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(H. González-Dı́az).

0032-3861/$ – see front matter � 2009 Elsevier Ltd.
doi:10.1016/j.polymer.2009.05.055
a b s t r a c t

Since the advent of Molecular Dynamics (MD) in biopolymers science with the study by Karplus et al. on
protein dynamics, MD has become the by foremost well established, computational technique to investi-
gate structure and function of biomolecules and their respective complexes and interactions. The analysis of
the MD trajectories (MDTs) remains, however, the greatest challenge and requires a great deal of insight,
experience, and effort. Here, we introduce a new class of invariants for MDTs based on the spatial distri-
bution of Mean-Energy values xk(L) on a 2D Euclidean space representation of the MDTs. The procedure
forces one MD trajectory to fold into a 2D Cartesian coordinates system using a step-by-step procedure
driven by simple rules. The xk(L) values are invariants of a Markov matrix (1P), which describes the
probabilities of transition between two states in the new 2D space; which is associated to a graph repre-
sentation of MDTs similar to the lattice networks (LNs) of DNA and protein sequences. We also introduce
a new algorithm to perform phylogenetic analysis of peptides based on MDTs instead of the sequence of the
polypeptide. In a first experiment, we illustrate this algorithm for 35 peptides present on the Peptide Mass
Fingerprint (PMF) of a new protein of Leishmania infantum studied in this work. We report, by the first time,
2D Electrophoresis isolation, MALDI TOF Mass Spectroscopy characterization, and MASCOT search results
for this PMF. In a second experiment, we construct the LNs for 422 MDTs obtained in DNA–Drug Docking
simulations of the interaction of 57 anticancer furocoumarins with a DNA oligonucleotide. We calculated
the respective xk(L) values for all these LNs and used them as inputs to train a new classifier with Accu-
racy¼ 85.44% and 84.91% in training and validation respectively. The new model can be used as scoring
function to guide DNA–Drug Docking studies in drug design of new coumarins for PUVA therapy. The new
phylogenetics analysis algorithms encode information different from sequence similarity and may be used
to analyze MDTs obtained in Docking or modeling experiments for any classes of biopolymers. The work
opens new perspective on the analysis and applications of MD in polymer sciences.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Computational approaches can timely provide very useful
information and insights for both basic proteome research and drug
y and Parasitology, Faculty of
82 Santiago de Compostela,
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design. Many line evidences of evidences such as structural bio-
informatics [1], molecular docking [2], molecular packing [3],
pharmacophore modeling [4], Monte Carlo simulated annealing
approach [5], diffusion-controlled reaction simulation. In addition,
Quantitative Structure–Activity Relationships (QSARs) [6,7], protein
sub-cellular location prediction [8–10], protein structural class
prediction [11], identification of membrane proteins [12], identifi-
cation of enzymes and their functional classes [13,14], identification
of GPCR [15], identification of proteases, protein cleavage site
prediction [16], and signal peptide prediction [17] have indicated
that they are widely welcome by science community.
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In this context, after a pioneer paper entitled ‘The Biological
Functions of Low-Frequency Phonons’ [18] published in 1977,
a series of investigations into biopolymers from dynamic point of
view have been stimulated. These studies have suggested that low-
frequency (or terahertz frequency) collective motions do exist in
proteins and DNA that hold a very high potential to reveal the
profound dynamic mechanisms of many marvelous biological
functions in biological systems (see, e.g. [19–32] and a compre-
hensive review [33]). This kind of inferences has been later
observed by NMR [34], and been further used for medical treat-
ments [35,36]. In view of this, to understand really the interaction
mechanism of drugs with proteins or DNA, we should consider not
only the static structures concerned but also the dynamical infor-
mation obtained by simulating their interactions through
a dynamic process. The present study was attempted to address
this problem from the angle of Molecular Dynamics (MD). In fact,
since the advent of MD with the work of Karplus et al. [37–42], MD
has become a computational technique to investigate structure and
function of biomolecules and their respective complexes and
interactions. It is also of high relevance taking into account that the
previous structure of the polymeric double helix of DNA as well as
the non-covalent binding (in dark) between DNA and drug has
a strong influence on the subsequent photoreaction and therefore
on their biological activity [43,44]. Consequently, MD studies of the
biopolymers including polypeptides or polynucleotide DNA–Drug
complexes are of the major relevance too [32,45]. In general, the
analysis of the MD trajectories (MDTs) resulting from the integra-
tion of the equations of motions in MD remains, however, the
greatest challenge and requires a great deal of insight, experience,
and effort. In a recent and very important work, Hamacher [46]
proposed a new, theoretical sound, and versatile analysis procedure
that provide scientists with a semi-quantitative invariant measures
to compare various scenarios of their respective simulations.

On the other side, using graphic approaches to study biological
systems can provide useful insights. As indicated by many previous
studies graph have been used on a series of important biological
topics, such as enzyme-catalyzed reactions [47–49], protein folding
kinetics [50], inhibition kinetics of processive nucleic acid poly-
merases and nucleases [51], analysis of codon usage [52], base
frequencies in the anti-sense strands [53], analysis of DNA
sequence [54]. Moreover, graphical methods have been introduced
for QSAR study [55] as well as utilized to deal with complicated
network systems [56,57]. Recently, the ‘‘cellular automaton image’’
[58] has also been applied to study hepatitis B viral infections [59],
HBV virus gene miss-sense mutation [60], and visual analysis of
SARS-CoV [61], as well as representing complicated biological
sequences [62] and helping to identify protein attributes [63].

In this sense, several authors have used pseudo-folding lattice
Hydrophobicity-Polarity (HP) models to simulate polymer folding
making simulations to optimize the lattice structure and resemble
real folding [64–71]. However, we can choose notably simpler
polymer chain pseudo-folding rules to avoid optimization proce-
dures and speed up notably the construction of the lattice. In this
sense, useful graph representations of DNA, RNA and/or protein
sequences have been introduced by Gates [72], Nandy [73], Leong
[74], Randic et al. [75] based on 2D coordinate systems. We call
these graph representations as polymer sequence pseudo-folding
Lattice Networks (LNs) because they look like lattice structures and
in fact we are forcing a sequence to fold in a way that not neces-
sarily occurs in nature. In general, these LNs (as for other polymer
graph representations) can be numerically characterized with
Topological Indices (TIs), see for instance the previous paper series
published by our group on Polymers [76–79]. These TIs describe the
distribution of amino acids or nucleotides along the polymeric
chain but also encode higher-order information or other type of
information on polymer mixtures. Thus lattice pseudo-folding TIs
can be used in protein Quantitative Structure–Property Relation-
ships (QSARs) [7,81] to connect polymeric structure with physico-
chemical or biological properties. Our group has used the approach
called MARCH-INSIDE to calculate these TIs of pseudo-folding
lattice-like networks to predict diverse protein or DNA/RNA func-
tions. For instance, we have used stochastic pseudo-folding spectral
moments to predict Ribonucleases [82] and Dyneins [83]. The
MARCH-INSIDE pseudo-folding TIs can be calculated when we sum
the respective indices for each node of the graph. All the above-
mentioned values were used recently to predict microbacterial
promoters and compare entropies, spectral moments, and pseudo-
folding electrostatic potentials [84]. The readers may see three
recent reviews discussing the applications ranging from graph of
small molecules to graph or network representation of protein
sequences and 3D structure, DNA sequences, RNA secondary
structure, or human blood proteome mass spectroscopy outcomes
[7,81,85].

In any case, if we understand sequence as a type of input data we
have not to limit the applications of the pseudo-folding lattice
network method to proteins, DNA or RNA sequences. Elaborating
this line of thinking we have proposed pseudo-folding lattice
network representations of Mass Spectroscopy outcomes typical of
blood Proteome samples containing many proteins. For instance we
have constructed lattice network representations for mass spec-
troscopy results obtained from blood proteome samples typical of
drugs causing cardiotoxicity [86]. After calculation of the sum of the
TIs of each sample we used them to seek a new type of classifier.
The model connects TIs values of the Mass Spectra of the blood
proteome with the probability of appearance of drug cardiotoxicity
[79,87]. We have used these lattice network TIs also to predict
human prostate cancer [88].

The success of this strategy encouraged us to consider other
classes of sequence data and solve different problems. For instance,
the MDTs referred in previous paragraphs are time series obtained
from simulation runs that constitute another type of sequential
data. Considering that the Mean Values of a Markov Chain associ-
ated to LN are also sequence invariants we decided to explore here
the use of these indices to describe MDTs. In the present paper, we
adapted LN representations for the study of MDTs obtained in both
DNA–Drug Docking and Peptide structure optimization experi-
ments. In this sense, we report two different experiments: in one
we report a new phylogenetic analysis for MDTs of Peptides
(Experiment 1) in the other we obtain a new scoring function for
DNA–Drug Docking studies (Experiment 2).

2. Materials and methods

2.1. General description of experiments

In Experiment 1: we shall deal with the following questions: (a)
adaptation of LN to represent MDTs obtained in peptide optimi-
zation procedures; (b) calculation of a new class of TIs for peptide
MDT networks; and (c) introduction of a new phylogenetic
approach to compare the MDTs of different peptides found in the
Peptide Mass Fingerprint (PMF) of protein. For it, we are going to
use as example a real experiment we describe here by the first time.
Here we isolate with 2D gel Electrophoresis and characterize with
MALDI TPF MS all the peptides found on the PMF of a protein
expressed on Leishmania infantum. The study of PMFs of new
proteins may become an interesting source to fish new peptides
with potential use as drug, in vaccine design, or as disease
biomarkers. In particular, Leishmania parasitic species are the
causal agents of Leishmaniosis one of the most important parasitic
diseases [89,90]. The toxicity and inefficacy of actual organic drugs
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against Leishmaniosis justify research projects to find new drugs or
drug molecular targets in Leishmania species including L. infantum
(L. infantum) and Leishmania major (L. major), both important
pathogens [83,91–93]. In this sense the bioinformatics studies of
Leishmania gene and proteins become a significant goal [94,95].

One possibility to accomplish the former goal is the use of pro-
teome research techniques. For instance, in proteome research
authors often use a combination of 2D Electrophoresis (2DE) and
Mass Spectroscopy (MS) to isolate and characterize new sequences
from biological samples [96]. Obtaining the PMF of the protein is
a very useful procedure in this sense [97]. In these cases, we employ
informatics tools, such as Sequest or MASCOT, to have the MS
outcomes for some of the more important peptides of the more
similar proteins [98,99]. It means that, for instance, MASCOT maygive
the collection of MS signals and the corresponding sequence of
peptides present in known proteins that match with our MS input. In
order to rank and select the best protein/peptide candidates MASCOT
use the Mowse score (Ms) [100]. If a template protein in the database
has a high Ms (>51), this protein has a PMF very similar to the PMF of
our query proteins and we can detect a high sequence homology and
perform function annotation. However, there is still another situation
that often appears in proteome research and do not coincide exactly
with the two situations above-mentioned in the first paragraph. We
refer to the case when you identify a new protein, perform the MS
analysis of PMF; introduce it in MASCOT (or other MS and sequence
database) and the software identify some template candidates with
an important Ms that is not sufficiently high to accurately annotate
the query protein (>40). In an excellent work have been reported an
alternative to Ms and discussed the limits of accurate scoring [101].
Nevertheless, if this kind of situation persists you have neither the
sequence of the query protein nor the sequence of a template protein
with high homology but you have the PMFs of both the query and the
template. We call this situation here as: the query sequence missing
and Low-Mowse scoring case. Independently from the possibility of
function annotation of Low-Mowse proteins this kind of PMFs are, in
our opinion, ideal sources to fish interesting peptides with bio-
informatics methods. Anyhow, from these facts we can conclude that
the method used to compare different peptides in this search is very
important.

Bioinformatics methods based on Sequence alignment and simi-
larity measures are very useful to perform sequence function anno-
tation. Some authors have referred however that an alignment
procedure may fail in cases of low sequence homology between the
query and the template sequences deposited in the database.
Alignment techniques are also useless if there is high query-template
homology but we do not know the function of the template sequence
deposited in the database [102]. On the other hand, some authors
mentioned in the previous paragraphs have introduced 2D or higher
dimension graph representations of sequences prior to the calcula-
tion of TIs. These representations are associated to algebraic struc-
tures that have been extended also to genetic codes [103–105]. This
constitutes an important step in order to uncover useful higher-order
information not encoded by 1D sequence parameters [73,106–118].
In any case, we can use either the sequence directly or the graph
parameter to develop phylogenetic trees in order to compare
different peptides. Phylogenetic analysis often relays on tree graph
construction. Applications of graphs and networks in phylogenetics
are too broad a topic for detailed treatment here. The reader can
consult reviews and compilations on this topic for an overview of this
area [120]. Phylogenetics is commonly used to predict which amino
acid residues are critical for the function of a given protein [121].
However, such approaches do have inherent limitations, such as the
requirement for the identification of multiple homologs of the
protein under consideration. Thibert and Bredesen [122] reported
a study of cancer proteins in an extensive human PIN constructed by
computational methods. They compared a couple of phylogenetic
approaches to several different network-based methods. Another
interesting direction is the use of TIs of the DNA, RNA and/or protein
graph representations described above to construct phylogenetic
trees in an alignment-independent way. For instance, Zupan and
Randič [123] studied Spectrum-like and Zig–Zag representations of
the beta-globin gene for different species and also obtained phylo-
genetic trees without alignment. In another paper, Liao proposed
a 2D graphical representation of a DNA sequence [124]. Liao et al.
[125] used this representation as a basis to compute the similarities
between 11 mitochondrial sequences belonging to different species
and used the elements of the similarity matrix to construct the
phylogenic tree. Among all above-mentioned, Liao, Randic, Basak,
Vackro, Nandyand Wang [108,118] associated a DNA sequence having
n bases with n� n non-negative real symmetric matrix A with
elements aij and use its leading eigenvalue to characterize the DNA
sequence in phylogenetic studies. These matrices have been derived
from 2DD representations and different TIs calculated [126]. On the
other hand, Zhang et al. [127] very recently introduced TIs referred to
as Zinv for 3DD curves and used them to analyze the phylogenetic
relationships for the seven HA (H5N1) sequences of avian influenza
virus. The equations used in these methods to calculate the indices
Inv(A) and Zinv(A) as well as the phylogenetic distances between two
peptides p and q are given as follows [127], see Equations (1)–(4). In
closing, in the Experiment 2 we recognize the necessity of new
peptide phylogenetic methods, the success of TIs of LN to encode
sequence information, and the importance of MDT studies. Conse-
quently, based on these facts we introduce a new phylogenetic
method based on xk(L) values.

InvðAÞ ¼ 1
n� 1

Xn

i¼1

0
@Xn

j¼1

aij

1
A (1)

ZinvðAÞ ¼ 1

n� ð1n
�Xn

i¼1

0
@Xn

j¼1

aij

1
A (2)

DpqðInvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

½InvkðpÞ � InvkðqÞ�2
vuut (3)

DpqðZinvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

½ZinvkðpÞ � ZinvkðqÞ�2
vuut (4)

On the other hand, in Experiment 2: we shall deal with the following
questions: (a) generalization of LN to represent DNA–Drug MDTs, (b)
calculation a new class of TIs for MDT networks based on the
MARCH-INSIDE approach, and (c) development of a new scoring
function for DNA–Drug Docking. The TIs introduced here are the
Mean values of a Markov Chain associated to the LN of an MDT. These
mean values may be average values of atomic electronegativities,
amino acid electrostatic potentials, intensity of Mass/charge signals
in Mass Spectroscopy or other parameters. The type of parameter
obtained depends on the type of systems under study (molecules,
proteins, Mass Spectra), the parts of the system (atoms, amino acids,
MS signals), and the property used to describe these parts (elec-
tronegativities, electrostatic charge, signal intensity). For instance,
in other works, we used Markov chain pseudo-folding electrostatic
potentials to found models that predict Polygalacturonases [117] or
human colon and breast cancer biomarkers [129]. In this experiment
we found a model that can be used as scoring function to evaluate
DNA–Drug Docking search. These models belong to a general class of



Fig. 1. Snapshot of a MARCH-INSIDE view for an LN representation of an MDT.
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methods known as QSARs are devoted to unravel structural and
physicochemical requirements for biological activity in a great
variety of compounds [130]. The classic QSAR studies connect
information of the chemical structure of the molecule, expressed by
means of numbers, with the biological activity [55]. However, QSAR-
like procedures are not restricted to drugs and biological activity but
other systems and properties, such as proteins or DNA/RNA may be
predicted [132–135]. One special class of indices used in QSAR are
the TIs of molecular graphs; which indicates the presence of vertices
or nodes (atoms) and connections or edges between nodes (chem-
ical bonds) [136–139]. Nevertheless, we can use TIs of different types
of graph representations or networks may be used. In these
networks, amino acids, nucleotides, enzymes, microorganisms,
cerebral cortex regions, web pages, social groups, etc., may play the
role of nodes and electrostatic interactions, mutations, metabolic
reactions, host–parasite relationships, brain region co-activations,
links, diseases propagations, etc. may play the role of edges [7,140–
145]. Many authors prefer to use the term Quantitative Structure-
Binding affinity Relationship (QSBR) when one use QSAR-like
procedures to predict drug–target binding affinity and 3D structural
information [146]. In any case, both approaches QSAR and QSBR
diverge in some degree on the type of measure (activity or binding)
and sometimes on how detailed we need to know the chemical
structure (2D or 3D) but both use essentially the same algorithm. In
addition to predicting drug activity we can use 3D drug-target QSAR/
QSBR models as scoring function to guide the search of optimal
drug–target interaction geometries in drug–target Docking studies
[147–149]. Almost all QSAR/QSBR or other types of Docking-scoring
functions are aimed to predict protein-drug interactions. For
instance, Wang et al. [150] reported a comparative study of eleven
whereas Ferrara et al. [151] studied nine different Docking-scoring
functions all for Protein–drug interactions. Conversely, DNA–Drug
and RNA–Drug Docking are generally less investigated. In particular,
we did not found a QSBR scoring function for DNA–Furocoumarin
Docking. The furocoumarins are a class of natural or synthetic
compounds with very interesting pharmacological properties [152].
Commonly used in the treatment of skin diseases such as psoriasis
and mycosis fungoides [153]. This treatment called PUVA consists in
a therapy that combines the use of both chemicals and long-wave
ultraviolet light (UV-A) [154]. The molecular base of PUVA is con-
nected with the highly specific photo damage in DNA of epidermal
cells. This damage interferes with the DNA replication, producing an
inhibition of DNA synthesis which reduces or blocks the cell dupli-
cation [155]. Although the lineal furocoumarins (psoralens) are able
to form the three adduct types, the geometry of the angular ones
(angelicins) only allows them to form monoadducts with the DNA.
On the other hand, it is well known that the side effects observed in
PUVA therapy, such as skin phototoxicity and risk of skin cancer are
strictly connected with the bi-functional lesions in DNA [156]. These
facts points to the stability DNA–Drug complex as a central factor in
the activity of anticancer drugs in general including furocoumarins.
In closing, in the Experiment 1 we recognize the necessity of new
scoring functions for DNA–Drug Docking methods, the importance
of furocoumarins in PUVA therapy, the success of TIs of LN to encode
sequence information, and the importance of MDT studies. Conse-
quently, based on these facts we introduce a new DNA–Drug scoring
function for furocoumarins based on xk(L) values.

2.2. Markov-Mean values for 2D lattice representation of MDTs

The MARCH-INSIDE approach is extended here to the study of
LN representations for MDTs obtained in DNA–Drug Docking
studies. In Fig. 1, we illustrate an example of LN for an MDT. The key
of the method we propose is the regrouping into four groups of the
Energy values dEs obtained for different steps (s) of one MD
trajectory after docking one drug with DNA. These four groups
characterize the deviation of the energy value dEs from the average
energy of the same MDT at different steps (MD-average); or the
deviation from average energy values in same step for other MDTs
(Step-average). First, the values of energy for an MDT are placed in
a Cartesian 2D space starting with the first energy value at the
coordinates (0, 0). The coordinates of the successive energy values
are calculated as follows, in a similar manner than it can be used for
a DNA or proteins [117]:

(a) Increases in þ1 the x axes; if dEs>MD-average and dEs> Step-
average (upwards-step) or:

(b) Decreases in �1 the x axes; if dEs>MD-average and dEs< Step-
average (rightwards-step) or:

(c) Increases in þ1 the y axes; if dEs<MD-average and dEs> Step-
average (leftwards-step) or:

(d) Decreases in �1 the y axes; if dEs<MD-average and dEs< Step-
average (downwards-step).

Secondly, the method uses the matrix 1P, which is a squared
matrix to characterize the MDT embedded into the LN. Please, note
that the number of nodes (n) in the graph may be equal or even
smaller than the number of steps given to obtain the MD profile.
The same happens for amino acids or DNA bases in the polymeric
chain. Accordingly, the matrix 1P contains the probabilities 1pij to
reach a node ni moving throughout a walk of length k¼ 1 from
other node nj [83,129]:

pij ¼

�
1

D0j

�
,

 P
s˛j

dEs

!

Pn
m¼ s ail,

�
1

D0s

�
,

 P
s˛j

dEs

! ¼
� dEj

D0j

�
Pn

m¼ l ail,
�

dEl
D0s

� (5)

where, dEj is the sum of all energy values of the steps dEs that
overlap on the same node j. The parameter aij equals to 1 if the
nodes ni and nj are adjacent in the graph and equals to 0 otherwise.
The value D0j gives the geometric location of the node and repre-
sents the Euclidean distance between the node and the center of
coordinates. Let be, the vector of initial probabilities p0¼ [0p1,

0p2,



Fig. 2. Snapshot of Hyperchem’s interface illustrating one peptide of the new protein.
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0pj,.
0pn] and the vector of node energies 3¼ [dE1,

dE2, dEj,.
dEn], the

calculation of xk(L) values is straightforward to realize be means of
Chapman–Kolgomorov equations; these indices can be interpreted
as Mean-Energy values for on the 2D Euclidean space representa-
tion for MDTs:

xkðLÞ ¼ pt
0,kP,3 ¼ pt

0,ð1PÞk,3 ¼
Xn

i¼ j

kpij,
dEj (6)

2.3. Cell culture of parasites

Promastigotes of the Leishmania strain LEM75 were grown in
medium Schneider supplemented to a final concentration of 0.4 g/L
NaHCO3, 4 g/L HEPES,100 mg/L penicillin and 100 mg/L strepto-
mycin and 10% fetal bovine serum (Gibco), pH 6.8 and 26 �C [83].
2.4. Sample preparation

Mid-log promastigotes were recovered on the seventh day post-
inoculum (p.i.) and the parasites were centrifuged at 3000 rpm for
10 min at 4 �C. The resulting pellet was washed five times with
Tris–HCl pH 7.8, and resuspended in 0.1 mL of this same buffer. The
sample was sonicated for 10 s with a Virsonic 5 (Virtis, NY, USA) set
at 70% output power in ice bath. The homogenate was extracted in
5 mM Tris–HCl buffer pH 7.8 containing 1 mM phenyl-
methylsulfonyl fluoride (PMSF) as a protease inhibitor, at 4 �C
overnight and, subsequently centrifuged at 10,000g for 1 h at 4 �C
(Biofuge 17RS: Heraeus Sepatech, GmbH, Osterode, Denmark). The
supernatant was dialysed overnight at 4 �C in 0.5 mM Tris–HCl
buffer. Proteins were precipitated with 20% TCA (trichloroacetic
acid) in acetone with 20 mM DTT for 1 h at�20 �C, added 1:1 to the
homogenated. Then, the sample was centrifuged at 10,000g for
15 min and the pellet was washed with cold acetone containing
20 mM DTT. Residual acetone was removed by air-drying. In order
to achieve a well-focused first-dimension separation, sample
proteins must be completely disaggregated and fully solubilized, in
a sample buffer containing 7 M Urea, 2 M Thiourea, 4% CHAPS,
Destreak buffer (Amersham Biosciences), 5 mM CO3K2, 2% IPG
buffer (Amersham Biosciences) and incubated at room temperature
for 30 min. Following clarification by centrifugation at room
temperature (12,000g, 10 min) the supernatant was stored frozen
at �20 �C [83].
2.5. 2DE experiments

In total 340 mL of rehydration buffer were added to promasti-
gotes solubilized extracts (7 M urea, 2 M thiourea, 2% CHAPS, 0.75%
IPG buffer pH 4–7, bromophenol blue) and were immediately
adsorbed onto 18 cm immobilized pH 4–7 gradient (IPG) strips
(Amersham Biosciences) [157]. Optimal IEF was carried out at 20 �C,
with an active rehydration step of 12 h (50 V), and then focused on
an IPGphor IEF unit (Amersham Biosciences) by using the following
program: 150 V for 2 h, 500 V for 1 h, 1000 V for 1 h, 1000–2000 V
for 1 h and 8000 V for 6 h. After focusing, IPG strips were equili-
brated for 15 min in 10 mL of 50 mM Tris–HCl, pH 8.8, 6 M urea, 30%
v/v glycerol, 2% w/v SDS, traces of bromophenol blue, and 100 mg of
DTT. Then, the strips were incubated for 25 min in the same buffer
but replacing DTT by 300 mg of iodoacetamide. After equilibration,
the IPG strips were placed onto 12.5% SDS-polyacrylamide gels and
sealed with 0.5% (w/v) agarose. SDS-PAGE was run at 15 mA/gel. 2D
gels were stained with silver staining mass spectrometry compat-
ible. Briefly, the gels were fixed in 40% ethanol (v/v), 10% (v/v) acetic
acid overnight, then were sensitized with sodium acetate 0.68% (w/v)
and 0.05% sodium thiosulfate for 30 min and washed with deion-
ized water 3 times for 5 min. The gels were incubated in 0.25% (w/v)
silver nitrate for 30 min. After incubation, it was rinsed with
deionized water 2 times for 50 s followed by adding the developing
solution, which contained 2.5% (w/v) sodium carbonate with 0.04%
(v/v) formaldehyde until the desired intensity range. Development
was finished by adding 1.5% (w/v) EDTA.



Fig. 3. DNA–Drug complex and some views of drug intercalation.

Fig. 4. Details of DNA–Drug intercalation.
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2.6. MALDI-TOF MS

Spots of interest were manually excised from silver stained 2-DE
gels after being de-stained, as described by Gharahdaghi et al.
[158]. Then, gel pieces were incubated with 12.5 ng/ml sequencing
grade trypsin (Roche Molecular Biochemicals) in 25 mM AmBic,
overnight, at 37 �C. After digestion, the supernatants (crude
extracts) were separated. Peptides were extracted from the gel
pieces first into 50% ACN, 1% trifluoroacetic acid and then into 100%
ACN. Then, one microliter of each sample and 0.4 mL of 3 mg/mL
a-cyano-4-hydroxycinnamic acid matrix (Sigma) in 50% ACN, 0.01%
trifluoroacetic acid were spotted onto a MALDI target. MALDI-TOF
MS analyses were performed on a Voyager-DE STR mass spec-
trometer (PerSeptive Biosystems, Framingham, MA, USA). The
following parameters were used: cysteine as s-carbamidomethyl
derivative and methionine in oxidized form. Spectra were acquired
over the m/z range of 700–4500 Da.

2.7. MASCOT search

The PMF data, obtained from MALDI-TOF MS analyses, were used
to search for protein candidates in two sequence databases: SWISS-
PROT/TrEMBL non-redundant protein database (www.expasy.ch/
sprot) and a complete genomic database from the related species
L. major, namely ftp://ftp.sanger.ac.uk/pub/databases/L.major_
sequences/LEISHPEP/, using MASCOT software program (www.
matrixscience.com). The MASCOT search parameters were
adjusted according to the MS experiment carried out and to the
above description as follows: Type of search: Sequence Query;
Enzyme: Trypsin; Fixed modifications: Carbamidomethyl (C); Vari-
able modifications: Oxidation (M); Mass values: MONOISOTOPIC;
Protein Mass: Unrestricted; Peptide Mass Tolerance: �100 ppm;
Fragment Mass Tolerance: �0.4 Da; Max Missed Cleavages: 1;
Instrument type: MALDI-TOF-TOF. We introduced the MS signals
corresponding to one of the unidentified 2D electrophoresis spots
(protein) into the MASCOT analysis system. The sample was recor-
ded on this web page with the search title: Sample Set ID: 1122,
AnalysisID: 1466, Maldi WellID: 17500, Spectrum ID: 7971,
Path¼\040519\Leishmania\New Analysis 2. The database used was
Leishmania 290 703 (with 7467 sequences; and 4 469 604 residues).
2.8. MC based MD study of PMFs and DNA–Drug complex

The MDTs or energetic profiles of all the starting structure of
peptides were also obtained by means of the MC method, using
the HyperChem package [159,160]. In this sense, the force field
AMBER94 [161] of molecular mechanics was used with distant-
dependent dielectric constant (scale factor 1), electrostatic and
Van der Waals values by default and cutoffs shifted with outer
radius of 14 Å (see Fig. 2). All the components of the force field
were included and the atom type was recalculated keeping their
current charges. Previous to Monte Carlo simulation the geom-
etry of all the structures of peptides where optimized with this
same force field. Finally, the simulation was executed in the
vacuum at 300 K and 100 optimization steps obtaining MDTs
with 100 potential energy dEj (j¼ 1, 2, 3,.100) values each one.
We obtained 35 MDTs for 35 peptides. In order to obtain realistic
MDTs there is an additional parameter we monitor in MD algo-
rithms; which is known as the acceptance ratio (ACCR). It
appears as ACCR on the list of possible selections in the MC
Averages dialog box of HyperChem (see Fig. 2). The acceptance
ratio is a running average of the ratio of the number of accepted
moves to attempted moves. Optimal values are close to 0.5.
Varying the step size can have a large effect on the acceptance
ratio. The step size, Dr, is the maximum allowed atomic
displacement used in the generation of trial configurations. The
default value of r in HyperChem is 0.05 Å [159]. For most organic
molecules, this will result in an acceptance ratio of about 0.5 Å,
which means that about 50% of all moves are accepted.
Increasing the size of the trial displacements may lead to more
complete searching of configuration space, but the acceptance
ratio will, in general, decrease. Smaller displacements generally
lead to higher acceptance ratios but result in more limited

http://www.expasy.ch/sprot
http://www.expasy.ch/sprot
http://ftp://ftp.sanger.ac.uk/pub/databases/L.major_sequences/LEISHPEP/
http://ftp://ftp.sanger.ac.uk/pub/databases/L.major_sequences/LEISHPEP/
http://www.matrixscience.com
http://www.matrixscience.com


Table 1
Representations for starting conformations used.
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a Dist.: discrete distance between the geometric centers of the two double bonds (in the plane projection). The possible modular values are 0; 0.5 and 1. Positive value if the
compound was moved inwards DNA pocket and negative if it was moved outwards DNA. Ang.: magnitude of clockwise rotation of compound (0 or 45�).

Table 2
Lineal furocoumarins (psoralens) and their aza-analogues used.

Z OO O

R3
R4R4´

R5´

R5

R8

ch

Drug Z R3 R4 R5 R40 R50 R8 ID50
a Ref.b

1 C Me Me H Me H H 0.34 [35]
2 C H H OMe H H H 0.66 [30]
3 C H CH2OH H Me H OMe 0.84 [32]
4 C Me H H Me H OMe 0.89 [76]
5 C H H H H H OMe 1.00 [34]
6 C Me H H Me H H 1.01 [77]
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sampling. There has been little research to date on what the
optimum value of the acceptance ratio should be. Most
researchers tend to try for an average value around 0.5; smaller
values may be appropriate when longer runs are acceptable and
more extensive sampling is necessary [159].

The DNA–Drug Docking MDTs or energetic profiles of all the
starting intercalation complexes were obtained also by means of
the MC using the same parameters than for PMFs. We obtained 21
MDTs for psoralens and 154 MDTs for the 36 different angelicins.
We also analyzed 36 averaged MDTs for each angelicin taking the
average energy dEj (avg) for all the initial positions of one
compounds at each one of the 100 steps. All these MDTs form a total
of 21þ154þ 36¼ 211 MDTs. In addition, we analyzed other 211
MDTs (decoy trajectories) obtained as a random deviation from
each one of the previous 211 MDTs.

dEjðrndÞ ¼ dEj þ random
�
j;max

�dEj

�
;min

�dEj

��
(7)

These random MDTs contain 100 energy values dEj(rnd) obtained
with the random generator of Excel by adding a random deviation
term to each dEj within the max–min limits of dEj for all the
previous MDTs. The utility of these decoy trajectories is to test the
robustness of the method to deviations of the MDTs selected. In
total we studied 422 MDTs. The information about all these 422
MDTs including xk(L) values relevant to this work was recorded on
the online Supplementary material.
7 C H H H Me Me H 1.26 [35]
8 C Me H H Me H Me 1.34 [77]
9 C H H H H H H 1.52 [78]
10 C Me H H Me Me H 1.79 [35]
11 C H CH2OH H Me H H 2.32 [32]
12 C H Me H H Me Me 27.6 [30]
13 N H H H Me H – 0.13 [34]
14 N H Me H H H – 0.14 [34]
15 N H H H Me Me – 0.18 [79]
16 N H H Me Me Me – 0.25 [34]
17 N Me Me H Me H – 0.67 [34]
18 N H Me H Me H – 0.68 [79]
19 N H H Me Me H – 0.97 [34]
20 N Me Me H Me Me – 1.83 [79]
21 N H Me H Me Me – 3.66 [79]

a The experimental antiproliferative activity in Ehrlich Ascites tumor cells
expressed as ID50 relative to 8-MOP.

b References in which the activity of compounds was reported.
2.9. Phylogenetic analysis of MDTs from PMFs

Using the vector of initial the vector of xk(L) values for
a peptide found in the PMF of a new protein we can calculate
peptide–peptide distance D(x)pq between peptides p and q. This
distance may be used as alternative to the distance D(E)pq based
directly on the energy values of the MDTs 3¼ [dE1,

dE2, dEj,.
dEn].

In principle, we can use different distance functions; here we
select the Euclidean distance because of the Euclidean nature of
the Cartesian space used to derive the LNs. Using the Tree Joining
Cluster (TJC) analysis algorithm implemented on the software
Statistica we were able to construct, visualize, and compare the
phylogenetic trees based on both distances for 35 peptides found
on the PMF of the new protein. The equations to calculate both
distances are:

DpqðEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX100

j¼0

�
pEj

vuut � qEj

�2
(8)

DpqðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX5

j¼0

�
pxj

vuut ðLÞ � pxjðLÞ
�2

(9)
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2.10. Model building of DNA–Drug intercalation complexes

For our study we used the decanucleotide of sequence
d(CCGCTAGCGG) and the software application HyperChem
[160,162], a fragment of DNA with double Helix in B form and
sugars in 20 endo form. This decanucleotide sequence has been used
in different studies concerning psoralens intercalation [160,163].
The structure of all the compounds selected for DNA–Drug inter-
action studies were optimized using the interactive model building
package of HyperChem [162]. The optimization of their geometries
was carried out by the Semi-empirical Quantum Mechanics calcu-
lations with method PM3 [164] using the Polak–Ribiere algorithm
and the options implemented by default in the mentioned package.
Thus, the minimized molecular structures were intercalated by
hand approach in the DNA fragment, using the HyperChem package
and taking into account the following experimentally demon-
strated statements:

1. In the dark, the poly[dA–dT] poly[dA–dT] sequence in DNA is
the most favorable site for intercalation since the further
photoreaction takes place mainly on the 5,6 double bond of
the thymine [165]. So, the optimized molecules were
Table 3
Angular furocoumarins (angelicins) and their aza-analogues used.

R5

O

R5´ R4´

R6

j

Compound Z R1 R3 R4

22 O – COMe H
23 O – COPh H
24 O – CON(Et)2 H
25 O – CONH(CH2)2OH H
26 O – CONH(CH2)2OEt H
27 O – CONH(CH2)2NMe2 H
28 O – CON[(CH2)2OH]2 H
29 O – CON(CH2)2NMe H
30 O – CONH2 H
31 O – CON(CH2)2O H
32 O – CO2H H
33 O – CON(Me)2 H
34 O – CO2Me H
35 O – Me H
36 O – Me Me
37 O – Me Me
38 O – CO2Et H
39 O – H H
40 O – H Me
41 O – H Me
42 O – H H
43 O – H H
44 O – H Me
45 O – H H
46 O – H H
47 O – H Me
48 O – H Me
49 N H H Me
50 N H H CH2OH
51 N H H Me
52 N H H Me
53 N Me H CH2OMe
54 N H H Me
55 N H H Me
56 N Me H CH2OH
57 N H H Me

a The experimental antiproliferative activity in Ehrlich Ascites tumor cells expressed a
b References in which the activity of compounds was reported.
inserted among the thymine units in a parallel plane to the
bases and, according to our decision, in a halfway position
(Fig. 3, left).

2. The furocoumarins have two reactive sites, but after photore-
action, different types of cycloadducts can be formed: mono
(furan-side or pyrone-side) and di-adducts (the cross-link)
[166]. Although psoralens are able to form all the cycloadduct
types, angelicins forms only monoadducts owing to their
angular molecular structure. Keeping this in mind, for each
lineal molecule we modeled only one starting conformation,
for which the cycloadduct formation by either one or other
reactive site (furan or pyrone-side) is equally feasible from
a geometric point of view. For each angular molecule we
decided to model two starting conformations, one for each
monoadduct formation (for the furan-side that we named as
j-conformation and for the pyrone-side that we named as
c-conformation).

3. The stereochemistry of the furocoumarins adducts is cis–syn
[167,168]. Consequently, the molecules were oriented in such
a way that the intercalation complex favors mainly the
formation of cycloadducts with this stereochemistry. In
the case of the furan-side, the stereochemistry syn means that
Z O

R3
R4

R1

c

R5 R6 R40 R50 ID50
a Ref.b

H H H H <0.01 [7]
H H H H <0.01 [7]
H H H H <0.01 [7]
H H H H <0.01 [7]
H H H H <0.01 [7]
H H H H <0.01 [7]
H H H H <0.01 [7]
H H H H <0.01 [7]
H H H H 0.05 [7]
H H H H 0.06 [7]
H H H H 0.07 [7]
H H H H 0.07 [7]
H H H H 0.20 [7]
H H H H 0.20 [81]
H H Me H 0.03 [35]
H H H H 0.35 [81]
H H H H 0.40 [81]
H H H H 0.55 [82]
H H H H 0.55 [35]
H H CH2OMe Me 0.60 [81]
H H H Me 0.80 [82]
H H Me H 0.81 [82]
H H H Me 1.27 [81]
H H Me Me 1.47 [81]
Me H Me H 5.30 [82]
H H Me H 5.75 [82]
Me H Me H 5.78 [81]
H H Me H 0.48 [83]
H Me H Me 0.66 [84]
H Me Me CH2OH 1.07 [83]
H Me H Me 1.36 [83]
H Me H Me 2.09 [84]
H H Me Me 2.59 [83]
H Me Me H 4.62 [83]
H Me H Me 5.60 [84]
H Me Me Me 9.25 [83]

s ID50 relative to 8-MOP.



Fig. 5. 2DE map for L. infantum promastigote homogenate (spot 3 is the new protein).

Table 4
Top-20 MASCOT scored protein template candidates.

Protein Accession Mass Score Description

1 LmjF36.6010 73 697 61 Hypothetical
2 LmjF31.2850c 22 350 42 Ribosomal
3 CHR32_tmp.120 24 347 39 Cyclophilin
4 CHR7-11_tmp.271 16 228 35 Possible ubiquinone

biosynthesis protein
5 CHR27_tmp.124c 191035 34 Cytoskeleton
6 CHR7-11_tmp.32c 18 913 34 Hypothetical
7 CHR16-22_tmp.83 17424 34 Hypothetical
8 CHR27_tmp.35c 17424 34 Hypothetical
9 L344.4 52 863 34 Hypothetical
10 CHR28_tmp.181 65 936 31 Hypothetical
11 CHR30_tmp.180c 24128 30 Ribosomal
12 CHR26_tmp.127 460 680 30 Hypothetical
13 LmjF25.0160c 24 004 29 Hypothetical
14 CHR32_tmp.448c 11907 29 Brain Sjogren’s syndrome

nuclear antigen
15 CHR34_tmp.181c 11907 29 Brain Sjogren’s syndrome

nuclear antigen
16 LmjF36.3570 66 043 28 Signal recognition
17 LmjF31.1700c 75 452 28 Hypothetical
18 L1648.05 72 486 28 Putative tubulin-tyrosine ligase
19 CHR34_tmp.158 47 641 28 Ribosomal
20 CHR34_tmp.157 47 743 28 Ribosomal
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the furan O10 and the pyrimidine N1 are going to be on the
adjacent corners of the future cyclobutane ring. For the pyrone-
side, the stereochemistry syn is defined as having the carbonyl-
carbon of the pyrone ring and the N1 of the pyrimidine on the
adjacent corners of the future cyclobutane ring (Fig. 3, right).

On the other hand, some of the studied angular molecules
present ramifications in the C3 carbon that hindered us to model
appropriately their j-conformation, due to steric problems with the
thymine ring. We also found steric impediments in the backbone of
the DNA when these ramifications are much bigger. In all these
cases we decided to model several alternative starting conforma-
tions for which the steric effects were eliminated. For the majority
of the cases we just varied the insertion degree of molecule in the
DNA; in the most critical cases we also had to rotate the molecule
clockwise, see Figs. 3 and 4, and Table 1 for details.

Both, the displacement outwards DNA and the molecule
rotation were carried out in the halfway and parallel plane to the
nitrogen bases. In this sense, the geometric criterion used was
the relative distance (in the plane projection) between the
geometric centers of the double bonds (j or c bond for furo-
coumarins and 5,6 bond for the thymine) that will take part in
the photoaddition and the relative angle between them. In both
Table 1 and Fig. 2, the variations of these geometric parameters
used to model the j-conformations are represented in a simpli-
fied way. Taking this aspects into consideration the notation of
a MD trajectory is given here as follows. We used the notation:
m-[Bond/Dist./Ang.]; where: m is the number of the compound in
Table 2 or Table 3, Bond¼ j, c, or j&c are the chemical bonds
susceptible of photoaddition in this position; whereas Dist. and
Ang. are the distance and angular intercalation parameters,
respectively (see also Table 1).

2.11. DNA–Drug dataset and statistical analysis

In this study we selected different furocoumarins and some of
their aza-analogous, whose antiproliferative activities in Ehrlich
Ascites tumor cells have been determined (Tables 2 and 3). We
obtained in total 422 MDTs for these compounds. We constructed
422 LNs (one for each MD trajectory) transformed them in a vector
of 11 pk(d) values for the compound and 11 xk(L) values for the MDt
(see previous sections). Were grouped all these 422 MDTs on two
sets composed by MDTs of complexes between DNA and active
compounds and other composed by trajectories of active
compounds with no-optimal MDTs and/or trajectories of non-
active compounds. In general, compounds as 40-MAP and the 4-
MBAP, with activities (ID50 relative to 8-MOP) of 0.13 and 0.14 are
considered as poorly active [169,170]. The biological activity of
these compounds is normally studied by evaluating of their
capacity of forming an intercalated complex with DNA and their
ability of photo-binding through mono- or bi-functional addition to
the same macromolecule [171]. A traditional procedure to deter-
mine the photobiological and antiproliferative activity of furo-
coumarins is based on ID50, the UVA dose that reduces to 50% of the
DNA synthesis in Ehrlich Ascites tumor cells (EATC) in presence of
tested compound at certain concentration (18–20 mM). The proto-
cols used in the activity determination are heterogeneous, however
it is very common the use of the 8-MOP as reference to express the
activity [169,170,172].

Keeping in mind all the above-mentioned aspects, we classified
the 57 compounds, compiled for our dataset in two observed
activity groups: 0 for the inactive compounds (LD50� 0.1) and 1 for
the active ones (LD50> 0.1). QSBR studies were carried out to obtain
models that allow us to classify the furocoumarins derivatives in
one of these two activity groups. We selected Linear Discriminant
Analysis (LDA) [173,174] to fit the discriminant function as imple-
mented in the LDA module of the STATISTICA 6.0 software package
[175]. Forward-stepwise algorithm was used for variable selection
[176–178]. The statistical significance of the LDA model was
determined with Fisher ratio (F) and the respective p-level (p). All
the variables included in the model were standardized in order to
bring it into the same scale. Subsequently, a standardized linear
discriminant equation that allows to compare their coefficients is
obtained [179]. We also inspected the Accuracy, Sensitivity, and
Specificity of the model for both training and external validation
series. Last, cases/adjustable parameters ratios (r), and number of
variables to be explored to avoid over-fitting or chance correlation
[176,177]. The general form of this model is the following, where
MD score is the real valued variable (output of the model) that
scores the goodness of fit to guide DNA–Drug Docking.
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MD score ¼
X10

ak,xkðLÞ þ
X10

bk,ckðDÞ þ c0 (10)

k¼0 k¼0

The equation do not onlyconsider the MDTof DNA–Drug Docking but
incorporates also the Mean Atomic Electronegativity values for atoms
placed at distance k on the chemical structure of the drug ck(D). The
ck(D) contains only information about atom-atom connectivity
patterns and electronic distribution on the drug but do not incor-
porate MDT information. In consequence, ck(D) are unable to account
for MDTs. The approach used to calculate ck(D) with MARCH-INISDE
is essentially the same used to calculate xk(D) values but use the
Markov matrix of a molecular graph instead of an LN. The details for
calculating ck(D) values are well known and have been published;
thus we refer to these references by reasons of space [180,181].

3. Results and discussion

3.1. Experiment 1

3.1.1. 2-DE isolation of a novel sequence
In this section we presented an example of the practical use of

the xk(L) values to construct phylogenetic trees for comparison of
peptides found in the PMF of a new query protein. In Fig. 5
we illustrate an overall view of the 2DE map obtained from the
L. infantum promastigote homogenate. In this figure we have done
a zooming in the left-to-down corner to highlight an area of high
density of spots, which apparently corresponds to protein frag-
ments of low MW and low pI. Our interest in this area derived from
the fact that these spots remained unchanged from gel to gel
Table 5
A set of 35 peptides found on the PMFs of the new protein with and MASCOT templates

Template Peptide Observed Mr (expt)

LmjF36.6010 P01 833.44 832.43
P02 877.46 876.46
P03 999.53 998.52
P04 1317.76 1316.75
P05 1405.84 1404.83
P06 1581.93 1580.92
P07 1626 1625
P08 1802.07 1801.06

LmjF31.2850c P09 823.44 822.43
P10 861.45 860.44
P11 867.47 866.46
P12 1405.84 1404.83
P13 1449.84 1448.83

CHR32_tmp.120 P14 823.44 822.43
P15 841.43 840.42
P16 911.49 910.48
P17 1449.84 1448.83
P18 1581.93 1580.92

CHR7-11_tmp.271 P19 823.44 822.43
P20 839.44 838.43
P21 877.46 876.46

CHR27_tmp.124c P22 823.44 822.43
P23 833.44 832.43
P24 839.44 838.43
P25 841.43 840.42
P26 921.5 920.49
P27 999.53 998.52
P28 1043.6 1042.6
P29 1405.84 1404.83
P30 1449.84 1448.83
P31 1493.86 1492.85

CHR7-11_tmp.32c P32 823.44 822.43
P33 833.44 832.43
P34 1043.6 1042.6
P35 2201 2199.99
repetitions and might correspond to relevant proteins of this
parasite. To start investigation on the nature of these proteins
initially we the spot marked with an arrow and encircled in the
zoom image for this area, see Fig. 5.

3.1.2. MS results for new query protein
The protein contained in each spot was submitted to in-gel

trypsin digestion and the mass of the resulting peptides was
obtained from MALDI-TOF MS analysis. However, we focus our
attention in this study on the protein corresponding to spot #3.
Once we have obtained the data from MALDI-TOF MS analysis of
spot #3, the more relevant MS signals were introduced into the
MASCOT search engine [182,183]. Due to the fact that the MASCOT
collection of annotated databases does not contained data about
L. infantum proteome, we chose the L. major database of annotated
proteins with MS recorded because of its similarity to L. Infantum
[184]. Even being a protein fragment of low MW, the MASCOT
search of MS signals found one hit with an Ms higher than 51
(p< 0.05) for spot #3 (see Table 4).

The top Mowse score found was 61, correspondent to the
protein LmjF36.6010 of L. major with mass 73 697 but without
know function annotation. The second highest Mowse score of 42
correspond to the protein LmjF31.2850c assigned as one ribosomal
protein of L. major specie with mass 22 350. The other proteins to
complete a total of 20 with similar Mowse scores were summarized
in Table 4. All these proteins have Mowse values lower that the
threshold value of 51 used to identify proteins with significant
similarity. In any case, many of them have been also recorded with
unknown function or as hypothetical proteins. Taking into
.

Mr (calc) Delta Sequence

832.41 0.02 AGWTVDGK
876.44 0.02 LEMLESR
998.56 �0.04 RDALQLQR

1316.67 0.08 DEAIQSLTRER
1404.73 0.1 LMLTDSVSPALSR
1580.79 0.13 EKIMLAQEVTTMR
1624.86 0.14 MLQHASLKSDPLAAK
1800.89 0.17 IMLAQEVTTMRAMYK

822.39 0.04 MFPAETK
860.43 0.01 LGAEVELM
866.4 0.06 AMTEMLR

1404.7 0.13 DAMVKLGAEVELM
1448.72 0.11 MRQSVLACDVVR

822.42 0.01 TFLSAER
840.41 0.01 GYDVIMK
910.45 0.03 VEMELFK

1448.76 0.07 VEMELFKDVVPK
1580.8 0.12 MHSEALVISYFLR

822.41 0.02 EYEALAK
838.39 0.04 MPVDYSK
876.45 0.01 ETVMGKGR

822.44 �0.01 FMKLER
832.45 �0.02 KAENMLK
838.44 �0.01 RLEHER
840.39 0.03 AACTPGHK
920.5 0 SKSFDIPK
998.48 0.04 YLAAEYGGR

1042.54 0.06 DVQEALNVR
1404.71 0.12 GSALNDRAFEVAR
1448.71 0.12 DRACQLAELVMK
1492.73 0.13 EQLPEGHSADLAAR

822.4 0.03 AEERYR
832.4 0.03 MHNLYR

1042.55 0.04 IGVNRAEER
2200.13 �0.14 ELTTVDATAQQTPWWRVAK
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consideration we can consider this protein as low-Mowse score
case (because no protein in MASCOT search with known function
has a high score). As we referred in introduction precisely the PMF
of this type of protein may be of high interest. In Table 5 we give
detailed information on the results of the MS analysis of the PMF of
the new protein using MALDI-TOF technique and MASCOT search
engine. Similar combination have been successfully used in the past
to study Trichinella antigens [157] and possible Leishmania dynein
proteins [83]. In this table we have shown only the 35 more
interesting peptides matching with the MS of other proteins on the
MASCOT search. Considering the high importance of phylogenetic
analysis in the next section we propose a new algorithm for
phylogenetic tree construction based MDTs and using this set of
peptides as case study.

3.1.3. MC exploration of peptides found on PMF of the new protein
After MS characterization of the PMF of the new protein, we

decided to use the xk(L) values as inputs to construct a new type of
phylogenetic tree. In so doing, we obtained firstly the MDTs for the
more interesting 35 peptides (see Fig. 2). In Table 6 we have
summarized the results of MD simulation of these peptides. In this
table we reported the initial energy (E0) and energy gradient (d0)
based on the starting structure constructed with standard param-
eters for a-helixes (bond distances, angles, and dihedral angles) set
as default on the sequence editor of Hyperchem [159,160]. We also
reported the (E1) and energy gradient (d1) obtained after optimiza-
tion of the structure with AMBER force field as well as the last
energy value (E100) obtained on the MC exploration of the MDT. Last,
we report in Table 6 the ACCR values for the MDT of the 35 peptides;
which are all lower than 0.5. In consequence, we can accept the MD
results and use them to construct a phylogenetic tree.
Table 6
Some MDT energy values for peptides found on the PMF of the new protein.

Pept. Sequence E0 d0

P01 AGWTVDGK 7347.62 505
P02 LEMLESR 11.17 1
P03 RDALQLQR �77.59 1
P04 DEAIQSLTRER 619.67 29
P05 LMLTDSVSPALSR 15036.18 798
P06 EKIMLAQEVTTMR 577.02 19
P07 MLQHASLKSDPLAAK 14695.52 737
P08 IMLAQEVTTMRAMYK 899.72 22
P09 MFPAETK 310.54 6
P10 LGAEVELM 546.32 26
P11 AMTEMLR 0.35 1
P12 DAMVKLGAEVELM 1049.69 29
P13 MRQSVLACDVVR 1404.96 36
P14 TFLSAER 83.16 4
P15 GYDVIMK 1519.70 50
P16 VEMELFK 168.78 3
P17 VEMELFKDVVPK 594555.63 58265
P18 MHSEALVISYFLR 1598.97 35
P19 EYEALAK 390.84 18
P20 MPVDYSK 453.14 18
P21 ETVMGKGR 29.55 1
P22 FMKLER 110.27 4
P23 KAENMLK 70.97 1
P24 RLEHER �14.75 1
P25 AACTPGHK 17181.88 1104
P26 SKSFDIPK 1325711.25 177194
P27 YLAAEYGGR 647.60 23
P28 DVQEALNVR 486.06 24
P29 GSALNDRAFEVAR 525.10 21
P30 DRACQLAELVMK 506.82 21
P31 EQLPEGHSADLAAR 164.26 2
P32 AEERYR 270.57 18
P33 MHNLYR 363.75 18
P34 IGVNRAEER 3.65 1
P35 ELTTVDATAQQTPWWRVAK 35088.39 795
3.1.4. MDT phylogenetic for PMF of new query protein
Using information about the distribution of monomers (amino

acids or nucleotides) throughout the biopolymer chain have been
the major tendency on phylogenetic analysis [185]. In the Intro-
duction, we discussed the importance of new molecular phylo-
genetic approaches for polypeptide chains based on other sources
of information such as MDTs. In Materials and method we out-
lined the possibility of construction of a phylogenetic tree for the
PMFs of the new protein described above using Equation (9). For
it, we have calculated first the xk(L) for the 35 more relevant
peptides (see Table 7) and later the peptide–peptide distance
using Equation (9). In Fig. 6 we illustrate that there are notable
differences on the grouping of the 35 peptides if we use the
traditional sequence similarity method or alternatively the
present approach. This results show that in principle the distance
Dpq(x) between a peptide p and other q based on xk(L) values of
MDTs codify information essentially different to sequence simi-
larity. In this sense, the present molecular phylogenetic algorithm
may become an alternative to traditional methods.
3.2. Experiment 2

3.2.1. DNA–Drug docking
Using the new xk(L) values as inputs we can obtain a classifier to

discriminate DNA–Drug complexes of the two classes defined in
materials and methods. The best model we found was:

MD score ¼ �2:24� x0ðLÞ � 1:59� c2ðDÞ � 2:11 n ¼ 316

F ¼ 120:99 p < 0:01 r ¼ 70:33 (11)
E1 d1 E100 ACCR100

4.22 28.73 0.10 111.48 0.47
0.48 �41.42 0.09 65.72 0.49
1.29 �163.12 0.99 �48.02 0.47
6.52 �149.80 0.10 �17.93 0.47
7.95 �55.85 0.10 91.25 0.48
7.41 �79.93 0.09 91.45 0.48
4.20 64.10 0.10 263.42 0.47
0.08 �87.59 0.10 115.66 0.48
1.75 25.45 0.10 110.59 0.47
9.08 6.70 0.09 105.72 0.48
0.45 �77.19 0.10 11.64 0.47
5.86 �30.37 0.10 132.30 0.48
4.28 �143.87 0.10 4.06 0.48
1.35 �61.16 0.10 23.92 0.47
5.90 �9.82 0.10 78.21 0.48
9.88 �9.63 0.10 83.26 0.49
1.63 �42.04 0.10 112.65 0.48
8.15 �20.42 0.10 145.47 0.47
1.36 2.04 0.10 81.61 0.46
1.59 3.69 0.09 90.22 0.47
2.55 �59.94 0.10 34.41 0.47
0.55 �22.21 0.10 64.97 0.48
1.13 �26.46 0.10 64.15 0.48
0.81 �128.88 0.10 �40.43 0.46
5.33 84.06 0.09 169.13 0.48
9.63 40.49 0.10 141.63 0.48
4.33 �87.52 0.10 27.46 0.47
4.65 �88.87 0.10 20.24 0.48
3.31 �162.52 0.10 �17.81 0.47
1.08 �97.64 0.10 39.80 0.48
6.06 �59.73 0.10 80.00 0.47
3.70 �114.27 0.10 �32.83 0.46
0.53 �26.20 0.10 55.96 0.47
4.52 �139.72 0.10 �13.62 0.48
5.64 �108.83 0.10 130.40 0.47



Table 7
Some xk(L) values for 35 peptides found on the PMF of the new protein.

Pept. Sequence x0(L) x1(L) x2(L) x3(L) x4(L) x5(L)

P01 AGWTVDGK 2.0 69.4 54.3 49.2 44.1 40.7
P02 LEMLESR 2.1 71.2 55.7 50.5 45.3 41.8
P03 RDALQLQR 2.1 72.9 57.0 51.6 46.3 42.8
P04 DEAIQSLTRER 2.1 71.6 56.0 50.7 45.5 42.0
P05 LMLTDSVSPALSR 2.0 69.4 54.3 49.2 44.1 40.7
P06 EKIMLAQEVTTMR 2.0 68.5 53.5 48.5 43.5 40.2
P07 MLQHASLKSDPLAAK 2.0 69.4 54.2 49.1 44.1 40.7
P08 IMLAQEVTTMRAMYK 2.0 69.2 54.0 49.0 43.9 40.5
P09 MFPAETK 2.0 69.4 54.2 49.1 44.1 40.7
P10 LGAEVELM 2.0 69.3 54.2 49.1 44.0 40.6
P11 AMTEMLR 2.1 72.1 56.4 51.1 45.9 42.4
P12 DAMVKLGAEVELM 2.0 69.3 54.2 49.1 44.0 40.6
P13 MRQSVLACDVVR 2.2 73.9 57.8 52.3 46.9 43.3
P14 TFLSAER 2.1 71.8 56.2 50.9 45.6 42.1
P15 GYDVIMK 2.2 69.2 54.3 49.3 44.3 41.0
P16 VEMELFK 2.1 69.7 54.5 49.3 44.2 40.8
P17 VEMELFKDVVPK 2.0 69.5 54.4 49.3 44.2 40.8
P18 MHSEALVISYFLR 2.0 69.3 54.2 49.1 44.0 40.7
P19 EYEALAK 2.0 69.3 54.2 49.1 44.0 40.6
P20 MPVDYSK 2.0 69.5 54.3 49.2 44.1 40.7
P21 ETVMGKGR 2.1 71.9 56.2 51.0 45.7 42.2
P22 FMKLER 2.1 69.8 54.9 49.9 44.9 41.6
P23 KAENMLK 2.2 70.6 55.0 50.0 44.9 41.6
P24 RLEHER 2.1 72.6 56.8 51.4 46.1 42.6
P25 AACTPGHK 2.0 69.3 54.2 49.1 44.0 40.6
P26 SKSFDIPK 2.0 69.5 54.4 49.3 44.2 40.8
P27 YLAAEYGGR 2.1 71.4 55.8 50.6 45.4 41.9
P28 DVQEALNVR 2.1 72.5 56.7 51.4 46.1 42.5
P29 GSALNDRAFEVAR 2.1 72.9 57.0 51.6 46.3 42.7
P30 DRACQLAELVMK 2.1 70.4 55.1 49.9 44.8 41.3
P31 EQLPEGHSADLAAR 2.0 69.5 54.3 49.2 44.1 40.7
P32 AEERYR 2.1 72.3 56.6 51.3 46.0 42.5
P33 MHNLYR 2.1 72.2 56.5 51.3 46.1 42.6
P34 IGVNRAEER 2.1 71.4 55.8 50.6 45.4 41.9
P35 ELTTVDATAQQTPWWRVAK 2.0 69.1 54.0 49.0 43.9 40.5

Fig. 6. Different phylogenetic trees: Sequence similarity (A) and xk(L) values of
MDTs (B).
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The output of the model, MD score, is a real value variable that
scores the predicted goodness of fit for one MD trajectory. After the
forward-stepwise selection of xk(L) and ck(L) values the model
retained only two parameters x0(L) and c2(L). These values can be
interpreted as the average or mean value of energy for states on the
2D space (nodes on the LN) and mean electronegativity value for
atoms placed at distance k¼ 2 on the drug, respectively. The model
was trained with a training series and later validated with and
external validation series. In training series the model correctly
classifies 78 out of 80 (specificity¼ 97.50%) optimal and 192 out of
236 (sensitivity¼ 81.36%) no-optimal MDTs.

In statistical prediction, the following three cross-validation
methods are often used to examine a classifier for its effectiveness in
practical application: independent dataset test, sub-sampling test,
and jackknife test [186]. However, as elucidated by [8] and demon-
strated in [188], among the three cross-validation methods, the
jackknife test is deemed the most objective that can always yield
a unique result for a given benchmark dataset, and hence has been
increasingly used by investigators to examine the accuracy of various
predictors [189–197]. In the current study, for simplifying the
demonstration, we just used the independent dada for validation. In
external validation series the model correctly classifies 25 out of 26
(specificity¼ 96.15%) optimal and 65 out of 80 (sensitivity¼ 81.25%)
no-optimal MDTs. This results represent total accuracy¼ 85.44% and
84.91% in training and validation respectively. This result indicates
significant goodness of fit for this linear classifier based on the results
reported before for LDA-QSAR classifiers. See for instance the LDA
models used to predict anti-Leishmania, and in general other anti-
parasitic or anti-microbial drugs or other classes of activities by
Galvez, Garcı́a-Domenech, Marrero-Ponce, Castillo-Garit, Casañola-
Martin, and other authors [91,198–208].
4. Conclusions

MDTs of biopolymers can be numerically described with a new
class of invariants xk(L) representing spatial distribution of Mean-
Energy values on a 2D Euclidean space. The procedure forces one
MD trajectory to fold into a 2D Cartesian coordinates system using
a step-by-step procedure driven by simple rules. The graphical
representation of this space has the form of a lattice network
symbolized as LN. We can use xk(L) values of LN to develop new
algorithms to perform molecular Phylogenetic analysis of peptides
based on MDTs instead of the sequence of the polypeptide. The new
procedure combined with 2D Electrophoresis and MALDI-TOF MS
can be applied to analyze Peptide Mass Fingerprints of new
proteins. We can use the same idea to seek scoring functions for
DNA–Drug Docking simulations. The work opens new perspective
on the analysis and applications MD on biopolymers sciences.
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