10 shows that the standard ATTRACT-EM protocol

does not work very well for small dimers. For two dimers, 1AVX

and 1AY7, the assembly failed completely. For the two other

dimers, 1AFW and 1WQ1, partial success was achieved, with

RMSDs of 5–6 Å in the top 10.

Nevertheless, sub-angstrom precision was achieved for 1AFW

with an integrated protocol where the ATTRACT forcefield is

included from the beginning. However, such an integrated

protocol exploits the fact that the structures are in the bound

form; this could also be seen for 1WQ1, with much better results

for the bound form than for the unbound form. In contrast, the

standard protocol (with separate assembly and refinement stages)

seems to be robust for conformational change, with no differences

in performance between bound and unbound forms.

For many molecular machines, the locations of one or more

components are known. This knowledge can be obtained

experimentally in a variety of ways, for example from a new

cryo-EM experiment where a component has been genetically

deleted or labeled with an antibody, or by cross-linking

experiments between a component and other components of

known location. To investigate the effect of such experimental

knowledge, which is fuzzy and approximate, all dimers were tested

again in the presence of very loose location restraints. This

directed the monomers to specific locations in the map,

corresponding to the true location with a large random

displacement (average displacement of 4.8 Å). No further refine-

ment of structures was performed.

The presence of these loose location restraints completely solved

the sampling difficulties with small dimers: in all cases, in the initial

assembly stage, structures of 3–4 Å RMSD were generated in the

top 10, regardless which dimer and whether the bound form or the

unbound form was assembled. In addition, for 1AFW, assembly

without symmetry restraints performed no worse than with

symmetry restraints, showing that location restraints are an effective

substitute for symmetry in reducing the conformational space.

Discussion

The ATTRACT-EM protocol
Accurate prediction of the subunit arrangement in low

resolution cryo-EM derived electron density maps is a challenging

and still largely unsolved task. In the present study, a new

approach, ATTRACT-EM, was presented that combines search

strategies and techniques from the protein-protein docking field

with cryo-EM derived data encoded as additional docking penalty

score. ATTRACT-EM is based on the protein-protein docking

program ATTRACT, and applies well-established concepts and

techniques from the docking field to cryo-EM fitting: the

separation of sampling (searching) and ranking (scoring), an

atomic representation of molecular components, the rigid-body

optimization of interactions using an intermolecular force field,

and the use of experimental data to reduce the conformational

space that is to be searched. It is customary in the protein-protein

docking field to treat sampling (searching) and ranking (scoring) as

two separate problems [66], and the same approach has been

Figure 4. Assembly results for the full GroES-GroEL complex,
using simulated data. A) RMSD values of generated models for the
full GroES-GroEL complex, compared to the reference structure; models
were assembled using a 40 Å simulated density map and rescored with
GVM using a 20 Å simulated density map. B) RMSD values of
recombined models for the full GroES-GroEL complex, compared to
the reference structure; the top 100 models from A) were subjected to
ring recombination; the resulting combinations were rescored with
GVM.
doi:10.1371/journal.pone.0049733.g004
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followed here. A good sampling method generates correct

solutions among many others, and its score acts like a filter,

eliminating highly improbable solutions. During the searching

phase of the method (starting from millions of start arrangements)

a smooth Gaussian overlap function between subunits and electron

density is maximized to fit the subunits into the density. In

addition, a search strategy was designed based on a systematic

‘‘recombination’’ of parts of predicted subunit arrangements, akin

to the combinatorial approach followed by MultiFit [30].

During the ranking/rescoring phase of the protocol, a new

gradient vector matching (GVM) algorithm was used to select

most likely solutions. For the GroEL/GroES system, the GVM

algorithm showed exceptional performance, consistently ranking

the most accurate solutions at the top, for the cases that we tested.

The GVM function was designed to be local, which means that in

principle, forces to improve the matching can be computed,

allowing the matching error to be minimized during the fitting

process. However, we have not yet succeeded in integrating the

gradient matching into the energy minimization process in a

satisfactory way, and this will be the subject of future research.

Noise tolerance of the GVM scoring
Comparable results were obtained for GroES-GroEL for the

simulated and experimental maps. In general, the GVM scoring

performed excellent at very low resolutions: 20 Å or worse, and to a

large extent even at resolutions worse than 40 Å. While this is not

particularly useful in the context of modern single-particle cryo-EM

maps, which typically have a far better resolution, it does give a

Table 5. Top 10 RMSD values for GroES-GroEL with simulated data, after ring recombination.

ligand RMSD

Overall RMSD intra-ring inter-ring

GroEL GroEL GroEL GroEL cis- cis-

Rank all GroES cis trans GroES cis trans GroES trans

1 4.0 4.3 3.9 3.9 4.2 7.1 5.2 9.8 7.5

2 3.9 4.3 3.9 3.8 4.2 7.1 7.7 9.8 7.3

3 4.4 4.3 3.9 4.9 4.2 7.1 4.7 9.8 5.5

4 4.1 4.3 3.9 4.2 4.2 7.1 8.4 9.8 3.2

5 4.4 4.3 3.9 5.0 4.2 7.1 10.2 9.8 8.3

6 4.1 4.3 3.9 4.3 4.2 7.1 4.0 9.8 5.8

7 4.5 4.3 3.9 5.1 4.2 7.1 9.3 9.8 6.2

8 5.6 15.0 3.0 3.9 27.0 2.5 5.2 15.9 6.0

9 6.0 16.0 3.7 3.9 20.2 6.0 5.2 16.9 7.8

10 7.1 20.2 4.1 3.9 42.4 5.5 5.2 20.2 11.3

RMSD and ligand RMSD values of the top 10 models for the full GroES-GroEL complex (in Å), compared to the reference structure; models were fitted (energy-
minimized) using a 40 Å simulated density map and ranked by gradient matching using a 20 Å simulated density map. Then, the top 100 models were subjected to ring
recombination; the resulting combinations were again ranked by gradient matching.
doi:10.1371/journal.pone.0049733.t005

Table 4. Top 10 RMSD values for GroES-GroEL with simulated data, after the scoring stage.

Overall RMSD

GroEL GroEL

rank all GroES cis trans

1 10.8 33.5 5.5 3.8

2 9.5 26.4 5.0 6.5

3 8.4 15.2 7.6 7.2

4 10.2 18.5 6.0 11.2

5 11.6 23.7 12.2 6.5

6 9.6 21.8 6.9 7.8

7 12.3 23.9 8.1 12.5

8 11.8 24.3 12.1 6.7

9 11.3 27.1 8.3 8.5

10 13.2 30.7 9.3 8.4

RMSD values of the top 10 models for the full GroES-GroEL complex (in Å), compared to the reference structure; models were fitted (energy-minimized) using a 40 Å
simulated density map and ranked by gradient matching using a 20 Å simulated density map.
doi:10.1371/journal.pone.0049733.t004

ATTRACT-EM: Assembly Using Cryo-EM Maps

PLOS ONE | www.plosone.org 12 December 2012 | Volume 7 | Issue 12 | e49733



strong indication of noise tolerance. In a density fitting context,

noise can be considered as discrepancy between the density map

and the (simulated density of) the actual fitted protein coordinates,

and this works in both directions. Clearly, at low resolution, the

typical inaccuracies of a few angstroms in the structural coordinates

have a much smaller impact on the overall electron density than at

high resolution. Therefore, the fact that the GVM scoring method

relies only on low-resolution features, indicates that it may be able to

deal with structural noise as well, in the form of inaccurate protein

coordinates. This is supported by our results on unbound dimers,

which did not show any negative influence compared to the bound

form. Still, this is a somewhat speculative interpretation which needs

to be investigated more thoroughly in a future study.

Performance of the method
The multi-stage protocol turned out to be a very effective strategy

for the assembly of the GroEL/GroES test system. In combination

with final molecular refinement, our method was able to generate

much more accurate structures for GroES-GroEL (4.6 Å accuracy)

than previous methods that used the same experimental cryo-EM

density map. Similar good performance was also achieved for the

7-component cis ring of GroES-GroEL and other oligomeric

complexes again including symmetry restraints. In contrast, consid-

erable sampling problems were encountered for dimers. The smooth,

40 Å wide Gaussian overlap function used in sampling does an

excellent job at the smoothening of energy barriers, preventing the

computational assembly to get stuck in local energy minima.

However, this comes at a loss of specificity that is manageable for

Figure 5. Assembly results for the full GroES-GroEL complex, using experimental data. A) RMSD values of generated models for the full
GroES-GroEL complex, compared to the reference structure; models were assembled using a 23.5 Å experimental density map [35] that was
downsampled to 44.8 Å; then, models were rescored with GVM using the full density map. B) RMSD values of recombined models for the full GroES-
GroEL complex, compared to the reference structure; the top 100 models from A) were subjected to ring recombination; the resulting combinations
were again rescored with GVM. C) RMSD values after two ring recombinations, repeating the procedure on the top 100 models from B). Note the
different scaling on the logarithmic Y axis. D) Best-scoring refined structure (green), overlaid onto the reference structure (cyan) (RMSD: 4.6 Å); Top-
scoring structures from C) were refined using the ATTRACT force field, and rescored with GVM. Image was generated with PyMol [63].
doi:10.1371/journal.pone.0049733.g005
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large assemblies (the solutions merely have to be re-scored), but that

prevents the sampling of correct solutions for dimers. The low

resolution density alone (resolution similar to the size of the dimers)

does not provide a sufficient driving force towards the native

arrangement. We do not consider the poor performance on dimers to

be a very large problem, since with current technology, cryo-EM

density maps cannot be obtained for complexes smaller than a few

hundred kilodaltons, and such complexes typically contain much

more than 2 components. Still, two strategies to overcome the

sampling problem for dimers were tested. One of them, additional

restraints on the approximate location of the subunits, led to a large

improvement in performance. In contrast, our results suggest that the

other solution, the use of an atomic forcefield in the initial assembly,

should be discouraged. For dimers, this led to unrealistically good

results with bound starting structures that were not reproduced with

the unbound forms. For larger assemblies, the use of an atomic force

field in the initial assembly simply does not work because the energy

landscape becomes too rugged and structures get stuck in local

minima (results not shown).

In contrast, the multi-step assembly process used in ATTRACT-

EM (initial assembly followed by molecular refinement) seems to be

robust for (limited) conformational differences: no differences were

found between bound and unbound forms, at least for the dimers

that we tested. More research is needed to determine what

conformational differences can be tolerated by the current protocol.

It needs to be emphasized that for all tested cases, the ATTRACT-

EM approach at the current stage required additional data (besides

the cryo-EM density), either in the form of symmetry or the

approximate subunit locations in the assembly, to achieve results in

close agreement with experiment. In the case of GroES-GroEL, these

data can be derived from the density map itself, but this is not

generally the case. Also, we must stress that all test cases in this study

are computational exercises, where bound subunits and/or simulated

density maps have been used. Improvements in the ATTRACT-EM

method and protocol are clearly required before it can ultimately

assemble a set of subunits simultaneously into an experimental density

map without any additional restraints, in particular if these subunits

are modeled from homologous components.

However, even at the current stage the approach can already be

potentially very useful because in many cases additional experimental

data on a multi-component complex is already available, in the form

of cross linking data, distance restraints based on fluorescence energy

transfer (FRET) or biochemical data on contacts between subunits in

the assembly. For example, while the 26S proteasome consists of 33

components, the 14-component core particle has been wholly

crystallized and can be easily placed into the map, and the

arrangement and the approximate locations of nearly all other 19

Table 6. Top 10 RMSD values for GroES-GroEL with
experimental data, after the scoring stage.

Overall RMSD

GroEL GroEL

Rank all GroES cis trans

1 11.1 19.7 5.7 12.7

2 12.1 33.5 8.0 5.1

3 10.1 25.9 6.7 7.2

4 9.8 15.1 6.9 10.5

5 12.7 32.2 6.4 10.6

6 13.2 23.7 7.9 14.6

7 31.9 20.5 2.9 46.2

8 25.0 25.2 3.2 35.1

9 31.7 21.7 6.5 45.3

10 10.6 21.4 9.5 8.3

RMSD and ligand RMSD values of the top 10 models for the full GroES-GroEL
complex (in Å), compared to the reference structure; models were fitted
(energy-minimized) using a 23.5 Å experimental density map that was
downsampled to 44.8 Å; then, the models were ranked by gradient matching
using the full density map.
doi:10.1371/journal.pone.0049733.t006

Table 7. Top 10 RMSD values for GroES-GroEL with experimental data, after ring recombination.

ligand RMSD

Overall RMSD intra-ring inter-ring

GroEL GroEL GroEL GroEL cis- cis-

rank All GroES cis trans GroES cis trans GroES trans

1 5.0 7.5 4.3 5.1 2.7 1.9 0.9 5.8 3.3

2 5.0 7.5 4.1 5.1 2.7 5.9 0.9 7.7 5.1

3 4.9 7.5 3.8 5.1 2.7 2.7 0.9 6.7 2.5

4 4.7 7.5 3.2 5.1 2.7 6.9 0.9 10.2 10.6

5 5.5 7.5 5.3 5.1 2.7 3.8 0.9 3.5 9.5

6 4.4 7.5 3.8 4.2 2.7 2.7 8.2 6.7 6.6

7 10.9 32.7 4.3 5.1 28.4 1.9 0.9 31.2 3.3

8 6.5 15.9 4.3 5.1 19.6 1.9 0.9 16.2 3.3

9 4.5 7.5 4.1 4.2 2.7 5.9 8.2 7.7 7.3

10 9.7 29.2 4.3 5.1 18.8 1.9 0.9 27.1 3.3

RMSD and ligand RMSD values of the top 10 models for the full GroES-GroEL complex (in Å), compared to the reference structure; models were fitted (energy-
minimized) using a 23.5 Å experimental density map that was downsampled to 44.8 Å; after that, the models were ranked by gradient matching using the full density
map. Then, the top 100 models were subjected to ring recombination; the resulting combinations were again ranked by gradient matching. This recombination
procedure was then repeated.
doi:10.1371/journal.pone.0049733.t007
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components are known from cross-linking experiments [71–73]. Our

results show that for dimers, location restraints are an excellent

substitute for symmetry in reducing the conformational space; it is not

known how well this scales to larger complexes.

Optimization of parameters
More research will be needed to optimize protocol parameters,

and to investigate their relation with the resolution and quality of

the map and of the component structures. For example, for low

resolution maps such as used here, a way must be found to deal

with intermolecular spillover between the components (see

Materials and Methods). While the global F parameter here is

the most parsimonious solution, it is sub-optimal, since this

spillover varies per protein region. However, ATTRACT-EM

allows the expected overlap for each atom to be adjusted: in a real-

world case, the biologist can use e.g. knowledge about interacting

protein regions to model intermolecular spillover realistically.

Atomic representation and flexibility
Unlike previous methods, ATTRACT-EM does not rely on any

kind of feature detection or simplified representation of the

components that are to be fitted; in contrast, atoms are

represented explicitly in our method, albeit at a coarse-grained

level. Therefore, our assembly protocol, in particular the

molecular refinement stage (but not the GVM scoring), assumes

some degree of accuracy in the atomic details, more so than other

methods that use a less detailed representation. This can be

problematic in case of inaccurate protein structures that undergo

conformational change or that are modeled from inaccurate

homologous structures. This problem is well known in the protein

docking field [60], and is an ongoing area of research. In its

present form, ATTRACT-EM has not been tested (and is unlikely

to work well) with such structures. However, an explicit atomic

representation makes our method also well suited to flexible fitting,

which attempts to overcome and correct these inaccuracies. In

fact, the ATTRACT docking program already natively supports

flexible docking [51,52] in a way similar to several flexible fitting

methods [7,8], namely in the form of normal modes. In

ATTRACT, normal modes can be sampled efficiently as

additional degrees of freedom in the energy minimization

protocol. In addition, it is possible to represent parts of the

subunits as multiple conformational copies and the docking score

automatically selects the best-fitting copy during the search. While

we have not used this option in this study, it is perfectly possible to

combine normal modes and cryo-EM data in ATTRACT into a

flexible fitting protocol, and this will be explored in a future study.

By building upon these concepts, ATTRACT-EM covers a

middle ground between rigid fitting methods and flexible fitting

methods for cryo-EM data, in terms of speed, accuracy and level

of detail. On the one hand, the ATTRACT force field provides a

physics-based, near atomic-resolution representation and energy

function, in contrast to a simple electron density cross-correlation.

Table 8. Top 10 RMSD values for GroES-GroEL with experimental data, after refinement.

ligand RMSD

Overall RMSD intra-ring inter-ring

GroEL GroEL GroEL GroEL cis- cis-

rank All GroES Cis trans GroES cis trans GroES trans

1 4.6 7.5 3.5 4.8 2.9 1.6 1.0 6.2 3.7

2 3.8 7.5 3.4 3.0 2.2 1.4 3.0 8.0 2.4

3 3.5 7.3 2.0 3.3 3.0 1.0 2.7 5.7 4.7

4 4.2 7.5 2.5 4.5 1.8 3.3 1.2 6.7 5.9

5 4.1 7.5 3.8 3.4 4.0 1.2 3.7 6.9 2.9

6 5.9 15.3 2.8 4.9 19.3 0.7 1.1 14.8 5.0

7 8.1 24.2 2.8 4.9 32.9 1.1 1.0 24.0 4.6

8 7.6 24.4 1.8 3.0 32.6 1.4 2.9 23.1 3.3

9 5.8 13.9 3.7 4.8 20.7 1.7 1.0 14.8 4.4

10 2.8 7.5 2.0 1.5 1.9 2.0 1.4 8.4 3.0

RMSD and ligand RMSD values of the top 10 models for the full GroES-GroEL complex (in Å), compared to the reference structure; models were fitted (energy-
minimized) using a 23.5 Å experimental density map that was downsampled to 44.8 Å; after that, the models were ranked by gradient matching using the full density
map. Then, the top 100 models were subjected to ring recombination; the resulting combinations were again ranked by gradient matching. This recombination
procedure was then repeated. Finally, structures were refined using the ATTRACT force field, and again ranked by gradient matching.
doi:10.1371/journal.pone.0049733.t008

Table 9. Overview and comparison of all symmetric assembly
results.

Components ATTRACT-EM GMFit IQP

1AON, cis ring 7 (C7) 2.5 (1.0) - 8.6*

1AON, full 21 (C7) 4.6* 14.7* -

1AFW 2 (C2) 6.8 (0.7) 1.0 0.9

2NIC 3 (C3) 0.6(0.3) 1.8 1.1

7CAT 4 (D2) 5.4 2.3 -

2REC 6 (C6) 2.9 2.3 1.0

Overview of all computational assembly results of ATTRACT-EM for symmetric
assemblies, and comparisons to GMFit [29] and IQP [31]. All values are RMSDs in
Å. Values in parentheses are ligand RMSDs. All results were obtained with 20 Å
simulated maps, except the results marked with *, which were obtained with a
23.4 Å experimental map ([35], EMD code 1046). The ‘‘components’’ column,
shows the number of components, and the symmetry of the complex within
parentheses.
doi:10.1371/journal.pone.0049733.t009
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ATTRACT-EM is not a fitting program: while the computational

assembly process is guided by the cryo-EM map, its main purpose

is to restrict the conformational space to regions that are in overall

agreement with the cryo-EM data. Therefore, ATTRACT-EM is

meant to supplement existing fitting programs, adding near atomic

resolution, typically provided by flexible fitting programs at the

refinement stage, already to the initial assembly stage.

While in the present application to GroEL/GroES the final

structures were already in close agreement with the native complex

structure, even without a fully flexible refinement stage the approach

can potentially be used to generate a limited set of sterically favorable

start conformations for a final fully flexible molecular dynamics fitting

procedure. Thus, ATTRACT-EM is also suitable to be used as one

part in a tool chain, consisting of programs for modeling, rigid fitting,

flexible fitting, and/or molecular dynamics.

Computational requirements and availability
Unlike existing methods for simultaneous computational

assembly of molecular machines into cryo-EM map, AT-

TRACT-EM uses an atomic representation throughout the

protocol and physics-based intermolecular interaction in the later

stages. However, this increased level of detail and realism comes at

the cost of computational efficiency: a typical ATTRACT-EM run

takes a few dozen to a few hundred CPU hours to complete.

ATTRACT and ATTRACT-EM are implemented in C++ and

Fortran 95, with a number of Python utilities, and runs on any

platform where these languages are available. The method will be

available under the GPL license as part of ATTRACT 2.0, which

is currently under development. In the meantime, the source code

is available from the authors upon request.

Supporting Information

Supporting Information File S1 Contains Supporting
Analysis 1–6, Supporting Tables S1–S4 and Supporting
Figures S1–S4.

(DOC)

Movie S1 ATTRACT-EM pre-assembly stage. The struc-

ture shown is the best-scoring model of the cis ring of GroES-

GroEL, using simulated electron density.

(AVI)

Movie S2 ATTRACT-EM assembly stage. The structure

shown is the best-scoring model of the cis ring of GroES-GroEL,

using simulated electron density.

(AVI)

Movie S3 ATTRACT-EM molecular refinement stage.
The structure shown is the best-scoring model of the cis ring of

GroES-GroEL, using simulated electron density.

(AVI)
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Table 10. Overview of the assembly results for dimmers.

assembly stage refinement stage integrated protocol location restraints

RMSD l-RMSD RMSD l-RMSD RMSD l-RMSD RMSD l-RMSD

1AFW 1,3 6.3 5.7 6.8 0.7 0.3 0.7 4.3 6.4

top 10 5.9 4.5 6.8 0.7 0.3 0.6 4.0 3.0

all 5.9 3.3 6.8 0.7 0.3 0.2 4.0 1.7

1AFW 2,3 7.3 17.9 17.3 26.2 0.9 0.6 3.0 6.5

top 10 7.3 17.9 17.3 26.2 0.9 0.6 3.0 6.5

all 7.3 4.6 9.0 7.5 0.9 0.2 3.0 3.7

1AVX 38.8 28.4 - - 16.4 25.0 3.9 6.3

top 10 22.7 25.8 - - 10.6 13.5 3.9 5.0

all 13.2 2.9 - - 10.1 1.8 3.9 3.2

1AY7 19.0 50.1 - - 13.9 19.4 3.8 5.9

top 10 13.5 21.7 - - 13.9 19.4 2.9 3.5

all 10.6 4.7 - - 7.6 2.0 2.9 3.2

1WQ1 7.8 11.8 12.3 21.6 14.4 24.3 3.4 6.3

top 10 5.5 7.6 6.6 10.3 5.4 4.7 3.4 3.6

all 5.3 3.3 6.1 5.9 5.2 2.5 3.4 3.5

1WQ13 12.3 20.3 4.5 6.8 3.8 0.8 6.9 11.6

top 10 5.3 7.0 4.5 6.8 3.8 0.8 3.1 4.6

all 4.9 4.0 4.5 1.2 3.8 0.8 3.1 1.7

Overview of all computational assembly results of ATTRACT-EM for symmetric assemblies. Indicated are the result for the top-scoring structure, the best result in the top
10 scoring structures, and the best result among all structures. All RMSDs are in Å. All complexes are unbound non-symmetric heterodimers unless indicated otherwise.
Note that true RMSDs were computed towards the bound complex: e.g. for 1WQ1, the theoretical best RMSD (ligand-RMSD) is 0 Å (0 Å) for the bound assembly but
1.7 Å (2.0 Å) for the unbound assembly, due to the conformational differences between bound and unbound forms.
1 = the complex is a symmetric homodimer; C2 symmetry restraints were used.
2 = the complex is a symmetric homodimer; C2 symmetry restraints were not used.
3 = the complex is in the bound form.
doi:10.1371/journal.pone.0049733.t010
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