
Computational Statistics
https://doi.org/10.1007/s00180-022-01220-9

ORIG INAL PAPER

Semi-supervised adapted HMMs for P2P credit scoring
systems with reject inference

Monir El Annas1 · Badreddine Benyacoub1 ·Mohamed Ouzineb1

Received: 13 May 2021 / Accepted: 20 March 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The majority of current credit-scoring models, used for loan approval processing, are
generally built on the basis of the information from the accepted credit applicants
whose ability to repay the loan is known. This situation generates what is called the
selection bias, presented by a sample that is not representative of the population of
applicants, since rejected applications are excluded. Thus, the impact on the eligibility
of thosemodels froma statistical and economic point of view.Especially for themodels
used in the peer-to-peer lending platforms, since their rejection rate is extremely high.
The method of inferring rejected applicants information in the process of construction
of the credit scoring models is known as reject inference. This study proposes a semi-
supervised learning framework based on hiddenMarkovmodels (SSHMM), as a novel
method of reject inference. Real data from the Lending Club platform, the most used
online lending marketplace in the United States as well as the rest of the world, is
used to experiment the effectiveness of our method over existing approaches. The
results of this study clearly illustrate the proposed method’s superiority, stability, and
adaptability.
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1 Introduction

Fintech is emerging rapidly worldwide. Despite the economic shock from the COVID-
19 pandemic, global Fin-tech investments remained strong, with over $ 25.6 billion
in the first half of 2020 (https://home.kpmg/xx/en/home/insights/2020/02/pulse-of-
fintech-archive.html). The pandemic has significantly accelerated digital trends and
the demand for digital platforms such as digital banking, peer-to-peer lending plat-
forms and other fintech-related services. The peer-to-peer lending (P2P lending) online
platforms (https://www.lendingclub.com/info/download-data.action ), allowsborrow-
ers to obtain loans directly from other people. For lenders, it is an alternative to
lend customers without going through banks and credit organizations which are very
demanding in terms of guarantees and expensive in terms of bank transaction charges.
Despite its many advantages, P2P lending is associated with a high level of risk for
lenders. As a result, credit scoring systems are commonly used by P2P lending plat-
forms to evaluate potential borrowers. This is generally done by buildingmodels using
only data from previous accepted applicants without taking into account the applicants
who have been rejected. As a result the credit scoring models are biased (Bücker et al.
2013), as well as statistical and economic consequences (Chen and Astebro 2001;
Marshall et al. 2010). Reject inference as a method of inferring the credit worthi-
ness status of the rejected applications, has raised a lot of interest in the P2P lending
domain, where rejection rate is extremely high. For example, between June 2007 and
December 2018, Lending Club P2P lending platform (https://www.lendingclub.com/
info/download-data.action ), accepted 2;260;701 loans and rejected 27;648;741 loans.
As a result, only 8% of loans are issued by the platform. The majority of reject infer-
ence methods uses statistical techniques. However, semi-supervised machine learning
algorithms are in growing use in this research topic (see Table 1). This study proposes
a semi-supervised hidden Markov model (SSHMM) as a novel method to evaluate
the usage of semi-supervised machine learning for reject inference in credit scoring.
We compare the performance of the SSHMM model with a set of state-of-the-art
semi-supervised machine learning algorithms used for reject inference. In addition,
supervised machine learning models are used to evaluate the performance gain of
reject inference. Finlay, by sampling the rejected data set to generate several samples
with varied rejection rates, we conduct a full-sensitivity study on reject inference. The
following is a breakdown of the paper’s structure. Section 2 discusses related work
on credit scoring and reject inference strategies, followed by Sect. 3’s discussion of
HMM models and introduction to the proposed SSHMM model. Section 4 summa-
rizes the data, experiments sets up, and discusses the major findings. Finally, we give
the primary conclusion as well as some suggestions for further research.

2 Literature review

Credit scoring is used by financial institutions and P2P lending platforms, to assess the
credit worthiness of loan applicants, usually embedded in a probabilistic framework
p(y | x), which describes the likelihood that an applicant will repay his loan (y = 1)
or not (y = 0) depending on his characteristics x . As a result, estimating p(y |
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x) is an important part of any credit rating process. Generally , the two types of
standard credit scoringmodels, statistical andmachine learning basedmodels (Siddiqi
2017; Lessmann et al. 2015), uses only the information on loan records of accepted
applicants. The reject inference process of inferring the good or bad loan performance
of rejected applicants in the construction of credit scoring models, have been explored
as a missing data problem and categorized into three types (Feelders 1999), based
on the modelling of p(z | x, y), where z is a binary variable which indicates if the
applicant has benefited from a credit (his request has been accepted) or the customer
has not benefited from a credit (his request has been refused):

The first missing mechanism is missing completely at random (MCAR), which
means p(z | x, y) = p(z). In this situation, applicants are approved or denied inde-
pendently of their loan records or personal information, implying that applicants’ good
or bad behaviour is independent of applicant characteristics x and class y. It basically
means that platforms or financial institutions choose whether or not to accept appli-
cants at random, without considering their characteristics or repayment history. As
a result, under the MCAR condition, there is no selection mechanism, and thus no
sample bias in the lending process. The way platforms and financial institutions han-
dle loan applications is totally inconsistent with this mechanism. As a result, in credit
scoring models, it is always disregarded.

The second mechanism is missing at random (MAR), which means p(z | x, y) =
p(z | x). In this situation, loans request are accepted only on the basis of the values
of x and certain arbitrary cut-offs. In credit scoring applications, this is similar to
p(y | x, z) = p(y | x).

The third ismissing not at random (MNAR),which states that z can be influenced by
missing data y, implying that p(z | x, y) �= p(z | x). MNAR is a type of missing data
in which the result class is determined not just by x but also by y, which is impacted
by some unobserved variables, such as loan officers’ manual overrides of the model
decision (according to their overall impression of an applicant, based on personal
experience or other factors). The majority of online loan investors, in particular, are
not expert financial investors, and their selections are frequently influenced by a variety
of subjective reasons.

In reject inference, a variety of strategies have been used, which may be divided
into statistical methods and machine learning techniques. The most common statisti-
cal methods used in early reject inference studies are augmentation and extrapolation
(Banasik et al. 2003; Anderson 2007). In augmentation, the weights of accepted
loan applications are increased by augmenting them. In extrapolation the credit-
scoring model is initially built based solely on accepted applications, then predicts
the classes of rejected applications before creating a new credit-scoring model based
on both samples. However, according to relevant research, augmentation and extrap-
olation methods do not increase the performance of credit scoring models in most
circumstances when compared to the original credit-scoring model trained with solely
accepted loans (Banasik and Crook 2007; Crook and Banasik 2004). Survival analy-
sis techniques (Sohn andShin 2006) are another extensively used approach to reject
inference. However they have only been found to be of use if there are a majority of
rejected applications (Banasik and Crook 2010).
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In contrast, some recent studies on reject inference in a semi-supervised scenario
have been undertaken based on: The support vector machine (Maldonado and Pare-
des 2010; Li et al. 2017; Tian et al. 2018; Kim and Cho 2019), Gradient boosting
decision tree (Xia et al. 2018), Lightgbm (Xia 2019), Bayesian networks (Anderson
2019), Deep generative models (Mancisidor et al. 2020), Logistic regression (Kozodoi
et al. 2019), and Ensemble learning framework that combines multiple classifiers and
clustering algorithms (Liu et al. 2020; Shen et al. 2020; Kang et al. 2021). In compar-
ison to statistical approaches, all of the experiments above proved the superiority of
semi-supervised machine learning methods of reject inference. A summary of reject
inference research using semi-supervised machine learning approaches is shown in
Table 1.

3 Methodology

This section introduces the discrete case of hidden Markov models’ mathematical
basis and learning algorithms. The proposed SSHMM model is then described.

3.1 HiddenMarkovmodels elements

The transition matrix A, the observation probability matrix B, and the initial proba-
bility vector pi are the hidden Markov model parameters, which are represented in a
single parameter λ = {A, B, π}. The main elements of a hidden Markov model are
summarized in Table 2 Baum et al. (1970); Levinson et al. (1983); Li et al. (2000).

3.2 Baum–Welch learning for a single observation sequence

In order to ulistrate the Baum–Welch procedure for estimating the parameter lambda
of an HMM that generates a single observation sequence , we define the following
probabilities (Baum et al. 1970; Levinson et al. 1983):

• The joint probability function αt (i) = P (o1, o2, . . . , ot , st = ei | λ), which can
be computed recursively as follows (forward algorithm):
For i = 1, 2, . . . ,N αt=1(i) = πi bi (o1)

For t = 2, 3, . . . , T , and for j = 1, 2, . . . , N , αt ( j) =
[∑N

i=1 αt−1(i)ai j
]
b j (ot )

Thus, P(O | λ) = ∑N
i=1 αT (i)

• The conditional probability βt (i) = P (ot+1, ot+2, . . . , oT | st = ei , λ), which
can be computed recursively as follows (backward algorithm):
For i = 1, . . . , N βT (i) = 1
For t = T−1, T−2, . . . , 1, for i = 1, . . . , N ,βt (i) = ∑N

j=1 ai j b j (ot+1) βt+1( j)

Thus, P(O | λ) = ∑N
i=1 πi bi (o1) β1(i)

• The probability γt (i) of being in the state ei at time t as:

γt (i) = P (st = ei | O, λ) = αt (i)βt (i)

P(O, λ)
= αt (i)βt (i)∑N

i=1 αt (i)βt (i)
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• The probability ξt (i, j) of being in the state ei at time t and in the state e j at time
t + 1,

ξt (i, j) = P
(
st = ei , st+1 = e j | O, λ

) = αt (i)ai j b j (ot+1) βt+1( j)

P(O, λ)

Thus,

γt (i) =
N∑
j=1

ξt (i, j)

Then, HMM model learning using the Baum–Welch algorithm is done as follows:

The Baum–Welch algorithm for a single observation sequence

1: Initialization: λ parameters, δ tolerance, � gain
2: Repeat until � < δ

- Compute P(O, λ)

- Compute the new parameters λ∗ : for 1 ≤ i ≤ N

π∗
i = γ1(i)

a∗
i j =

∑T−1
t=1 ξt (i, j)∑T−1
t=1 γt (i)

, 1 ≤ j ≤ N

b∗
ik =

∑T
t=1,ot=vk

γt (i)
∑T

t=1 γt (i)
, 1 ≤ k ≤ M

- Compute � = ∣∣P (
O, λ∗) − P(O, λ)

∣∣
- Adjust λ = λ∗
3: Return: parameters λ.

3.3 Baum–Welch learning for multiple observation sequences

HMM may be extended to support L independent observable variables with one
common hidden sequence. To explain the Baum–Welch learning for L independent
observation sequences

(
O(1), O(2), . . . , O(L)

)
with equal length T , we first define the

following probabilities:

• The joint probability function α
(l)
t (i) = P

(
o(l)
1 , o(l)

2 , . . . , o(l)
t , st = ei | λ

)
, i =

1, 2, . . . , N ; t = 1, 2, . . . , T and l = 1, 2, . . . , L .
Which can be calculated for l = 1, 2, . . . , L , recursively, as follows (forward
algorithm) :

For i = 1, 2, . . . , N α
(l)
1 (i) = πi bi

(
o(l)
1

)

For t = 2, 3, . . . , T , and for j = 1, 2, . . . , N ,α(l)
t ( j) =

[∑N
i=1 αt−1(i)ai j

]
b j

(
o(l)
t

)
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Thus, P
(
O(l) | λ

) = ∑N
i=1 α

(l)
T (i) and P(O | λ) = ∏L

l=1 P
(
O(l) | λ

)

• The conditional probability β
(l)
t (i) = P

(
o(l)
t+1′o

(l)
t+2, . . . , o

(l)
T | st = ei , λ

)

i = 1, 2, . . . , N ; t = 1, 2, . . . , T and l = 1, 2, . . . , L .
Which can be calculated for l = 1, 2, . . . , L , recursively, as follows (backward
algorithm):
For i = 1, 2, . . . , N β

(l)
T (i) = 1

For t = T − 1, T − 2, . . . , T , and for j = 1, 2, . . . , N , β
(l)
t (i) =∑N

j=1 ai j b j

(
o(l)
t+1

)
β

(l)
t+1( j)

Thus, P
(
O(l) | λ

) = ∑N
i=1 β

(l)
1 (i) and P(O | λ) = ∏L

l=1 P
(
O(l) | λ

)

• The probability γ
(l)
t (i) of being in state ei at time t , given the observation O(l), l =

1, 2, . . . , L :

γ
(l)
t (i) = P

(
st = ei | O(l), λ

)
= α

(l)
t (i)β(l)

t (i)

P
(
O(l) | λ

) = α
(l)
t (i)β(l)

t (i)∑N
i=1 α

(I )
t (i)β(l)

t (i)

• The probability ξ
(l)
t (i, j) of being in state ei at time t and state e j at time t + 1,

given the observation O(l), l = 1, 2, . . . , L :

ξ
(l)
t (i, j) = P

(
st = ei , st+1 = e j | O(l), λ

)
=

α
(l)
t (i)ai j b j

(
o(l)
t+1

)
β

(l)
t+1( j)

P
(
O(l), λ

)

Thus,

γ
(l)
t (i) =

N∑
j=1

ξ
(l)
t (i, j)

Then, HMM model learning is done using the Baum–Welch algorithm as follows:

3.4 Semi-supervised HMM adapted for credit scoring with reject inference

Wepropose a semi-supervised hiddenMarkovmodel (SSHMM) framework to address
the problem of reject inference, which aims at taking advantage of the data collected
on both accepted and rejected credit applicants. The proposed SSHMM model con-
struction is done in three main stages: binning, filtering, and model training.

In the first stage, a binning process is used to discretize the values of continuous
variables into bins and address the presence of outliers and statistical noise. Further-
more, the binning process is used for data scaling and model complexity reduction. It
is worth noting that binning techniques are commonly applied in credit risk modelling
(Siddiqi 2017). The binning quality is assessed using a score, considering the follow-
ing aspects (Navas-Palencia 2020) : information value (IV), statistical significance
and homogeneity.
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The Baum–Welch algorithm for multiple observation sequences

1. Initialization: λ parameters, δ tolerance, � gain
2. Repeat until � < δ

- Compute P(O, λ) = Π L
l=1P

(
O(l) | λ

)
.

- Compute new parameters λ∗, for 1 ≤ i ≤ N

π∗
i = 1

L

L∑
l=1

γ
(l)
1 (i)

a∗
i j =

∑L
l=1

∑T−1
t=1 ξ

(l)
t (i, j)

∑L
l=1

∑T−1
t=1 γ

(l)
t (i)

, 1 ≤ j ≤ N

bi (k)
∗ =

∑L
l=1

∑T
t=1

∣∣∣
o(l)
t =v

(l)
k

γ
(l)
t (i)

∑L
l=1

∑T
t=1 γ

(l)
t (i)

, 1 ≤ k ≤ M

- Compute � = P
(
O, λ∗) − P(O, λ)

- Adjust λ = λ∗
3. Return: parameters λ.

In the second stage, a filtering process is performed to remove observations thatmay
have a deleterious effect on the model’s performance, using isolation forest algorithm
(Liu et al. 2008). We first remove rejected applicants that different the most of the
accepts distribution. Second, rejected applicants who are the most identical to those
who have been accepted are removed. Furthermore, the filtering process, reduce data
noise and retain clean data, thus decrease data size and save computing resources.

In the third stage, the HMM structure is set such that the class labels (good/bad)
is represented by two hidden states and the observation sequence corresponds to the
sequence of observation resulting from the binned characteristics. We first compute
the initial parameter λ of HMM, using maximum likelihood estimation (MLE), as the
following counts :

ai j = Number of transi tions f rom state ei to state e j
Number of transi tions out state ei

bik = Number of times in state ei and symbol vk occurs
Number of times in state ei

πi = Number of times in state ei
Number of observations

Then, we adjust HMM parameters using the iterative procedure of Baum–Welch
learninggiven the observed sequences from rejected applicants samples. Theflowchart
describing the SSHMMmodelling pipeline is presented in Fig. 1. Thus, SSHMM take
advantage of unsupervised learning and supervised learning. As such, it adds together
information from unsupervised learning (using the BWA) and supervised learning
(using MLE) to get the complete model. Since the initialization is done in supervised
manner, the learned parameters will always be in alignment with the initialization
labels instead of randomly assigned labels. As a result, a more consistent credit scoring
model with reject inference.
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Fig. 1 The flow chart for creating SSHMM model

4 Experimental setup and results

The data sets, performance measures, and the evaluation baseline of the proposed
framework are all introduced in this section.

4.1 Data and variables

Our numerical experiment was based on data from Lending Club online credit market-
place (https://www.lendingclub.com/info/download-data.action ), for the period from
2007 until 2018 and contain both rejected and accepted applications. Since the char-
acteristics of the accepted and rejected data sets were incompatible. The accepted data
set initially had 150 characteristics. However the rejected data set only has six: loan
amount, fico score, debt-to-income (dti) ratio, loan purpose, address state, and employ-
ment length. Only the aforementioned characteristics shared by accepted and rejected
applicants are used in this study. Although the rejected data sets features provide a lot
of information about applicants’ creditworthiness, if only the six characteristics were
used to build the credit scoring model, some important information might have been
missed. Only loans with a completely paid or defaulted status were considered, and
records with missing values or obvious errors were removed. The final data set used
in this study contain 2;064;314 rejected loans and 1;266;782 accepted loans, includ-
ing 247;426 default loans. Tables 3 and 4 shows descriptive statistics of the Lending
Club data. The data binning summary is given in Table 5. It’s worth mentioning that
in previous studies of the reject inference problem, the lending club data set was the
most commonly used data set (Li et al. 2017; Tian et al. 2018; Kim and Cho 2019;
Xia et al. 2018; Xia 2019; Anderson 2019; Mancisidor et al. 2020; Liu et al. 2020).

4.2 Performancemeasures

We use four evaluation measures relevant to credit scoring studies, to assess the per-
formance of our proposed model and benchmarks. These measures are accuracy,
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Table 3 Summary of Lending Club numerical data descriptive statistics

Accepted Rejected

loan_amnt dti fico_score loan_amnt dti fico_score

Mean 14601.11 18.12 698.12 15315.66 32.32 675.99

Std 8746.53 9.56 31.66 10786.62 49.51 37.81

Min 500.00 −1.00 627.00 1000.00 −1.00 627.00

25% 8000.0 11.76 672.00 6000.00 11.79 648.00

50% 12075.0 17.52 692.00 12000.00 24.32 668.00

75% 20000.0 23.91 712.00 24000.00 39.44 696.00

Max 40000.00 999.00 847.50 40000.00 998.46 990.00

Table 4 Summary of Lending Club categorical data descriptive statistics

Accepted Rejected

emp_length Purpose addr_state emp_length Purpose addr_state

Unique 11 14 51 11 14 51

Top 10+ years debt_c CA < 1 year debt_c CA

Freq 442197 737561 186319 1841718 1067642 266085

Table 5 Binning summary of Lending Club data

name dtype n_bins iv js gini quality_score

loan_amnt Numerical 9 0.043861 0.005462 0.115813 0.058768

emp_length Categorical 8 0.001542 0.000192 0.021640 0.000022

Purpose Categorical 4 0.017069 0.002130 0.061679 0.045264

addr_state Categorical 10 0.015717 0.001959 0.066421 0.047441

dti Numerical 15 0.073093 0.009077 0.15316 0.274635

fico_score Numerical 13 0.128666 0.015747 0.188358 0.500633

precision, recall, and area under the roc curve (AUC). The accuracy evaluates the
correctness of label prediction while precision, recall and AUC measure the models
discriminative capability. Using the credit scoring model prediction results, summa-
rized in table called confusion matrix (Table 6), the aforementioned measures are
computed as follows :

Accuracy = T P + T N

T P + T N + FP + FN

. Defined as the proportion of correctly predicted instances to the total number of
instances.

Precision = T P

T P + FP
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Table 6 Confusion matrix for the credit scoring domain

Predicted

Observed Good Bad

Good (TP) True positive instances (FN) False negative instances

Bad (FP) False positive instances (TN) True negative instances

. Which quantifies the fraction of the predicted positive instances which are true pos-
itive.

Recall = T P

T P + FN

. Which quantifies the number of the predicted positive instances made out of the total
number of positive instances.

AUC reflects a classifier’s overall behaviour independently of classification thresh-
old values. The model is considered to have a good discriminative capability when
its AUC value approaches 1. In contrast, a model is considered to have less efficient
discriminative capability when its AUC approaches the value of 0.5. The AUC can be
computed as follows :

AUC =
∑

i∈M+
∑

j∈M− 1 f (x(i))> f (x( j))

N+N−

where { f (x) = 0 | x ∈ R
n} is the separation surface and 1 is the indicator function.

4.3 Statistical tests of significance

In the literature, parametric and nonparametric significance tests have been conducted
to determine whether one model is significantly better than another. The assumptions
of parametric tests, such as normality or homogeneity of variance, are generally broken
in practice (Lessmann et al. 2015). Therefore, nonparametric tests are often preferred
to parametric tests (Demsar 2006;García et al. 2010). Friedman’s test (Friedman 1940)
is used in this study to determine if there is a significant difference between models for
a certain assessment metric. Although, Friedman aligned rank test and Quade tests are
two alternatives to the Friedman test (García et al. 2010), these two tests are favourites
over the Friedman test ,if only the compared algorithms are not more than 4 or 5.

The Friedman statistic is computed as follows:

χ2
F = 12N

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ , R j = 1

N

∑
r j
i
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k denotes the number of models, N the number of data samples, R j the average rank

of the j-th model over all the data samples, and r ji the j th of k models on the i th of
N data samples.

If Friedman’s test rejects the null hypothesis of equivalence of ranks for a given
evaluation measure, we perform pairwise comparisons using the post-hoc Nemenyi
test (Nemenyi 1962) by computing the critical difference (CD):

CD = qα

√
k(k + 1)

6N

The crucial values for qα are based on the studentized range statistic. The results of the
Nemenyi post-hoc test are illustrated by a critical distance diagrams, which display
the model ranks as well as the critical difference. A horizontal bar connects models
that are not significantly different.

Furthermore, for each evaluation measure, we use a Wilcoxon rank-sum test to
compare the control approach (the proposed SSHMM model in this research) to a set
of benchmark models. This test is more powerful than the post-hoc test, which is used
to determine whether a new approach is superior to existing ones (Demsar 2006).

4.4 Experimental design

Our experimental process for evaluating the effectiveness of our proposed frame-
work is described in Fig. 2. We conduct two different sets of experiments. In the first
experimental setup Two sets of experiments are performed. In the initial experimental
setting, we compare the performance of the SSHMM model with a range of semi-
supervised learning techniques for reject inference, including semi-supervised SVM
(S3VM), SVM in combination with self-learning, contrastive pessimistic likelihood
estimation (CPLE) and label propagation frameworks, also Lightgbm as base classifier
with the self-learning and CPLE frameworks. To measure the marginal gain of reject
inference, we use a total of six widely used supervised machine learning classifiers in
credit scoring (Lessmann et al. 2015): multi-layer perceptron (MLP), support vector
machines (SVM), random forest (RF), extreme gradient boosting (XGBoost), light
gradient boosting machines (LightGBM), and Categorical Boosting (Catboost). In the
second experiment, we change the size of the rejected sample while keeping the size of
the accepted sample the same to see how the rejected sample size affects the SSHMM
model’s predictive ability.

As suggested by Li et al. (2017); Tian et al. (2018); Xia et al. (2018); Xia (2019),
the experiment is carried out as follows:

Step 1: Randomly select a sample of accepts and rejects, which sizes are denoted
respectively as NA and NR.

Step 2: Randomly divide the accepted samples into a training set and a test set,
using the proportion 70%:30%,. Then we choose the number of reject applications to
be merged with the training sample, denoted as NR.

Step 3: Respectively build supervisedmodels using the training sample with known
labels and semi-supervisedmodels using the training sample (labelled and unlabelled).
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Step 4: Predict the likelihood of default and the labels of the test set sample using
the classification rules generated in step 3.

Step 5: Compute and compare the model’s performance metrics.
Steps 2 through 5were repeated 25 times, and the evaluationmetricswere computed

by averaging the results values. Moreover, in the first experiment we set NA to 2000
and we keep the original acceptance ratio 8%. In the second experiment, we set up
two alternative scenarios and compared roc curves and AUC scores to see how the
rejection rate affects the SSHMM model’s performance. We started by setting NA to
2000 and NR to a range of 1000 to 25000. Then we set NA to 1;266;782 and NR to a
range of numbers between 1000 and 2;064;314. That’s more data to what S3VM can
handle due to memory requirements and not feasible for the CPLE procedure due to
computing time.

Furthermore, to prevent only considering the accepted cases in the test sample
used for models’ evaluations, the previous set of experiments were also performed
by including the same proportion of rejected cases in the test sample. Thus, the test
sample will contain both the accepted and rejected cases (unbiased test sample).

Since the true labels of rejects is unknown, direct estimation of performance is
prohibited. Thus, we approximately generate a ground truth for the good/bad label
of the rejected cases following the method conducted by Li et al. (2017). It’s worth
mentioning that just a few research had access to a data set that included a fraction of the
rejected applicants data with known outcomes (Kozodoi et al. 2019; Shen et al. 2020).
Resulting, e.g. from executing risky strategies as accepting some rejected applicants
by the scoring system. As a result, the true repayment status of those applicants who
were initially rejected will be known. Unfortunately, the data sets from those studies
are private.

4.5 Hyper-parameters settings

Machine learning algorithms have several hyper-parameters that largely influence
performance. Thus, we must tune hyper-parameters of these models. We used a grid
searchwith 10-fold cross-validationmethod to search for the optimal hyper-parameters
for SVM, RF, XGBoost, CatBoost, LightGBM, andMLP classifiers. Table 7 shows the
summary of the hyper-parameters search space for each of those classifiers. The hyper-
parameter optimization in our proposed SSHMM framework is done for the tuning of
contamination parameters in the filtering stage, we selected values between 0.01,0.03,
0.05, 0.1 and 0.2. There are various hyper-parameters in machine learning algorithms
that have a significant impact on performance. As a result, we must fine-tune these
models hyper-parameters. To find the best hyper-parameters for SVM, RF, XGBoost,
CatBoost, LightGBM, andMLP classifiers, we performed a grid search with a 10-fold
cross-validation approach. For each of the classifiers, Table 7 summarizes the hyper-
parameters search space.We select contamination values between 0.01,0.03, 0.05, 0.1,
and 0.2 in the filtering stage of suggested SSHMM framework.

123



Semi-supervised adapted HMMs...

Fig. 2 Flowchart of the experiments set-up

4.6 Results and discussion

Predictive performance analysis

Table 8 shows the numerical experimental results of the proposed SSHMMmodel and
the benchmark models while preserving the original acceptance ratio. The best results
for each performance metric, which includ accuracy, precision, recall, and AUC, are
highlighted in bold font.

The performance results of the proposedSSHMMmodel and the benchmarkmodels
on the biased test set shows that SSHMM outperform other classifiers over most
evaluation measures, namely accuracy, precision and AUC. Particularly, SSHMM
improved the classification capability of the base model HMM for the aforementioned
evaluationmeasures. Over all evaluationmeasures, the S3VMmodel performedworse
than the standard SVMmodel. andwhen SVMwas combinedwith self learning, CPLE
and label propagation frameworks, the predictive performance deteriorated as well.

The performance results of the proposedSSHMMmodel and the benchmarkmodels
on the unbiased test set shows that MLP model yield the best performance in terms
of accuracy, recall and AUC. Lightgbm was the second best model with the same
performance as the MLP in terms of recall and AUC. Our proposed SSHMM model
was the third best, with the highest precision achieved. Note that, SSHMM improved
the classification capability of HMM on all the evaluation measures. We mention that
S3VM and self learning frameworks also improved the classification capability of the
base model SVM on all the evaluation measures.
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Table 7 Grid for hyper-parameters optimization

Method Hyper-parameters Search Space

SVM Gamma 0.0001, 0.001, 0.01, 0.1, 1

C 0.01, 0.1, 1, 10, 100, 1000

RF Number estimators 20,50,100,200,300

Maximum depth 2, 4, 6, 8, 10, 14

Minimum samples leaf 3, 6, 9, 12, 15, 18, 21

Minimum samples split 2,5,6,7,9,10

XGBoost Learning rate 0.006,0.01,0.03,0.1,0.3

Maximum depth 2, 4, 6, 8, 10, 14

Number estimators 20,50,100,200,300

Minimum child weight 1, 2, 3, 4, 5, 8

Subsample ratio 0.2,0.3,0.5,0.7,0.9

Colsample by tree ratio 0.5,0.6,0.7,0.8,0.9

LighGBM Learning rate 0.006,0.01,0.03,0.1,0.3

Maximum depth 2, 4, 6, 8, 10, 14

Number estimators 20,50,100,200,300

Number leaves 30,60,90,100,200

Bagging fraction 0.3,0.5,0.7,0.8,0.9,1

Feature fraction 0.3,0.5,0.7,0.8,0.9,1

CatBoost Learning rate 0.006,0.01,0.03,0.1,0.3

Maximum depth 2, 4, 6, 8, 10, 14

Number estimators 20,50,100,200,300

Random strength 0.2,0.5,0.8

Bagging temperature 0.03,0.09,0.25,0.75

MLP Hidden layer sizes (50,50,50), (50,100,50), (100,),(50,50,100)

Activation tanh, relu

Solver sgd, adam

Learning rate constant, adaptive

Alpha 0.0001, 0.001, 0.01, 0.15, 0.3

Analysis of signification tests

Friedman test statistics on accuracy, recall, precision, and AUC metrics are presented
inTable 8. TheFriedman test’s null hypothesis is rejected at a 95% level of significance,
resulting in significant differences between the different models. We use the Nemenyi
post-hoc test to see if there were any significant differences between the models. If
the difference in the mean ranks is more than the critical distance, the differences are
significant. The results of the post-hoc tests are shown in Figs. 3 and 4. At the 95%
level of significance, the models within the bold line are not statistically different.

Furthermore, Table 9 shows the results of significance test on the AUC of the
control method SSHMM and the benchmark models using the Wilcoxon Rank-sum
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Fig. 3 CD diagrams of Nemenyi post-hoc tests on the biased test set

Fig. 4 CD diagrams of Nemenyi post-hoc tests on the unbiased test set

test. The significance level of the tests is alpha=0.05. The null hypothesis of the tests
is “There is no significant difference between AUC performance of the control model
SSHMM and AUC of the model used as comparison”. Subsequently, SSHMM is
significantly better than benchmark models on AUC performance over the biased test
set (p-value < 0.05). However, the p-value calculated between SSHMM and MLP,
Lightgbm, Catboost, RF and HMM models were greater than 0.005 which indicates
a statistically insignificant differences over the unbiased test set. Consequently, The
results highlight the efficiency of the proposed model.

Analysis of rejection rate influence

To investigate the impact of rejection rates on AUC performance and to identify the
optimal rejection rate for the SSHMM, we randomly sampled rejected data set with
different rejection rates. The ROC curves in Fig. 5 lead to the following conclusions.
First, the results show that the proposedSSHMMmodel can reachoptimal performance
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Table 9 Wilcoxon Rank-sum test on AUC mesure

Control Model Benchmark Models P value P value
biased test set unbiased test set

SSHMM HMM 0.0065 0.5343

RF 0.001 0.195

CatBoost 0.001 0.7434

MLP 0.0001 0.5408

Xgboost 0.001 0.001

CPLE SVM 0.001 0.001

SVM 0.0005 0.001

S3VM 0.001 0.001

SelfLearning SVM 0.001 0.001

Label Propagation SVM 0.0001 0.0001

Lightgbm 0.001 0.2948

SelfLearning Lightgbm 0.001 0.001

CPLE Lightgbm 0.001 0.001

Fig. 5 ROC curves of SHHMM model under different rejection rates

without requiring a large number of rejected samples. It also shows that using samples
with a low rejection rate improves predictive accuracy than those using samples with
a higher rejection rate. Second, when the rejection rate increased, the SSHMM’s pre-
dictive performance changed, but in most circumstances, the SSHMM’s ROC curves
outperformed the supervised HMMs.
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Conclusion

In terms of semi-supervised learning, there have been few successful methodologies
to solve the problem of reject inference in the credit scoring domain. Using a semi-
supervised modified HMM model, this study offers a novel approach to the problem.
The SSHMM model outperforms other models in terms of applicability, stability,
and performance when tested on real P2P lending data. More crucially, by using
the prospective information of rejected candidates, the prediction performance of the
underlying HMM classifier has improved using the suggested framework. We can
look into the following directions for future research. First, because the Baum–Welch
algorithm is recognized to convergence towards local optimums, we can use differ-
ent algorithms to estimate HMM parameters (El annas et al. 2022). Second, we can
consider building an ensemble method incorporating the existing machine learning
methods together with SSHMM to do the reject inference.
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