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Coevolution of Vertex Weights 
Resolves Social Dilemma in Spatial 
Networks
Chen Shen1, Chen Chu1, Hao Guo1, Lei Shi1,3 & Jiangyan Duan2

In realistic social system, the role or influence of each individual varies and adaptively changes in time 
in the population. Inspired by this fact, we thus consider a new coevolution setup of game strategy and 
vertex weight on a square lattice. In detail, we model the structured population on a square lattice, on 
which the role or influence of each individual is depicted by vertex weight, and the prisoner’s dilemma 
game has been applied to describe the social dilemma of pairwise interactions of players. Through 
numerical simulation, we conclude that our coevolution setup can promote the evolution of cooperation 
effectively. Especially, there exists a moderate value of δ for each ε that can warrant an optimal 
resolution of social dilemma. For a further understanding of these results, we find that intermediate 
value of δ enables the strongest heterogeneous distribution of vertex weight. We hope our coevolution 
setup of vertex weight will provide new insight for the future research.

Cooperation is ubiquitous ranging from bacteria to animals as well as human societies1–3. But, how to interpret 
the evolution of cooperation among selfish individuals represents one of the most interesting challenges in nature 
and social sciences and has attracted much attention across a myriad of disciplines, such as mathematics, evolu-
tionary biology, statistical physics, to name but a few4,5. Evolutionary game theory has provided a mathematical 
framework for addressing this intriguing challenge6–8. Particularly, the prisoner’s dilemma game (PDG), served 
as a paradigm for expressing a social poverty in the case of pairwise interactions, has been used frequently to 
study such an overarching issue in both theoretical and experimental literatures9,10. In its basic version, two agents 
are asked to simultaneously make a choice between cooperation (C) and defection (D). They both receive R (P) if 
mutual cooperation (mutual defection). If one player cooperates while the other defects, the latter can get a temp-
tation to defect T, and the former receives sucker’s payoff (S). The ranking of these payoff are ordered as 

> > >T P R S so that defection is the best choice regardless of the opponent’s choice, which ultimately results 
in social dilemma11.

Up till now, several mechanisms have been proposed to resolve this evolutionary conundrum12–23. Nowak 
attributed all these mechanisms to five rules for the promotion of cooperation named direct reciprocity, indirect 
reciprocity, kin selection, group selection, and spatial reciprocity24. An important seminal research that inspired 
much more following works was the introduction of spatial structure by Nowak and May25, which enabled coop-
erators to form compact clusters on the structured network to protect the interior from being exploited by defec-
tors. In line with this pioneering work, various types of spatial topology have been introduced into this scope 
to investigate the evolution of cooperation. For example, complex network, such as BA scale free network26, 
ER random graph27, small-word network28 as well as multilayer coupling network29, has been proved to be an 
effective way for maintaining cooperation. In addition, different factors have also been considered in structured 
population for exploring its impact on the evolution of cooperation, for example, age structure30,31, reputation32,33, 
memory34,35, voluntary participation36,37, social diversity38,39, to name but a few.

More recently, coevolution scenarios, served as the catalyst for the evolution of cooperation, have received 
much attention. Whereby, strategies and some other properties, such as the links between players40,41, the teaching 
ability of players42, the motion of players43, and network structure, synchronously evolve, for a comprehensive 
understanding referring to refs44,45. In spite of reaching prominent progress, the role of players’ weight receives 
little attention, which seems more widespread in real society. Due to the discrepancy of people, each individual 
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may exhibit the heterogeneity of social statues or social influence in the population, which may adaptively change 
in time. In fact, players that possess higher social influence have larger fitness than players with lower social 
influence. With this point, in this paper, we investigate how cooperation fares by studying the coevolution of 
vertex weight and strategy within the prisoner’s dilemma game. We find that, although all players have the same 
social influence initially, our coevolution setup quickly results in a normal distribution of players’ social influence, 
which in turn facilitates the evolution of cooperation. In the remainder of this paper, we first describe our modi-
fied model; later present our simulation results, and summarize our conclusions.

Results
We start by examining the influence of parameter δ on the evolution of cooperation. Figure 1 features how the 
fraction of cooperation varies as a function of the temptation to defect b for different values of δ. In particular, 
δ = 0 returns to the traditional version, where cooperation dies out soon for very small b. While δ > 0 introduces 
the heterogeneity of vertex weight, it seems to promote the evolution of cooperation from Fig. 1. However, the 
level of cooperation will gradually decline, which indicates that moderate δ provide the best evolutionary environ-
ment: cooperators can not only survive over a larger interval of b, but even dominate the spatial grid. This obser-
vation is universal for different values of ε. To give a broad description about the influence of δ. We define one 
critical threshold bc, which marks the vanishment of cooperation with the smallest b. The insets of Fig. 1 shows the 
relationship between threshold bc and δ. Similar to the evolution of cooperation, there is an coherent resonance 
(i.e. a bell-shape curve): middle δ generates the largest bc. The larger the value of ε, the more obvious this trend. All 
together, these observations suggest that such a simple coevolution mechanism about vertex weight and strategy 
not only enhances the survival of cooperation, but also guarantees the best optimal level.

To give a complete understanding of such a coevolution mechanism. Figure 2 presents the color map encoding 
the fraction of cooperation ρc on the δ ε−  parameter plane for different values of b. Interestingly, the whole plane 
is divided into three phases: full defection phase (phase I), well-mixed phase for cooperation and defection (phase 
II) and full cooperation phase (phase III). As ε increases, the survival of cooperators will become relatively easy. 
In particular, for small and middle δ, increament of ε enables system to produce various phase transitions, from 
phase II to phase III. That is to say, increasing ε induces stronger heterogeneity, which plays a crucial role in pro-
moting cooperation as shown in refs38–40,46. While for the impact of δ, it is evident that with strong heterogeneity, 
middle δ produces an optimal environment for cooperation (i.e. phase III). However, with continuous enhance-
ment of δ, the maintenance of cooperation remains a challenge. For larger b (see Fig. 2(b)), the territory of coop-
eration will become smaller yet the higher level of cooperation is robust. As such, the proposal of coevolution 
mechanism could guarantee beneficial environment of cooperation.

Subsequently, it is instructive to give an understanding why this mechanism resolves the social dilemma. 
Figure 3 features the spatial distribution of cooperators and defectors for different steps. From top to bottom, the 
value of δ are equal to 0, 0.01, 0.05 and 0.2, respectively. Initially, cooperators and defectors are randomly distrib-
uted on the square lattice, defectors get more benefits from cooperators and thus cooperators cannot form com-
pact clusters to resist the invasion of defectors (see the second column) and cooperation will vanish soon. 

Figure 1.  The fraction of cooperation ρc in dependence on the temptation to defect b for different values of δ. 
(a) and (b) show the results of the case ε = .0 4 and ε = .0 8. For the traditional game, i.e. δ = 0, cooperation 
vanishes for small temptations. For positive δ the fraction of cooperation could be greatly enhanced and there is 
an optimal δ for which cooperation is enhanced. The inset show the relationship between the threshold bc, where 
cooperation dies out, and δ.
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However, at the second panel, we can see that the cooperators will suffer the attack of defectors and they can 
survive by small C groups or patches. It is worth mentioning that at this moment because there are rare coopera-
tors left to be exploited by defectors, the advantage of defectors is greatly reduced. Soon, cooperators recover the 

Figure 2.  Color-code (see bar on the right) fraction of cooperation on the δ ε−  parameter plane for b = 1.03 
(Fig. 2(a)) and b = 1.06 (Fig. 2(b)). Both panels show that the optimal value, where cooperation is best 
promoted, is about 0.05 irrespective of which temptation to defect b applies.

Figure 3.  Typical snapshots of the distribution of strategy in step 0, 10, 100, 30000. All results are obtained for 
ε = .0 8 and = .b 1 06. From top to bottom, δ are equal to 0, 0.01, 0.05, and 0.2 respectively. Cooperators and 
defectors are marked by red and green.
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lost ground till saturated stable state, where C clusters are much more compact and the distance between them is 
much smaller than the size of clusters. There remains smaller space for cooperation. As δ continues to increase 
(the third panel), the formation and expandation of compact C clusters becomes more obvious, which supresses 
the exploitaion of defection. As expected, for enough large δ, though some C clusters survive, they become 
diluted, thus there is no sufficient protection for cooperators’ territory. Nevertheless, it is clear that the evolution 
of cooperation is closely related to C clusters.

Along this line, we next give some quantitative descriptions about C culsters in this coevolution mechanism. 
Figure 4 shows average size of C clusters (Sc) as a function of δ. It is obvious that average C cluster size first 
increases with δ, reaches its maximum value at δ ≈ .0 05 and then decreases again. That is to say, small δ only 
enables limited cooperators survive and the formed C clusters is relatively small. With δ increases, the size of C 
clusters will fast expand. However, as δ continuously increases, Sc will decline, which means that the too large δ 
could not generate benefical ground for Sc even if there are still some clusters, thus these clusters are isolated 
cooperator, which can not effectively resist the explortation of defection. Thus, it is easy to understand why the 
average size of C clusters will become zero again. Except for quantitative descriptions about C culsters, here it is 
instructive to further examine the potential reason of these changes. Figure 5 shows the steady distribution of 
vertex weight for different values of δ. It is clear that the vertex weight is no longer a single value, but rather a set 
of data that is normally distributed approximately no matter what value of δ is. At the same time, we can also 

Figure 4.  Stationary average size of cooperators cluster (Sc) for a 200*200 square lattice with ε = .0 8 and 
= .b 1 06. Obviously, optimal value of δ guarantees largest Sc, which too small or too large δ reduces Sc.

Figure 5.  The histogram of the distribution of vertex weight under coevolution mechanism. All the results are 
obtained for ε = .0 8 and = .b 1 06. The fitting line indicates that a normal distribution emerges irrespective of 
which δ applies, and the ranking of the variance of three cases is > >δ δ δ= . = . = .Var Var Var0 05 0 01 0 2.
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observe that the variance of vertex weight is greatly different and the order of the variance is 
> >δ δ δ= . = . = .Var Var Var0 05 0 01 0 2. In fact, we also calculate the accurate variance of these cases: δ= .Var 0 01 = 0.17, 
= .δ= .Var 0 220 05 , and = .δ= .Var 0 070 2 , which is consitent with the results that we obtained intuitively. These 

results attest to the fact that large enough values of δ will lead to a heterogeneous distribution of the vertex weight, 
but at the same time reduce the degree of heterogeneity compared with the moderate δ, since too large value of δ 
leads to the difference of vertex weight becoming tiny.

Conclusion and Discussion
To conclude, motivated by the realistic situation: individual’s social influence or social statue (hereby, denoted by 
vertex weight) adaptively change according to their social performance, we have explored the effect of evolution-
ary game based on the vertex weight and strategy on the evolution of cooperation. Through numerical simulation, 
we find that our coevolution setup can promote the evolution of cooperation effectively, besides, moderate value 
of δ can provide best environment for cooperators to survive and even domain. While these observations can be 
attributed to the heterogeneous distribution of player’s influence, the stronger the heterogeneity is, the higher the 
level of cooperation. As is shown in Fig. 5, too large or too small δ will weaken the degree of players’ heterogeneity, 
which will lead to the deterioration of cooperation-facilitative effect. The aforementioned observation, in a sense, 
is similar to refs30,39. In this sense, we can conclude that heterogeneity can explain the cooperation-promotion 
phenomenon, but is insufficient to explain the promotion effect for moderate δ.

The above results can help us construct a comprehensive understanding of the role of vertex weight on the 
evolution of cooperation under a simple framework of co-evolution model. It has been verified that different net-
work structures have a significant impact on the evolution of cooperation. To test our model on different topol-
ogies will become more interesting in the future. Besides, interdependent networks, where seemingly irrelevant 
changes in one network can have catastrophic and unexpected consequence in another network, have become 
a hot topic in recent years. How to apply our work to interdependent networks is another interesting issue that 
deserves our great attention in the future.

Methods
Here, we consider the weak prisoner’s dilemma game with the normalized payoff matrix,

= ( )A
b
1 0

0
,

(1)

where the parameter < <b b(1 2) denotes the temptation to defect and ensures the proper payoff ranking. It is 
worth mentioning that, although we don’t choose the classical PD game, the results are accordant. Each player is 
designed either as a cooperator =s Cx  or defector =s Dx  with equal probability. With regard to the interaction 
network, we choose the regular square lattice with four nearest neighbors of size ∗L L. Vertex weight (social 
influence of players) is introduced into the model in the following way: each player, at the beginning, is assigned 
the same social influence =w 1x , which, however will adaptively change in accordance with the interaction.

At each time step, a random selected player x first acquires his payoff px by playing the game with his direct 
neighbors. Second, the payoffs py of all the neighbors of player x can be obtained in the same way. Following ref.47. 
we can define the environment as follows:
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where the sum runs over all the neighbors of player x, and kx denotes the degree of player x. Then we can calculate 
the fitness of player x in the following expression:

= ∗ .F w p (3)x x x

The vertex weight wx evolves with player’s performance: if the payoff of player x is larger than the environment, the 
vertex weight increases δ as the reward, otherwise decreases δ as the punishment, which can be described as
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Besides, we assume that the range of vertex weight is the interval − ε + ε[1 , 1 ] . Obviously, when ε = 0 or δ = 0, 
it will turn to the traditional version, while ε ≠ 0 or δ ≠ 0 incorporates the heterogeneity case. Following ref.42. 
the evolution of wx is stopped for all players as soon as one wx reaches their maximum value.

When the focal player x updates his strategy, it will pick up randomly one neighbor y, who also gets his fitness 
Fy in the same way, and decides whether to adopt the strategy of player y with the following probability, that is,

=
+ −

w
F F K
1

1 exp([( )/ ])
,

(5)x y
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where K denotes the amplitude of noise or its inverse the so-called intensity of selection. In this paper, we fix the 
value of K to be K = 0.148,49.

Simulation results were carried out on a 200*200 square lattice. The key quantity of the fraction of cooperation 
ρc was determined within the last ×5 103 full Monte Carlo simulation over the total ×3 104 steps. Moreover, each 
data were averaged over up to 10 independent runs for each set of parameter values in order to assure suitable 
accuracy. It is worth stating that we have found qualitative results unchanged if we give the initial state (One half 
of the system is C, and the other area is D).
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