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Muscle-invasive bladder urothelial carcinoma (MIBC) is characteristic of high mortality and high recurrence. Distinguishing the
prognostic risk of MIBC at the molecular level of miRNA expression is rarely performed and thus of great significance for the
management and treatment of MIBC in clinics. Adaptive lasso Cox’s proportional hazards model was used to explore the
relationship between differential expression miRNAs (DEmiRNAs) andMIBC survival. Furthermore, we evaluated the epithelial-
mesenchymal transition (EMT) score and immune infiltration abundance by exploring EMT signature genes and TIMER
database, respectively. A total of 8 DEmiRNAs were detected to be associated with the survival rate ofMIBC by using the lasso Cox
algorithm. ,rough the linear combination of these 8 DEmiRNAs, we constructed a calculated marker, which could be used to
distinguish the prognosis risk in both TCGA dataset (HR� 2.03, 95% CI� (1.47, 2.83)) and independent validation dataset
(HR� 7.74, 95% CI� (1.05, 56.93)). Meanwhile, the constructed marker had reasonably high predictive values of the AUC (area
under the curve) in the TCGA dataset and validation dataset being 0.73 and 0.63, respectively. In addition, we observed that the
expression values of let-7c, miR-100, and miR-145 were associated with EMT score and the abundance of macrophage in tumor
tissue as well. ,is newly identified risk score signature based on the combination of 8 miRNAs could significantly predict the
prognostic risk of MIBC and might provide insight into immunotherapy and targeted therapy of MIBC.

1. Introduction

Bladder cancer is a commonly diagnosed malignant tumor
arising from the tissues of the urinary system, with around
550,000 new cases and 200,000 deaths being reported
worldwide in 2018 [1]. About 1 out of 4 bladder cancer cases
were diagnosed as muscle-invasive bladder cancer (MIBC)
when cancer cells have gone through the bladder lining and
are present in the detrusor muscle [2, 3]. MIBC has strong
invasiveness and is more prone to distal metastasis and
recurrence, which brings about a poor 5-year survival of
around 50% [4]. At present, radical cystectomy of the
bladder in conjunction with neoadjuvant therapy is still the
first-line treatment for MIBC [5]. However, most MIBC

cases are less sensitive to neoadjuvant chemotherapy based
on cisplatin [4, 6]. ,e 5-year survival rates of MIBC have
not improved as much as other cancers during decades [7].
Identifying MIBC prognostic biomarkers at the molecular
level will thus be of great value in distinguishing MIBC cases
with different risks, developing individualized clinical
therapies, and improving survival rate.

MicroRNAs (miRNAs) comprise a class of small, en-
dogenous noncoding RNA with short nucleotide length
(20–25 nt) that are involved in the process of cell pro-
liferation, differentiation, migration, and apoptosis by reg-
ulating the expression and translation of target mRNA [8, 9].
It has been observed that the abnormal expression of miRNA
can destroy the RNA network in cancer cells and promote
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the occurrence and development of tumors, especially uri-
nary tumors [10–12]. In addition, some studies have shown
that miRNAs also regulate the epithelial-mesenchymal
transition (EMT) process, which enhances the invasiveness
of cancer and enriches the abundance of stem cells in tumor
tissues [13]. Although miRNA has been widely reported as a
tumor marker, so far, there have been few reports about
miRNA and the survival of MIBC. ,e available reports are
based on small number of patients or single miRNA [14]. To
our knowledge, there is no study integrated miRNA, EMT,
and immune infiltration status, with comprehensive prog-
nostic factors of MIBC so far.

In this study, we analyzed the level 3 miRNA data from
the Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/) to screen differential expression miRNA
(DEmiRNA) between tumor and normal tissues. Among
DEmiRNAs, we used the lasso Cox algorithm to identify a
group of miRNAs which were associated with overall sur-
vival (OS), constructed a risk model based on 8 miRNAs,
and verified it in an independent external dataset from Gene
Expression Omnibus (GEO) database. Furthermore, we used
time-dependent receiver operating characteristic (ROC)
curve to evaluate the predictive value of the five-year survival
rate of the model in two datasets, respectively. Also, we
explored the potential association of miRNA with EMT and
with the abundance of immune cell infiltration in tumor
tissues.

2. Materials and Methods

2.1. Data Collection and Preprocessing. ,e expression
profiles of miRNA (Illumina HiSeq) and the corresponding
clinical information (Genomic Data Commons) of patients
diagnosed with muscle-invasive bladder urothelial carci-
noma (MIBC) were downloaded from TCGA and GEO.
Patients in the TCGA dataset were excluded from the
present study if they met any of the following criteria: (1) the
pathological grade was lower than pT2; (2) the first diagnosis
cancer was not bladder cancer; (3) received treatment before
being involved in the TCGA cohort; (4) NMIBC (non-
muscle-invasive bladder cancer) patients progressed to
MIBC after the tissue was obtained; and (5) the follow-up
status and times were not available. A total of 12 patients
who had previously been diagnosed with other cancers or
had previously received treatment or not meet study pro-
tocol were excluded from the TCGA datasets by reading
annotation files. Totally, 392 tumor samples and 17 normal
samples from the TCGA datasets were included in the
follow-up analysis [15]. ,e GSE84525 dataset from GEO
was utilized to validate the findings from TCGA, which
included 62 MIBC samples [16]. In addition, we also
downloaded mRNA data to evaluate the status of EMT
(epithelial-mesenchymal transition) and immune cell in-
filtration from the TCGA database.

2.2. Screening Differentially Expressed miRNA. ,e
“DESeq2” R package was applied to screen the DEmiRNAs
between normal and MIBC samples from the TCGA

dataset [17]. For low-count miRNAs, we used the default
filter parameters (minmu: lower bound on the estimated
count for fitting gene-wise dispersion) of the “DESeq”
function in the DESeq2 package to filter them (the default
value was 0.5). DEmiRNAs were selected according to the
following criterion: the P (FDR) value less than 0.01 and
the absolute value of log2(fold change) (logFC) more than
or equal 2. In the TCGA dataset, the expression of
miRNAs was normalized by carrying out the variance
stabilizing transformation (VST), and the “blind” pa-
rameter was set to FALSE. Finally, in TCGA and GEO
datasets, the expression value of miRNAs was transformed
by log2(x + 1).

2.3. Model Development and Validation. First, we used
univariate Cox regression to screen DEmiRNA in the TCGA
dataset following the criterion that P value was less than 0.05
and the follow-up times were limited to 60 months. We
screened 26 miRNAs which were relevant with MIBC
prognosis from 129 DEmiRNAs for further analysis. Second,
adaptive lasso penalty Cox regression (ALasso) was used to
further screen the more important and stable DEmiRNA
where the λ value was obtained by a 10-fold cross-validation
[18]. ,ird, we obtained the coefficient (β) of every DEm-
iRNAs, and the prognostic risk score model for predicting
overall survival was constructed according to the following
formula:

Risk Score � β1 ∗ exp1 + β2 ∗ exp2 + · · · + βn ∗ expn, (1)

where β: the ALasso Cox regression coefficient and exp:
log2(the expression of miRNA+ 1). Fourth, the patients
from TCGA were categorized into high- and low-risk
groups using the optimal cutoff value of the risk score,
which was performed by using the X-tile software (version
3.6.1). ,e survival differences between the two groups
were compared by log-rank test. However, before the
comparison process, the groups were tested for the pro-
portional hazard assumption, and if the assumption was
not satisfied, it was presented in two strata. Meanwhile, we
validated the risk score model in the GEO dataset using the
same cutoff value. Fifth, the time-dependent receiver op-
erating characteristic (ROC) curve was used to evaluate the
predictive value of the survival rate of the constructed
model [19]. In addition, we also evaluated the differences of
progress-free interval (PFI) between two groups in TCGA
datasets.

2.4. Evaluation of EMT Score and Immune Cell Infiltration.
We calculated the EMT score to evaluate the EMT status of
each patient using previously reported EMT (epithelial-
mesenchymal transition) signature genes, that is, the average
expression of mesenchymal signature genes minus the av-
erage expression of epithelial signature genes [15, 20]. We
also evaluated the infiltration abundance of B cells, CD4
T cells, CD8 T cells, neutrophil, macrophage, and dendritic
in tumor tissue from RNA-seq expression data by TIMER
network tool which was a deconvolution method [21].
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2.5. Consensus Clustering. All samples from TCGA were
clustered based on miRNA expression value of model by
consensus clustering using ConsensusClusterPlus R package
and the distance metric using Pearson distance [22].

2.6.GeneFunctionAnalysis. In order to explore the potential
functions of miRNA in the risk model, we retrieved targeted
mRNAs which were regulated by miRNA of risk model from
miRTarBase, miRDB, and TargetScan databases by miRBase
ID [23–25]. We used “clusterProfiler” R package to perform
functional enrichment analysis for these targeted miRNAs
which included KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway and GO (Gene Ontology) biological
process [26]. ,e criterion was adjusted P value less than
0.05.

3. Results

3.1. Patient Characteristics. In TCGA datasets, a total of 392
patients were included in this study after preprocessing. ,e
demographic and clinical characteristics are listed in Table 1,
while in GEO datasets, a total of 62 patients were included in
the present study in which only information on age (median
age: 68) and survival was available.

3.2. Screening Differentially Expressed miRNA. According to
the criteria described in the Method section, a total of 129
DEmiRNAs were identified in this study which included 98
upregulated and 31 downregulated ones (Figure 1).

3.3. Construction of Risk Score Model. First, we used uni-
variate Cox regression to explore the potential association of
DEmiRNAs with overall survival in the TCGA dataset,
which generated a total of 26 miRNAs with P< 0.05. Next,
adaptive lasso Cox regression was employed to further select
eight stable miRNA combinations whereby we constructed a
risk model according to the formula as follows:

Risk Score � 0.081∗ explet− 7c + 0.056∗ expmiR− 100 + 0.155

∗ expmiR− 145 + 0.064∗ expmiR− 519c + 0.088

∗ expmiR− 615 + 0.224∗ expmiR− 33b + 0.092

∗ expmiR− 1251 − 0.039∗ expmiR− 138.

(2)

Furthermore, we calculated the risk score for each pa-
tient and used 4.91 as the optimal cutoff value to divide the
patients into high-risk and low-risk groups which was
performed by using X-tile software. A worse prognosis was
observed for the high-risk group (HR� 2.03, 95% CI� (1.47,
2.83)) compared to the low-risk group after multiple ad-
justments (Table 2). ,e Kaplan–Meier curve also showed a
better prognosis for lower risk group (Figure 2(a)). Addi-
tionally, the time-dependent ROC curve shows that the risk
model had good forecasting ability, i.e., a AUC (area under
the curve) of 0.73 (Figure 2(b)). We explored the difference
in progress-free interval (PFI) between the two groups of
patients which showed a shorter PFI in the high-risk group

(Figure 2(c)). Additionally, we compared clinical charac-
teristics between different groups by risk model using lo-
gistics regression. More advanced pathological stage of
cancer was observed among patients in the low-risk group by
the risk model (OR� 0.54, 95% CI� (0.40–0.73)).

3.4. RiskModel Validation. An external independent dataset
was adopted to validate the risk model. In this external
dataset, patients were divided into two groups using the

Table 1: Characteristics of the TCGA dataset.

Characteristics Number %
All 392 100
Age

Mean 68± 10.7 —
Gender

Female 104 26.5
Male 288 73.5

Race
White 312 79.6
Asian Black or African 42 10.7
American 22 5.6
Unknown 16 4.1

Stage
Stage II 127 32.4
Stage III 137 34.9
Stage IV 128 32.7

Grade
High 370 94.4
Low 20 5.1
Unknown 2 0.5

Survival
Dead 163 41.6
Alive 229 58.4
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Figure 1: Volcano plot of DEmiRNAs. ,e x-axis indicates
log2(fold change), and y-axis indicates–log10(adjust P value). Blue,
red, and black represent upregulation miRNAs, downregulation
miRNAs, and nondifferential expression miRNAs, respectively.
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Table 2: Survival analysis for risk model with OS as endpoints in the TCGA dataset and validation dataset.

TCGA dataset (N� 392) Validation dataset (N� 62)
Univariate Adjusteda Univariate Adjustedb

Variable HR 95% CI P HR 95% CI P HR 95% CI P HR 95% CI P

Age 1.03 1.02–1.05 <0.001 1.02 1.01–1.04 0.009 1.07 1.02–1.11 0.002 1.06 1.02–1.11 0.005
Genderc 0.88 0.63–1.24 0.463 0.84 0.6–1.18 0.311 — — — — — —
Staged 1.8 1.47–2.21 <0.001 1.61 1.31–1.98 <0.001 — — — — — —
Riske† 2.68 1.96–3.67 <0.001 2.03 1.47–2.83 <0.001 9.15 1.25–67.2 0.03 7.74 1.05–56.93 0.045
aAdjusted for age, pathological stage, and gender. bAdjusted for age. cFemale (ref ) vs. male. dStage II (ref ) vs. stage III vs. stage IV. eHigh risk vs. low risk (ref ).
†Proportional risk assumptions were met.
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Figure 2: Continued.
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same cutoff value which was defined in the TCGA dataset.
Consistent with the TCGA dataset, the high-risk group
(HR� 7.74, 95% CI� (1.05, 56.93)) had unfavorable prog-
nosis than the low-risk group (Table 2, Figure 2(d)). ,e
predictive performance of the risk model was also evaluated
(AUC� 0.63, Figure 2(e)).

3.5. Epithelial-Mesenchymal Transition. Considering the
important role of epithelial-mesenchymal transition (EMT)
progress played in the occurrence and development of
MIBC, we explored the underlying relationship between the
expression level of miRNA and EMT scores. We observed
that patients in the high-risk group had higher EMT scores
than those in the low-risk group (P � 0.005, Figure 3(a)).We
also evaluated the correlation between miRNAs and EMT.
We found that three miRNAs were positively correlated with
EMT, that is, let-7c (SCC (Spearman’s correlation coef-
ficient)� 0.61, Figure 3(b)), miR-100 (SCC� 0.64,
Figure 3(c)), and miR-145 (SCC� 0.53, Figure 3(d)).

3.6. Immune Cell Infiltration. Studies have shown that in-
filtrating immune cells are participating in the inflammatory
response of tumor microenvironment, which is of great
significance to the prognosis of cancer [27]. We used RNA-
seq data to evaluate the infiltration abundance of 6 immune
cells in 387 patients and found that patients in the high-risk
group had higher macrophage infiltration abundance
(P< 0.001, Figure 3(e)). Next, the potential correlation was
explored by Spearman’s rank correlation between immune
cell infiltration abundance (ICIB) and several miRNAs, that
is, let-7c (SCC� 0.47, Figure 3(f )), miR-100 (SCC� 0.46,
Figure 3(g)), and miR-145 (SCC� 0.42, Figure 3(h)). Ad-
ditionally, we compared the overall survival rates between
different infiltration abundance (top 25%, middle 50%, and
low 25%). Worse prognoses were observed among higher
macrophage infiltration abundance (Figure 4).

3.7. Subtype Identification. 392 samples from TCGAdatasets
were divided into two categories by consensus clustering of 8
miRNA expression values. By comparing the ICIB between
two classes, we noticed that the infiltration level of CD4
T cells and dendritic cells in class 1 was higher (Table 3,
Figure 5(a)). And the class 2 (HR� 1.47, 95% CI� (1.08,
2.01)) had unfavorable prognosis than class 1 (Figure 5(b)).
,erefore, we defined two MIBC immune subtypes
according to the infiltration of immune cell. We, addi-
tionally, observed that the common patients in the same
prognosis groups were 70 (class 2, high-risk groups, poor
prognosis) and 157 (class 1, low-risk groups, better prog-
nosis) in consensus clustering and risk model group.

3.8. Gene Function Analysis. We performed the function
analysis for target genes from three different databases
(Supplementary file, Table S1). According to the criterion
(adjusted P value< 0.05), GO (Gene Ontology) enrichment
analysis showed that targeted genes enriched 622 (miRDB),
1296 (miRTarBase), and 801 (TargetScan) GO terms for the
three databases above, respectively (Supplementary file,
Tables S2, S3, S4). We found 230 common terms in these
three databases, indicating that miRNA may be involved in
regulation of cell morphogenesis, epithelial to mesenchymal
transition, stem cell differentiation, and regulation of
macroautophagy (Supplementary file, Table S5). Pathway
analysis showed that three databases enriched 72 (miRDB),
77 (miRTarBase), and 30 (TargetScan) pathways, re-
spectively (Supplementary file, Table S6, S7, S8). Among the
10 same pathways included MAPK signaling pathway,
signaling pathways regulating pluripotency of stem cells, and
erbB signaling pathway (Supplementary file, Table S9).

4. Discussion

Muscle-invasive bladder cancer (MIBC) is highly hetero-
geneous and its prognosis has not improved in the past
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Figure 2: Kaplan–Meier curves and time-dependent receiver operating characteristic curves of miRNA signature. In the TCGA dataset, (a,
b) the endpoint is overall survival and (c) the endpoint is progress-free interval. In the validation dataset, (d) the endpoint is overall survival;
(e) time-dependent receiver operating characteristic curves of miRNA signature.
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Figure 3: Continued.
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decades [7]. Molecular and genetic advances could provide
perspectives on potential therapeutic targets for MIBC based
on novel biomarkers, fromwhich the prognosis ofMIBCwill
be benefited. In recent years, more miRNA data are available
for various cancers. miRNA profiling is becoming an im-
portant tool for cancer prognosis since the pattern of
miRNA expression can be correlated with clinical charac-
teristics of cancer under the possible mechanisms of pro-
liferation, apoptosis, invasion/metastasis, and angiogenesis.
Increasing evidence showed that the abnormal expression of
miRNA plays an important role in the metastasis and de-
velopment of cancer [27, 28].

In the present study, a total of 8 miRNA associated with
overall survival were screened from 129 differentially
expressed miRNAs by using univariate Cox regression and
adaptive lasso method.We constructed a risk score model by
linearly combining 8 miRNAs and validated this model in an
independent external dataset. Furthermore, we found that
three miRNAs in risk model were associated with immune
cell infiltration abundance (ICIB) and epithelial-mesen-
chymal transition score. We also observed significant dif-
ferences in ICIB and EMT score according to different risk
groups. In addition, gene function analysis showed that the
DEmiRNAs included by the risk model were mainly in-
volved in biological processes or pathways such as stem cell
differentiation, cell growth, and axon guidance.

Macrophages, a driving factor of inflammatory reaction,
were the major players of tumor microenvironment [29].
Studies have shown that the number of macrophages was
associated with the poor prognosis of cancer, which was
supported by our findings [30]. In our study, we observed
that the estimated MIBC risk for patients (high vs. low) by
the risk model was significantly associated with macrophage
abundance and prognosis as well. ,e potential biological
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Figure 4: Kaplan–Meier estimates of probability of overall survival
among different infiltration abundance of macrophage.

Table 3: Immune cell infiltration abundance of two subtypes.

Immune cell
type

Class 1 Class 2
Pb

Median IQRa Median IQRa

B cell 0.073 0.045–0.098 0.074 0.048–0.103 0.463
CD4 T cell 0.124 0.097–0.171 0.106 0.084–0.142 0.002
CD8 T cell 0.156 0.108–0.217 0.151 0.104–0.207 0.589
Neutrophil 0.112 0.073–0.168 0.093 0.068–0.133 0.079
Macrophage 0.035 0–0.087 0.045 0.003–0.097 0.257
Dendritic 0.465 0.346–0.657 0.400 0.329–0.498 0.001
aIQR : interquartile range (Q25-Q75). bP value is obtained by Shapiro–Wilk
test.
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Figure 3: (a),e boxplot of EMTscore for different risk groups. Plot of Spearman’s correlation between EMTscore and the expression of (b)
let-7c, (c) miR-100, and (d) miR-145. (e) ,e boxplot of the abundance of macrophage in tumor tissue for different risk groups. Plot of
Spearman’s correlation between the abundance of macrophage and the expression of (f ) let-7c, (g) miR-100, and (h) miR-145.
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mechanism may be related to that tumor cells stimulate
macrophages to secrete a large number of inflammatory
factor such as interleukin-10 (IL-10) and tumor necrosis
factor-α (TNF-α) and further to promote the expression of
programmed cell death ligand 1 (PD-L1) and eventually
make cancer cells escape from the attack of T cells [31].
Other mechanisms could be that macrophages regulated the
effects of Tregs (regulatory T cells) by promoting the syn-
thesis of prostaglandin E2 (PGE2) to promote immuno-
suppressive response or the participation of miRNA in the
immune escape process [32, 33].

Epithelial-mesenchymal transition (EMT) is a process in
which differentiated epithelial cells lose their epithelial
characteristics and change into a motile, mesenchymal
phenotype, which makes cells to gain strong ability to in-
vade, proliferate, and escape apoptosis and to participate in
immunosuppressive response [34]. We noted that the high
expression of miR-100, miR-145, and let-7c in MIBC pro-
moted the process of EMT. A study of breast cancer showed
that miR-100 could induce the EMT process by regulating
the expression of CDH1 (cadherin 1) through SMARCA5
[35]. Other studies found that miR-145 regulated TGF-β1-
(transforming growth factor-β1-) mediated EMTprogress to
enhance the invasiveness of cancer cells by targeting SMAD5
[36, 37]. In contrast to our results, let-7c has been reported to
be a tumor inhibitor and inhibited the process of EMT for
other cancers. ,e inconsistent results could be either due to
an endogenous competition relationship between the target
mRNA of let-7c and some long noncoding RNA or caused
by the tissue-specific expression of miRNA [38, 39].

Previous studies have shown that miR-615 can increase
the level of Mcl-1 protein and promote the proliferation and
metastasis of cancer cells and the ability of antiapoptosis by
inhibiting the expression of CELF2 in cancer cells [40, 41]. In
addition, miR-615 and miR-1251 jointly targeted IGF1R
(insulin-like growth factor 1 receptor) and participated in

the reproductive process of cancer cells through phos-
phoinositide 3-kinase-Akt pathway and the shc-ras-MAPK
pathway [42, 43].

Several other markers were observed to be relevant to
tumorigenesis in different mechanisms. ,e high expression
of miR-33b suppresses the transcription and translation of
CDKN1A (cyclin-dependent kinase inhibitor 1A), which
makes cancer cells to acquire stem cell characteristics, en-
hance the resistance of cancer cells to cisplatin drugs, and
participate in the regulation of Tregs cells in tumor immune
microenvironment [44–46]. In bladder cancer, miR-138
binds to the 3′TUR sequence of ZEB2 (zinc finger E-box
binding homeobox 2), regulates the expression and phos-
phorylation of vimentin and e-cadherin, reverses the EMT
process, and enables cancer cells to obtain epithelial char-
acteristics [47]. In addition, it has been reported that miR-
138 improved the sensitivity of tumor patients to gefitinib by
silencing the G protein-coupled receptor (GPCR) [48]. To
date, the abnormal expression of miR-519c has not been
reported to be related to MIBC prognosis. However, a recent
study reported that miR-519c could worsen the prognosis of
hepatocellular carcinoma (HCC) by negatively regulating
the expression of BTG antiproliferation factor 3 (BTG3)
which could promote growth andmetastasis of HCC [49]. In
addition, miR-519c was found to be involved in the ex-
pression and regulation of genes related to chemothera-
peutic sensitivity of tumor cells, such as ATP binding
cassette subfamily G member 2 (ABCG2) [50].

In this study, we constructed a novel predictive bio-
marker for MIBC prognosis based on the expression of
multiple miRNAs based on a series of strict criteria.
Compared to available relevant studies using TCGA and
GEO data to date, the strengths of our study mainly focused
on the following perspectives. First, our study subjects were
strictly restricted to MIBC which has a higher risk of clinical
death than NMIBC which was included as subjects in most
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Figure 5: (a) ,e boxplot of the abundance of CD4 T cell and dendritic in tumor tissue for different MIBC subtypes. (b) Kaplan–Meier
curves of different MIBC subtypes; the endpoint is overall survival.
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other studies. Meanwhile, we excluded patients in TCGA
cohort from the present study by carefully reading attach-
ment annotation, which were considered not suitable for
MIBC study by TCGA working groups in order to achieve a
better representation. Second, we, for the first time, in-
vestigated the relationship between the expression of
miRNAs and EMTprogress to see the possible role of EMT
process as a potential mechanism in the MIBC prognosis
and consequently found the differential EMT status in
different risk groups. We also explored the relationship
between signature miRNAs and EMT (let-7c, miR-100, and
miR-145). ,ird, we identified the MIBC immune subtypes
by miRNAs and evaluated the effect of immune cell
abundance on the prognosis of MIBC to explore the impact
of immune microenvironment on MIBC prognosis, which
had not been reported to our knowledge, too. Fourth,
adaptive lasso algorithm model was used to reduce the false-
positive rate compared with the classical Cox screening
method. However, better ROC values could be achieved
when more miRNA and related data became available be-
sides the methodological improvements. Other limitations
existed. First, our data were abstracted from the public
database, where treatment information was not available.
Furthermore, the external independent dataset for verifi-
cation lacks clinical information such as pathological grade.
In addition, the EMT status in 4 patients and the ICIB in 5
patients could not be evaluated.

5. Conclusions

In summary, we analyzed miRNA data and clinical data
from 392 patients diagnosed with MIBC from the TCGA
project. A combination of 8 miRNAs which were con-
structed and validated independently to be related to MIBC
survival could be suggestive of potential prognostic markers
in clinics and might provide perspectives for therapeutic
target. We also found the association of three miRNAs with
immune cell infiltration abundance and EMTprocess, which
may shed light on the underlying mechanism for MIBC
prognosis and recurrence.
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