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Abstract
Many photographs of real-life scenes are very consistently remembered or forgotten by most people, making these images
intrinsically memorable or forgettable. Although machine vision algorithms can predict a given image’s memorability very
well, nothing is known about the subjective quality of these memories: are memorable images recognized based on strong
feelings of familiarity or on recollection of episodic details? We tested people’s recognition memory for memorable and
forgettable scenes selected from image memorability databases, which contain memorability scores for each image, based on
large-scale recognition memory experiments. Specifically, we tested the effect of intrinsic memorability on recollection and
familiarity using cognitive computational models based on receiver operating characteristics (ROCs; Experiment 1 and 2)
and on remember/know (R/K) judgments (Experiment 2). The ROC data of Experiment 1 indicated that image memorability
boosted memory strength, but did not find a specific effect on recollection or familiarity. By contrast, ROC data from
Experiment 2, which was designed to facilitate encoding and, in turn, recollection, found evidence for a specific effect of
image memorability on recollection. Moreover, R/K judgments showed that, on average, memorability boosts recollection
rather than familiarity. However, we also found a large degree of variability in these judgments across individual images:
some images actually achieved high recognition rates by exclusively boosting familiarity rather than recollection. Together,
these results show that current machine vision algorithms that can predict an image’s intrinsic memorability in terms of hit
rates fall short of describing the subjective quality of human memories.
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Our visual memory capacity for real-life scenes and objects
is one of the most impressive feats of human cognition
(Brady, Konkle, Alvarez, & Oliva, 2008; Standing, 1973).
While memories of specific images are in part influenced
by individual factors such as interest (Hidi, 1990) or
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expertise (Curby, Glazek, & Gauthier, 2009), it has
been shown that many images are in fact consistently
remembered or forgotten across many observers (Isola,
Xiao, Parikh, Torralba, & Oliva, 2014; Bylinskii, Isola,
Bainbridge, Torralba, & Oliva, 2015; Bainbridge, Isola,
& Oliva, 2013; Bainbridge, 2020). This consistency of
an image’s memorability spans a wide array of different
picture presentation times (Mancas & Le Meur, 2013;
Broers, Potter, & Nieuwenstein, 2018; Goetschalckx,
Moors, Vanmarcke, & Wagemans, 2019b; Mohsenzadeh,
Mullin, Oliva, & Pantazis, 2019), study and test intervals
(Goetschalckx, Moors, & Wagemans, 2018; Isola et al.,
2014) and experimental paradigms (Bylinskii et al., 2015;
Bainbridge, 2020; 2017; Jaegle et al., 2019), implying
that memorability is largely independent of personal
or situational factors (Bainbridge, 2019). While some
images contain information one would expect to be highly
memorable (e.g., close-ups of humans/animals, distinctive
objects that appear out of context), many memorable images
are not particularly conspicuous and observers cannot
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Fig. 1 Pictures across the Memorability spectrum. Exemplars from six
semantic categories (bedroom, golf course, tower, highway, badlands
and bathroom) are shown for highly, medium and low memorable
images, as quantified by Bylinskii, Isola, Bainbridge, Torralba, and
Oliva (2015). While some highly memorable exemplars appear to be

more distinct compared to their conceptual counterparts, considerable
differences are not obvious to the naked eye. Of course, some images
have special or peculiar content that evokes the reaction “it must be
memorable” but people are generally incapable of judging whether an
image is memorable or not (Isola et al., 2014)

accurately judge whether an image is memorable or not
(Isola et al., 2014) (see Fig. 1 for example images). Most
previous studies have focused on the application of machine
vision algorithms to predict memorability as accurately as
possible and to identify the image information that makes
an image memorable (Isola et al., 2014; Bylinskii et al.,
2015; Khosla, Raju, Torralba, & Oliva, 2015; Goetschalckx,
Andonian, Oliva, & Isola, 2019a). Convolutional neural
networks (CNNs) have been particularly successful at
predicting image memorability (Khosla et al., 2015). These
networks are composed of multiple processing layers that
learn representations of input data with increasing levels of
abstraction, setting new benchmark performances in scene
and object recognition (LeCun, Bengio, & Hinton, 2015;
Simonyan & Zisserman, 2015). Importantly, these studies
have quantified memorability by assessing hit rates in
image recognition tasks. However, the cognitive processes
underlying these recognition decisions are largely unknown
(but see: Akagunduz et al., 2019.

It has long been acknowledged that old items can
be recognized based on a feeling of familiarity or
recollection of specific contextual details about the study
event (Mandler, 1980; Yonelinas, 2001). The famous
“butcher-on-the-bus” anecdote by Mandler (1980) perfectly
exemplifies these two phenomenologies during recognition.
The anecdote concerns an encounter with a man on a
bus whose familiar face prompts a query in memory. The
observer might not be able to retrieve additional information
about the man, despite being confident of knowing him.
Thus the man only feels familiar. If a query in memory

yields additional information about the man, the observer
would then recollect that he is in fact the butcher from the
local supermarket. Two of the most prominent methods for
assessing recollection and familiarity are Remember/Know
(R/K) statements (Tulving, 1985) and receiver operating
characteristics (ROCs; Yonelinas & Parks, 2007). In
R/K tasks, participants indicate directly, after an old/new
statement, whether they remember specific episodic details
about the item (recollection) or whether they only know
that the item is old (familiarity) (Tulving, 1985; Gardiner,
Ramponi, & Richardson-Klavehn, 2002).

ROCs on the other hand are an indirect tool to index
recollection and familiarity (Yonelinas & Parks, 2007). An
ROC is a function that relates the hit rate to the false-
alarm rate across different levels of an increasingly relaxed
response criterion, such as decision confidence (see Fig. 2
for illustrations). ROCs have been explored with different
computational models that make different assumptions
on the cognitive mechanisms underlying recognition.
According to dual-process signal detection (DPSD) models,
the shapes of ROC curves can reflect two distinct memory
processes (Yonelinas & Parks, 2007). First, recollection is
treated as an all-or-none process, where information about
an item is only recollected if its memory strength exceeds
a certain threshold. Recollection-associated responses are
assumed to be more confident on average for hits than
for false alarms, resulting in a “hockey-stick”-shaped
ROC. Thus, the intercept is an index of recollection
and bent upwards for most conservative responses in z-
transformed ROC shapes (see Fig. 2a). Secondly, familiarity
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Fig. 2 ROC curves and models of recognition memory. ROCs are
functions relating the proportion of correctly recognized old items to
the proportion of falsely recognized new items across different lev-
els of a response criterion, typically measured as decision confidence
(1 = “Sure New” to 6 = “Sure Old”). The function is cumulative and
represents, from left to right, an increasingly relaxed criterion. The
leftmost point on the curve represents the hit rate and false-alarm
rate at the most conservative response criterion (6 = “sure old”), the
next point represents hit rate and false-alarm rate of the two most
conservative criteria (6 = “sure old” and 5 = “probably old”), etc.
The area under the curve represents recognition performance, ranging
from 1 (perfect accuracy) to 0.5 (guessing, i.e., a ROC falling on the

diagonal). To compare ROC curves statistically, hit rates and false-
alarm rates are typically standardized and plotted in z-space (Fig. 2b
and d). In Fig. 2a and b, Stimulus A is associated with greater recol-
lection and familiarity: the ROC curve is asymmetric and is thus bent
upwards for most conservative responses, whereas area under the curve
towards the chance diagonal is an index for increased familiarity. In z-
space (Fig. 2b), this asymmetry leads to a slope less than 1. In Fig. 2c
and d, ROCs and z-ROCs are shown for two stimuli recognized only
by familiarity. ROC curves for both stimuli are curvilinear with larger
area under the curve for stimulus A whereas in Fig. 2d, z-ROCs are
linear. A larger z-intercept reflects greater memory strength

is treated as a signal-detection process, where an item
is accepted as old if its memory strength exceeds a
decision criterion. Familiarity-associated responses produce
curvilinear ROCs, where the area between the curve and
the chance diagonal is an index of familiarity, and linear
z-transformed ROCs, where the intercept is an index of
recognition accuracy (see Fig. 2b). Importantly, according
to DPSD models, the difference between recollection
and familiarity is conceptually distinct from differences
in decision confidence, although they may be correlated
empirically. Successful recognition always depends on both
processes, but if recollection fails, recognition is assumed to
rely on familiarity (Yonelinas, Aly, Wang, & Koen, 2010).
Thus, the two processes are assumed to be parallel, but
functionally and neuroanatomically distinct (Eichenbaum,
Yonelinas, & Ranganath, 2007). By contrast, single-process
signal detection models assume that recollection and
familiarity are both simply a measure of memory strength,
with recollection reflecting higher memory strength than
mere familiarity (Donaldson, 1996; Wixted & Stretch,
2004). A particularly successful variant of single-process
models is the Unequal Variance Signal Detection (UVSD)
Model, which assumes that the distribution of old items
has greater variance than the distribution of new items. It
is important to emphasize that neither model denies that
recollection and familiarity are phenomenologically distinct
ways of remembering, whether or not they may reflect
distinct cognitive processes.

Interestingly, the effect of experimental manipulations
on recollection and familiarity is quite variable (see
Yonelinas, 2002 for a comprehensive review). For example,
deep encoding compared to shallow encoding improves
recollection more than it improves familiarity (Gardiner,

1988). In a similar vein, full attention conditions compared
to diverted attention conditions are more associated with
recollection rather than with familiarity (Yonelinas, 2001).
However, other factors such as item repetition affect
recollection and familiarity to a similar extent (Gardiner,
Kaminska, Dixon, & Java, 1996). Processing fluency (i.e.,
how easily an item is processed, Rajaram, 1993) and
rote rehearsal (Dobbins, Kroll, & Yonelinas, 2004) even
influence familiarity more than recollection. Consequently,
to which degree scenes across the memorability spectrum
produce different kinds of memories is an open question yet
to be resolved.

In the present study, we investigated whether intrin-
sic image memorability is associated with recollection and
familiarity to a similar or different extent, using ROC curves
(experiments 1 and 2) and R/K judgments (Experiment 2).
Moreover, we investigated how the nature of memorability
can be accounted for by cognitive computational models.
While neural networks can predict how well people will
recognize a scene based on a statistical analysis of image
content (e.g., Khosla et al., 2015), it is unclear which
kinds of memory representations support these recognition
decisions. Importantly, different types of memory represen-
tations associated with different memory experiences acti-
vate different neural structures in the medial temporal lobe
(Eichenbaum et al., 2007, e.g., Kafkas & Montaldi, 2012)
and are associated with distinct event-related potentials in
the EEG (Tsivilis, Otten, & Rugg, 2001; Rugg & Curran,
2007). Thus, any theory of memorability has to take the phe-
nomenology of remembering into account. To this end, we
compared how well recognition ROC curves are fitted by
DPSD and UVSD models, and how their model parameters
differ between highly and low memorable images.
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Experiment 1

Methods

Participants

Fifty participants (31 female, mean age = 29.06) were
recruited from the University of Muenster, Essen University
Hospital, Open University Hagen and the University of
Duisburg/Essen. All participants provided written informed
consent. Participation was compensated with course credit
(for students) or was voluntary. Four participants were
excluded from analysis due to incomplete data sets. Another
participant was excluded due to an unusual shape of the
ROC curve, which could not be fit with any model. The
study was approved by the ethics committee of the faculty
of psychology and sports science, University of Muenster.

Apparatus andmaterials

Stimulus presentation and response logging was controlled with
PsychoPy v1.83.04 experimental software (Peirce, 2007),
running on a Toshiba Satellite with 2.53 GHz Intel Core
processor, 8 GB RAM and a Windows 7 64-bit operating
system. Stimuli were presented on a 19-inch CRT monitor,
with a 1280x768 resolution and a 60-Hz refresh rate.

Our stimulus set was comprised of 660 images. We
extracted 355 pictures from the memorability image
database FIGRIM (Bylinskii et al., 2015) and 305 images
from the database established by Isola, Xiao, Parikh,
Torralba, and Oliva (2014). A total of 241 different semantic
categories were depicted in the images (see Table 4 in the
Appendix for a distribution of unique semantic categories
per condition). Each memorability category comprised
an equal number of images, evenly split between the
indoor/outdoor scene category.

The images from the FIGRIM database were shrunk to
a resolution of 250x250 px, the same size as that of the
pictures from Isola et al. (2014). Previous research has
shown that memorability remains robust against overall
decreases in picture size (Goetschalckx et al., 2019b). In

order to avoid a confound of memorability and specific
image content, this selection included only images without
added elements such as text objects, and no close-up shots
of human or animal faces. Since faces contribute to an
image’s memorability (Isola et al., 2014; Khosla et al.,
2015), we thereby excluded a number of images that
were found highly memorable in previous studies. Images
were categorized according to the memorability scores
provided by Isola et al. (2014) and Bylinskii et al. (2015),
which represent hit rates in online recognition memory
experiments obtained from large samples of participants.
Memorability scores >75% were categorized as high
memorability (hi-mem), scores < 75% and > 55% were
categorized as intermediate memorability (mid-mem), and
scores < 55% were categorized as low memorability (low-
mem). Each category comprised 220 images with equal
numbers of indoor and outdoor scenes. Each image was
a target picture for one half of all participants and a
foil picture for the other half. Memorability category and
indoor/outdoor category were counterbalanced between the
two sets of images. Mean scores per Memorability category
and indoor/outdoor scene gist can be seen in Table 1.

Procedure

Image memory was tested in a recognition task with
separate encoding and test blocks, separated by a 10-min
break (Fig. 3).

In the encoding block, participants were instructed to
memorize all images (330 in total, 110 per memorability
category) while simultaneously categorizing each image as
indoor or outdoor as fast as possible by pressing one of two
response buttons. Trials started with a fixation cross (200
to 400-ms duration), followed by a scene image (500-ms
duration), followed by a response prompt (indoor vs. outdoor).
To keep participants engaged with the task, accuracy
feedback was provided after each response by briefly
turning the fixation cross red (error) or green (correct).

In the test block, participants were instructed to
categorize each image as old or new, and to rate their
confidence in their decision on a three-point scale, with no

Table 1 Mean memorability scores and mean hit-rates and false-alarm rates per memorability category and indoor/outdoor scene gist in
Experiment 1

Memorability Scene gist Memorability score Hit-rate Exp 1 False-alarm rate Exp 1

High Indoor 0.87 0.65 0.32

High Outdoor 0.86 0.64 0.30

Medium Indoor 0.66 0.56 0.35

Medium Outdoor 0.67 0.57 0.39

Low Indoor 0.45 0.49 0.37

Low Outdoor 0.49 0.54 0.36
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Fig. 3 Illustration of a trial sequence. Encoding Block: Each trial
started with a fixation cross for 200–400 ms, followed by a picture pre-
sented for 500 ms, a decision prompt (indoor versus outdoor scene) and
feedback. Test block: Each trial started with a fixation cross presented

for 1400 ms, followed by a picture presented for 1000 ms. Participants
had to indicate with a button press whether the picture was old or new
and how confident they were about their decision on a scale from 1
(sure old/new) to 3 (unsure old/new)

emphasis on response speed. All images from the encoding
block were presented intermixed with 330 new foil images.
Trials started with a fixation cross, followed by a scene
image (1000-ms duration), followed by response prompts
for the old/new and confidence reports. After the two
reports were given, feedback about the old/new decision was
provided. 1 Note that this paradigm with separate phases for
encoding and test diverges from most previous studies of
image memorability, which used a continuous recognition
task (e.g., Isola et al., 2014; Bylinskii et al., 2015) where
encoding and testing happen simultaneously.

Analysis

Performance was quantified separately for each individual
image by calculating hit rates, false-alarm rates, and d’ (Green
& Swets, 1966). These performance indices were obtained
by collapsing data across all participants. Hit rates and false-
alarm rates were adjusted to avoid extreme values of 1 and 0,
respectively, by adding 0.5 to both the number of hits and the
number of false alarms, and adding 1 to both the number of
old and new items, before calculating the hit and false-alarm
rates (Snodgrass & Corwin, 1988; Hautus, 1995).

Moreover, hit rates, false-alarm rates, and d’ were
quantified separately for each participant and the three
memorability categories by collapsing data across all
images within a category. In addition, we analyzed each
participant’s ROC curve by computing the area under
each curve (AUC) using the trapezoidal rule for numerical

1As requested by a reviewer, we analyzed the effect of accuracy
feedback on confidence in the subsequent trial. We found a statistically
significant difference in confidence judgments after an incorrect vs.
correct decision: participants were slightly less confident after an
incorrect (mean confidence = 1.98) than after a correct decision (mean
confidence = 2.02) in the previous trial (X2(1,44) = 6.42, p = .01).
Note that, by design, accuracy on a given trial was independent of
the memorability condition tested on the next trial. Thus, the effect
of feedback on confidence does not pose a confound to the effect of
memorability on confidence.

integration (Wickens, 2002), which does not require a
theoretical model of the ROCs. Performance measures were
compared between memorability categories using paired, two-
tailed t tests. Effect sizes of these analyses are reported as
Cohen’s d (Cohen, 1988), computed according to Lakens
(2013).

Finally, ROC curves were fitted with a DPSD model
(Yonelinas, 1994) and a UVSD model (Mickes, Wixted, &
Wais, 2007) using ROC Toolbox for MATLAB by Koen,
Barrett, Harlow, and Yonelinas (2017). The UVSD model
assumes that the distributions of memory strength of old
items and new items overlap to a certain extent. The model
parameter d’, or sensitivity, is an index of this overlap
with larger values indicating less overlap, and thus better
recognition performance. The second parameter (Vo) is an
index of the variability of the old item distribution, with the
assumption that memory strength of old items may be more
variable than the strength of new items. In the DPSD model,
the recollection parameter (Ro) represents the probability
that participants recollect at least some aspect of the study
event, whereas familiarity is represented by d’, with larger
sensitivity indicating greater familiarity.

We first considered whether the models generally
provide a statistically acceptable account of the individual
participant data based on the G-test of goodness-of-fit
(Koen, Aly, Wang, & Yonelinas, 2013). The test estimates
the discrepancy between the expected values and the actual
observed values in the model. If the test yields a value
smaller than the 5% significance level, it is concluded
that the given model deviates significantly from the data
and is thus rejected (McDonald, 2009). We then compared
performance between models on the basis of the Bayesian
Information Criterion (BIC). The aim of the BIC is to obtain
the posterior probability of the model given the data. The
smaller the BIC for one model versus the other, the larger
the posterior probability given the data (Schwarz et al.
1978; Lewandowsky & Farrell, 2010). Both indices were
applied to the aggregate as well as individual participant
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data. The model with lower BICs in 80% of participants
was declared the winning model, on the condition that it
has a statistically acceptable account of the data in more
than 80% of participants, based on the G-statistic. Given
that the parameters of the UVSD model allow for greater
flexibility, the UVSD model has an a priori advantage
at fitting a wider range of ROC data (Klauer & Kellen,
2011). Therefore, we complemented the comparison of fit
statistics by testing which parameters of which model were
most strongly associated with memorability. Importantly, a
model with a superior model fit due to overfitting could
potentially turn out to show only weak association with
memorability.

Results experiment 1

Replication of memorability Across images, memorability
scores obtained in previous studies (Bylinskii et al.,
2015) were positively correlated with the hit rates (r =
0.34, p < 0.001, d = 0.73) and negatively correlated
with false-alarm rates (r = −0.17, p < 0.001, d =
−0.34) obtained for the same images in the present study.
This resulted in a strong correlation between recognition
sensitivity d’ and memorability scores (Spearman’s ρ =
0.41, p < 0.001, d = 0.91). In spite of this consistency
with previous studies, hit rates in the present study were
overall consistently lower than hit rates/memorability scores
obtained for the same images by Bylinskii et al. (2015,
t (659.00) = 12.77, p < 0.001, d = 0.50).

Across subjects, recognition performance was better for
images in the high-mem category than for the mid-mem
category, as indicated by higher hit rates (t (44.00) =
7.61, p < 0.001, d = 1.13), lower false-alarm rates
(t (44.00) = −4.81, p < 0.001, d = −0.72) (see Table 1),
and higher d’ (t (44.00) = 10.28, p < 0.001, d = 1.53).
Likewise, hit rates (t (44.00) = 4.34, p < 0.001, d = 0.65)
and d’ (t (44.00) = 3.07, p = 0.004, d = 0.46) were
higher for images in the mid-mem category than for the low-
mem category, but false-alarm rates did not differ between
these categories (t (44.00) = 0.35, p = 0.725, d = 0.05).
Moreover, area under the ROC curves (AUC) was strongly
positively associated with memorability (Spearman’s ρ =
0.41, p < 0.001) across images (see Fig. 4). Across
subjects, AUC was larger for the high-mem category than
for the mid-mem category (t (44.00) = 10.50, p <

0.001, d = 1.57). Likewise, AUC was larger for images
in the mid-mem category than for the low-mem category
(t (44.00) = 3.44, p = 0.001, d = 0.51).

ROC and model results ROCs had a curvilinear shape
whereas zROCs were linear, which are shapes better
predicted by the UVSD model (Fig. 5). Accordingly, the G
statistic confirmed that single subject data were successfully
fitted by the UVSD model for 85% of participants, while
the DPSD successfully fitted the data of only 70% of
participants. The aggregate and individual participant data
were better fitted by the UVSD model than by the DPSD
model, indicated by lower BICs for the UVSD model

Fig. 4 Area under the curve per
scene. Area under the curve was
strongly positively associated
with increasing memorability
score. Each circle in the figure
represents an image
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across all participants. The sensitivity parameter d’ of the
UVSD model was significantly larger for the high-mem
compared to the low-mem category (t (44.00) = 10.50, p <

0.001, d = 1.57). In contrast, the parameter modeling the
variance of the old item distribution Vo was not significantly
different between the two categories (t (44.00) = 1.76, p =
0.089, d = 0.26). Both the recollection (t (44.00) =
4.94, p < 0.001, d = 0.74) and the familiarity parameter
(t (44.00) = 7.61, p < 0.001, d = 1.13) of the DPSD
model were larger for high-mem compared to low-mem
images.

Discussion experiment 1

Overall, the results replicate previous studies showing that
intrinsic image memorability is a robust feature of an image,
which affects people’s memory performance independently
of personal factors. The ROC analysis confirmed and
extended previous studies of memorability, which had
focused on hit rates, by showing that memorable images
also yield larger AUC.

The ROC curves were better fitted by the UVSD model,
which assumes that recognition is based on a single,
continuous memory strength dimension. The superiority
of the UVSD appears plausible given the symmetrical,
curvilinear shapes of the ROCs. Greater memorability was
associated with larger sensitivity (d’), but not with greater
variability of the old item distribution (Vo). While this
model does not deny that some conditions, e.g., recognition
of highly memorable images, tend to coincide with
recollection of specific details associated with the studied
item, it treats recollection simply as reflecting higher
memory strength. Hence, in this experiment recognition was
not based on a specific recollection process independent
of memory strength, as predicted by the DPSD model.
This finding could imply that recognition of scene images
is generally based only on memory strength and that the
superior recognition performance for highly memorable
images is not associated with a separate recollection process.

However, the specific shape of the ROC curves in
Experiment 1 might also be due to the overall low

performance in the recognition task. Indeed, hit rates were
consistently lower in our study than hit rates obtained for
the same images in previous studies. Performance in our
study might have been affected by the specific memory
task: most previous memorability studies (Isola et al., 2014;
Bylinskii et al., 2015) used continuous recognition tasks
where the delay between encoding and test is shorter and
the number of intervening items is significantly smaller
compared to a design with separate encoding and testing
blocks. In addition to this inevitable difference, other more
amendable factors might have been responsible for the
poor performance as well. First, presentation durations
(500 ms) were shorter than in previous studies (1000 ms
and 2000 ms in Isola et al., 2011 and Bylinskii et al.,
2015). Second, participants had to perform an additional
indoor/outdoor discrimination task. Together, these factors
may have contributed to shallow rather than deep encoding
of image aspects, thus obstructing the potential for
recollection. Furthermore, the recognition task in the test
phase, which required only a simple old/new decision
instead of a report of the recollective experience, may have
encouraged participants to base their recognition decisions
and confidence judgments more on memory strength than
on recollection.

In order to substantiate the association of recollection
and intrinsic image memorability (or the lack thereof) we
conducted a second experiment, in which encoding was
facilitated and recognition required an additional judgment
of recollective experience.

Experiment 2

Experiment 2 was similar to Experiment 1 with a few
modifications. Most importantly, participants were to report
their recollective experience with R/K judgments (Tulving,
1985). The R/K judgments were introduced to acquire
an additional index of recollection independent of model
parameters derived from ROC curves.

A hallmark finding regarding R/K judgments has been
obtained in a study, in which words were learned under

Fig. 5 Results Experiment 1. a
ROC-curves are largely
curvilinear, a prediction made
by the UVSD model. They are
bent upwards for more confident
decisions and with larger area
under the curve for highly
memorable images, indicating
more memory strength. b
z-ROCs are linear with a larger
intercept for highly memorable
images
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deep versus shallow encoding or full versus diverted attention
conditions (Yonelinas, 2001). Results showed a perfect
crossover: the proportion of deeply encoded and fully attended
words was greater among remember statements whereas
words presented in the shallow and diverted attention
condition were more associated with know statements.
Moreover, Tsivilis et al. (2001) studied R/K statements with
picture stimuli and found that the proportion of R statements
increased if to-be-remembered objects are presented in
their original scene contexts, whereas the proportion of K
statements was unaffected by object context.

However, using R/K judgments as an accurate index
of recollection or familiarity is anything but trivial due
to procedural (Migo, Mayes, and Montaldi, 2012) and
statistical (Yonelinas, 2001; Haaf et al., 2020) challenges.
First, if not instructed carefully, participants might confuse
the “remember” category simply with high confidence,
neglecting that a feeling of familiarity can occasionally go
along with high confidence, too. Therefore, we followed
recommendations for R/K procedures put forward by
Migo et al. (2012, see Methods/Procedure). Second, the
statistical analyses must account for the fact that the
proportions of R and K statements are interdependent.
Specifically, the probability of a know response is
mathematically constrained by the proportion of remember
responses and vice versa, making inferences assuming their
independence (as in Gardiner & Java, 1990) statistically
inappropriate (see Yonelinas, 2001 ). Therefore, we applied
an analysis framework proposed by Haaf et al. (2020) (see
Methods/Analysis).

Moreover, we extended the conventional remem-
ber/know framework by additionally asking for analogous
judgments for new items, thereby exploring the mnemonic
experience associated with the rejection of new information.
Thus, whenever participants decided that an item was new,
we asked whether they considered specific image details (D
judgment) to be relevant for their decision or whether the
item simply felt unfamiliar (U judgment). The D/U judg-
ments for new items are thus equivalent to R/K judgments
for old items and were thus analyzed with the same analysis
framework.

Methods

Unless otherwise specified, the procedures used in Exper-
iment 2 were identical to Experiment 1. All procedures
and analyses were conducted as preregistered unless stated
otherwise (see Open Practices Statement).

Participants

Fifty participants (46 female, mean age = 21.24), none of
whom had participated in the first study, were recruited

from the University of Muenster community. Participation
was compensated with course credit. To determine our
sample size, we followed the same reasoning as (Haaf et al.,
2020) in their effort to replicate (Gardiner & Java, 1990).
Specifically, Haaf et al could not reproduce the original
findings with twice the statistical power, implying the
possibility that the original R/K finding is a false-positive.
To have the same statistical power in our data, we more than
doubled the sample size and amount of trials compared to
the original R/K experiment by Gardiner and Java (1990).
In keeping with the criteria described in the preregistration,
eight participants whose performance was no better than
chance were excluded from analysis.

Apparatus andmaterials

Stimuli were shown on a 19-inch CRT monitor with
1280x768 resolution and a 60-Hz refresh rate, using a
PC with a 2.53 GHz Intel Core processor and 8 GB
RAM, running a Windows 10 64-bit operating system. We
selected 360 pictures from the memorability image database
FIGRIM (Bylinskii et al., 2015), shrunk to a resolution
of 500x500 px (120 images per memorability category).
For Experiment 2, we only selected images from the
FIGRIM database because it contains more exemplars per
semantic category, allowing for a more balanced stimulus
set. Specifically, we selected images from only 14 semantic
categories (as compared to 241 semantic categories in
Experiment 1), each comprising 4 to 16% of the total
stimulus set (see Table 6 and Fig. 9 in the Appendix
for the distribution of semantic categories across the
stimulus-set and across memorability scores, respectively).
Again, we counterbalanced indoor/outdoor scene gist across
memorability categories. Some of the selected semantic
scene categories had only very few high-mem exemplars
(e.g., highway) or low-mem exemplars (e.g., playground).
In order to counterbalance indoor/outdoor scene gist and to
maximize the number of trials for each memorability bin
and semantic category, we had to make minor adjustments
for some categories to the boundary between the low-
mem and mid-mem, and between the mid-mem and high-
mem bin, respectively. For example, while for most scene
categories the boundary between mid-mem and high-
mem was a memorability score of 0.75, one of the most
memorable highway images had a memorability score of
only 0.74, making us lower the boundary to 0.74 for
the highway category. Although such an adjustment was
necessary for only few categories and few images, it slightly
blurred the distinction between low-mem and mid-mem,
and between mid-mem and high-mem bins. Therefore,
we chose to conduct statistical comparisons only between
the hi-mem and lo-mem bin, which were clearly non-
overlapping for all scene categories.
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Half of all images were presented at the encoding phase,
while the other half served as foils for the test phase. Thus,
Experiment 2 comprised fewer items than Experiment 1,
which was necessitated by the increased presentation
durations. However, we followed recommendations by
Yonelinas and Parks (2007) who argued that 120 trials (60
old, 60 foil pictures) are necessary for reliable ROC-curves.

Procedure

The procedure was identical to that of Experiment 1 except
for the following notable changes (see Fig. 6). First, the
presentation duration was increased to 2000 ms in both
the encoding and test phase. Second, the indoor/outdoor
discrimination task was removed from the encoding phase.
Most importantly, additional R/K and D/U judgments were
required on each trial of the test phase.

In the encoding block, trials started with a fixation cross
(1000-ms duration), followed by a scene image (2000-ms
duration), followed by a blank screen for a random interval
between 200 and 500 ms. In the test block, trials started
with a fixation cross (1000-ms duration), followed by a
scene image (2000 ms), followed by a blank screen with
a random interval between 200 and 500 ms, followed by
response prompts. Participants made an old/new judgment
accompanied by a confidence judgment (from 1/sure new
to 6 /sure old), and finally made either a R/K statement
(for items judged as old) or D/U (for items judged as
new) statement. Note that the confidence range did not
change with respect to Experiment 1 but that old/new and
confidence judgments were collapsed on the same scale to
make the procedure as efficient as possible 2.

Instructions for R/K statements emphasized recommen-
dations made by Migo, Mayes, and Montaldi (2012) to
accentuate the distinction between recollection and famil-
iarity. Specifically, know statements should be based on a
feeling of familiarity for the scene, without any contextual
knowledge about the encoding period. Remember state-
ments on the other hand should be based on recollection of
specific image aspects and the original encoding context.
To this end, we carefully explained the concept definitions
of R/K statements. We also emphasized that R statements
do not need to refer to one particular object or feature, but
could also refer to multiple objects/features/image parts. We
emphasized that K statements can equally be based on high
or low confidence in order to avoid a bias towards remember
statements in states of high confidence.

2As requested by a reviewer, we analyzed the effect of accuracy
feedback on confidence and on R/K judgments in the subsequent
trial. We found no statistically significant difference in confidence
judgments or R/K scaled difference scores following an incorrect vs.
correct decision

Finally, instructions for D/U statements were explained
to be a conceptual counterpart of R/K statements. Specifi-
cally, detailed-new statements were supposed to be based on
any image aspects that participants particularly considered
for their new-decision. Unfamiliar statements were simply
based on the feeling that a particular image is new, no matter
how certain participants were in their judgment.

After practice trials, participants had to explain the
instructions back to the experimenter to make sure that they
really understood the procedure. Lastly, in 2 to 4 (depending
on the frequency of remember statements) out of 360 trials,
participants were asked via a prompt to motivate their
remember statement in a short sentence.

Analysis

Given that a “know” statement implies a “not remember”
statement, and vice versa, the proportions of R/K and
D/U statements are interdependent. (Haaf et al., 2020) put
forward a scaled difference metric, which integrates the
proportions of R and K statements into a single outcome
measure in a way that accommodates their dependency.
Thereby, the scaled difference avoids a flaw in the analysis
by Gardiner and Java (1990) who treated R and K statements
as independent of each other, and analyzed statement-type
as an ANOVA factor, i.e., as independent (manipulated)
variables instead of a dependent (outcome) variable. For
items judged as old, the scaled difference Yold for the ith
participant and jth memorability condition is defined as:

Yoldij = rij − kij

rij + kij

where r and k indicate the proportions of remember and
know statements, respectively. Likewise, for items judged
as new, the scaled difference Ynew is defined as:

Ynewij = dij − uij

dij + uij

where d and u indicate the proportions of detailed and
unfamiliar statements, respectively. The scaled difference
score is positive when the proportion of old-remember or
new-detailed statements is larger than the proportion of old-
know or new-unfamiliar statements, respectively. A scaled
difference score of zero indicates no propensity for either
remember/new-detailed or know/unfamiliar.

We hypothesized that highly compared to low memorable
images are more associated with remember/detailed-new
rather than know/unfamiliar statements whereas the null
hypothesis predicts no difference in scaled differences
between the two memorability conditions.

Given the relatively poor performance of the DPSD
model and the curvilinear shapes of the ROCs in
Experiment 1, we adopted a Bayesian analysis framework
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Fig. 6 Illustration of a trial sequence. Encoding Block: Each trial starts
with a fixation cross for 1 s, followed by a picture presented for 2 s
and a blank screen for 200–500 ms, repeated 180 times. Test block:
Each trial starts with a fixation cross presented for 1 s, followed by a
picture presented for 2 s and participants had to decide with a button
press whether the picture was old or new and how confident they were

about their decision on a scale from 1 (sure new) to 6 (sure old). If
they pressed 1–3 (“old”), they had to indicate afterwards whether they
remembered or just knew the scene. If they pressed 4–6 (“new”), they
had to indicate whether the scene was simply unfamiliar to them (“it
feels new, but I do not know why”) or whether particular details in the
scene were particularly new to them

to test the evidence for these hypotheses (Morey & Rouder,
2011). Specifically, we analyzed Bayes factors, which are
likelihood-ratio tests comparing the likelihood of the data
under the null hypothesis with the likelihood of data under
the alternative hypothesis:

BF01 = likelihood of data given H0

likelihood of data given H1

Importantly, unlike conventional frequentist inferential tests
such as the t test, a Bayes factor analysis allows quantifying
the evidence in favor of the null hypothesis, relative to
evidence for the alternative hypothesis.

To test the evidence for our hypotheses and for the
null hypotheses, respectively, we used one-sided Bayesian
t tests, adopting the terminology proposed by Jeffreys
(1961), with a Bayes factor larger than 10 suggesting strong
evidence for the alternative hypothesis and a Bayes factor
equal to or smaller than 1/10 meaning strong evidence
for the null hypothesis. As exploratory analyses, we also
tested whether scaled differences for the high memorability
condition differ from zero (meaning no propensity for either
recollection/detailed-new or know/unfamiliar statements).
Furthermore we quantified Ynew and Yold for each image
and correlated these scores with the images’ memorability.
3 Behavioral analyses and Bayes factor analysis were
conducted with the R programming language in the RStudio
environment (R Core Team, 2014; Team & et al. 2015) using

3The Independence Remember/Know (IRK) procedure proposed by
Yonelinas and Jacoby (1995) is a related measure of the probability F
that an item is familiar, with F = K/(1-R). It accounts for the fact that,
while remember responses are assumed to reflect recollection, know
responses do not provide a pure measure of familiarity, but rather the
absence of recollection. The scaled difference and the IRK metric are
expected to be negatively correlated. Specifically, a condition with a
large proportion of K statements will yield a negative scaled difference
and a positive IRK measure. This expectation was confirmed by a
strong Spearman’s rank correlation between the R/K scaled difference
scores and the IRK measures across all images (Spearman’s ρ =
−.80, p < 0.001).

the BayesFactor package developed by Morey, Rouder,
Jamil, and Morey (2015). Effect sizes of these analyses are
reported as Cohen’s d (Cohen, 1988), computed according
to (Lakens, 2013).

ROC curves were fitted with a DPSD model (Yonelinas,
1994) and a UVSD model (Mickes et al., 2007) using ROC
Toolbox for MATLAB by Koen et al. (2017). We first
considered whether the models generally provide a statistically
acceptable account of the data based on the G statistic
(McDonald, 2009; Koen et al., 2013). We then compared
model performance on the basis of the Bayesian Information
Criterion (BIC; Schwarz et al. 1978; Lewandowsky &
Farrell, 2010). The model with lower BICs in 80% of
participants was declared the winning model under the
condition that the model has a statistically acceptable account
of the data in at least 80% of participants. Given the model
results of Experiment 1, we predicted better performance by
the UVSD model compared to the DPSD model.

However, given that the UVSD model is more flexible
in fitting a wider range of ROC curves (Klauer &
Kellen, 2011), we complemented our preregistered model
comparison process by investigating how well each set
of model parameters predicts item memorability ranks in
a separate regression model.4 More specifically, we rank
ordered images from lowest to highest memorability and
built 30 quantiles of equal trial numbers, yielding sufficient
power to fit ROC curves per memorability quantile. We then
fitted both the UVSD and the DPSD model for each quantile
and used the recovered parameters to predict memorability
quantile ranks using an ordinal regression model (Harrell
Jr, 2015). Finally, we considered for each model how much
variance in memorability ranks was explained by its set
of parameters (R2 Adjusted). Additionally, we tested how

4This analysis was suggested by an anonymous reviewer who pointed
out that model selection only based on fit statistics disadvantages
the less flexible DPSD model. However, since this analysis was not
preregistered, it should be considered exploratory.
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much each model parameter contributed to the explained
variance by considering their standardized coefficients.

Results experiment 2

Recollective reports We categorized a total of 162 verbal
reports following a remember statement. In 36% of all
reports, participants exclusively reported specific objects
and/or scene details as part of their recollective experiences
(e.g., “I remember this orange coffee mug”). Another 47%
of all reports included additional associations between
image aspects and personal thoughts or experiences (e.g.,
“The stop lights are on and I was wondering whether
he caused a traffic jam or an accident”), autobiographical
memories (e.g., “The picture reminded me of a photograph
that I took during vacation”), or evaluative judgments
(“Looks very bleak, like an insufficiently furnished student
apartment”). Only 9% of all reports explicitly refer to
distinctive or unusual image details. Two participants
reported that they knew a depicted building because it was
a famous site (London Tower Bridge). We removed this
picture from further analysis. Three participants reported
that they knew a scene because they had been there before
on vacation (badlands scene from Alberta, Canada and
Petronas Twin Towers in Kuala Lumpur, Malaysia). We
removed these trials from further analysis.

R/K scaled differences for hits and false alarms As can
be seen in Table 2, performance was substantially better
in Experiment 2, with larger hit rates and lower false-
alarm rates compared to performance in Experiment 1, see
Table 1. Independent two-sample t tests confirmed that
participants had significantly larger hit rates (t (84.47) =
5.65, p < .001) and significantly smaller false-alarm rates
(t (81.81) = −4.35, p < .001) in Experiment 2 compared
to Experiment 1.

Participants made a greater proportion of R statements
for high-mem images and a greater proportion of K
statements for low-mem images (see Table 3). A one-
sided Bayesian t test yielded extreme evidence for the
alternative hypothesis that participants were more likely to
recollect high-mem compared to low-mem images (BF =
3477.914, d=1.03; see Fig. 7a). Overall, Yold scores of high-
mem images were positive, providing extreme evidence that
highly memorable images are associated with remember
rather than know statements (BF = 206.03, d = .87).
As an exploratory analysis, we correlated the Yold score
per picture with its memorability score and we found a
moderately strong relationship between the two variables
(r(357) = .38, p < .001). Nonetheless, as can be
seen in Fig. 7B, there is considerable variability in scaled
differences for highly memorable images.

For false alarms, Yold scores were negative for both
memorability categories, reflecting a greater proportion
of “know” judgments compared to “remember” judg-
ments.Yold scores were slightly less negative for high-mem
(mean Yold: -.77) than for low-mem (mean Yold: -.90)
images, indicating a slightly stronger bias for false “remem-
ber” statements for hi-mem images. However, a Bayesian
t test indicated only weak to moderate evidence of a real
difference in Yold scores between memorability categories
compared to the null hypothesis of no difference (BF =
3.828, d=.49).5

D/U scaled differences for correct and incorrect rejections
Participants made more D statements for high-mem images
than for low-mem images, but they did not on average prefer
D over U statements (Table 3). A one-sided Bayesian t
test contrasting the high-mem with the low-mem condition
yielded extreme evidence for the hypothesis that an increase
in memorability is associated with an increase in D
statements (BF = 1032293, d=1.36)(see Fig. 7b). A one-
sided Bayesian t test testing scaled differences for highly
memorable images against zero revealed strong evidence
for the null hypothesis that participants had no overall
propensity for either D or U statements (BF = .085, d=
0.24). As an exploratory analysis, we correlated the Ynew
score per picture with its memorability score and we found
a moderately strong relationship between the two variables
(r(357) = .40, p < .001)(see Fig. 7d). Correlating Yold and
Ynew scores revealed a strong relationship between the two
measures (r(357) = .67, (p) < .001).

For new images incorrectly reported as old, a Bayesian
t test yielded extreme evidence that scaled differences were
less negative for high-mem than for low-mem images (BF =
12089.17, d=.1.10). This means that even when participants
falsely judged a high-mem image to be new, they were
more likely to identify image details to be relevant for their
decision.

ROC and model results ROC curves of single subjects and
of the aggregate data were fitted with a DPSD model and
the UVSD model. Visual inspection of ROC curves supports
the results of our Remember/Know procedure (Fig. 8a
and b): for highly memorable images, z-ROCs are bent
upwards for more conservative responses and ROC curves
are asymmetric, visually indicating increased recollection
for memorable pictures. Model results reveal that both
models successfully fitted the data in more than 80% of
individual participant data, based on the G-statistic. The
data were better fitted by the DPSD model than by the
UVSD model in the aggregate data and in 60% of single

5One subject did not have a single false alarm for low memorable
images and could thus not be included in this test
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Table 2 Mean memorability scores as well as mean hit rates and false-alarm rates from Experiment 2 per memorability category and
indoor/outdoor scene gist

Memorability Scene gist Memorability score Hit-rate Exp 2 False-alarm rate Exp 2

High Indoor 0.83 0.76 0.22

High Outdoor 0.82 0.76 0.24

Medium Indoor 0.62 0.66 0.24

Medium Outdoor 0.64 0.67 0.25

Low Indoor 0.45 0.60 0.19

Low Outdoor 0.44 0.54 0.18

participant data, indicated by lower BICs for the DPSD
model. However, we could not determine a winning model
according to our preregistered criterion of a best fit in 80%
of participants.

Nonetheless, memorability quantile ranks were predicted
better by the ordinal regression model that included DPSD
parameters (χ2 = 47.67, p = .001, R2 Adjusted = 78%) than
the regression model with UVSD parameters (χ2 = 42.78,
p¡ .001, R2 Adjusted = 76%). For the DPSD model, the
recollection parameter contributed more to the regression’s
explained variance (β = 3.31, SE = 0.687, Z =
4.82, p < .001) than the familiarity parameter (β =
0.904, SE = 0.436, Z = 2.07, p = .038). For the UVSD
model, only d’ contributed significantly to the regression’s
explained variance (β = 3.9904, SE = 0.802, Z =
4.97, p < .001), whereas the Vo parameter indicating old
item variance did not significantly contribute to the model
(β = −0.695, SE = 0.493, Z = −1.41, p = 0.158).
This was confirmed by simple t-tests comparing each model
parameter between high and low memorable images. While
both parameters showed an effect of memorability, the
effect was much stronger on the recollection parameter Ro
(t (41) = 9.44, p < .001; see Fig. 8c) than on the familiarity
parameter F (t (41) = 2.63, p = .01; see Fig. 8d).

Discussion experiment 2

The results of Experiment 2 showed that intrinsic image
memorability boosts recollection. Specifically, hi-mem
images were more often recognized based on recollection
than on familiarity, while low-mem images were more

often recognized based on familiarity than on recollection.
There was no corresponding effect of memorability on
false alarms: false recollection of new images was only
slightly more prevalent for hi-mem than for low-mem
images. Thus, the memorability-related boost in recollection
for old images cannot be explained by an effect of
memorability on response criterion (Haaf et al., 2020).
In sum, image memorability is not purely a measure
of increased familiarity (i.e., “I think I have seen this
amusement park scene before”) but is also more likely
to invoke episodic associations regarding specific image
aspects (e.g., “I recognize this amusement-park scene
because I thought this roller-coaster is so steep”). This
interpretation is supported by the recollection reports, which
included a large number of references to specific image
content.

Our results resemble the “crossover effect” typically
observed in R/K studies. For instance, Yonelinas (2001)
showed a greater proportion of remember responses for
deeply encoded and fully attended words and a greater
proportion of know responses in shallow encoding as well
as diverted attention conditions. This pattern of results has
been interpreted as evidence in favor of dual-process models
of recognition memory (Yonelinas, 2002; Haaf et al.,
2020). While similar in spirit to the studies by Yonelinas
(2001) and Haaf et al. (2020), the present study introduced
two notable modifications that may be responsible for
finding a crossover effect. Firstly, participants in our study
expected to justify their remember statements at least in
a subset of trials. This procedural difference corroborates
recent findings emphasizing the importance of motivating

Table 3 Response proportions and scaled differences per memorability level

Mem R K Yold D U Ynew Rf Kf Yoldf Df Uf Ynewf

H 0.61 0.39 0.23 0.47 0.53 -0.04 0.14 0.86 − 0.72 0.33 0.67 − 0.35

M 0.52 0.48 0.04 0.35 0.65 -0.30 0.10 0.90 − 0.80 0.24 0.76 − 0.51

L 0.43 0.57 − 0.13 0.75 0.25 -0.72 0.08 0.92 − 0.85 0.14 0.86 − 0.72

Abbreviations: R = Remember, K = Know, Yold = R/K Scaled Difference, D = Detailed-New, U = Unfamiliar, Ynew = D/U Scaled Difference,
Rf = Remember statements based on false alarms, Kf = Know statements based on false alarms, Yoldf = R/K Scaled Difference based on false
alarms, Df = Detailed-New statements based on false rejections, Uf = Unfamiliar statements based on false rejections Ynewf = D/U Scaled
Difference based on false rejections
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Fig. 7 Results experiment 2. a R/K scaled differences for correctly
recognized old items for high memorability mapped against low mem-
orability, each dot is the score of one subject. If dots scattered around
the line, no difference in conditions would be assumed. The great
majority of dots lies above the line and above 0, meaning that sub-
jects had a greater propensity for remember responses in highly vs. low
memorable images. b Correlation between memorability scores per
picture and scaled difference for correctly recognized old items, each

dot represents an image. c D/U scaled differences for correctly rejected
new items for high memorability mapped against low memorability,
each dot is the score of one subject. The great majority of dots falls
above the line but the average is slightly below zero. Participants had
thus a more positive propensity towards detailed new judgements for
highly memorable images but the majority scored below zero. d Corre-
lation between memorability scores per picture and scaled differences
for correctly rejected new items, each dot represents an image

remember statements to avoid a potential confound with
mere memory strength (Migo et al., 2012). This line of
reasoning supports the conclusions made by Haaf and
colleagues: the original R/K findings by Gardiner and Java
may not be reproducible, given that participants did not
need to justify their remember statements. Secondly, while
certain experimental manipulations (e.g., the lexical status
of a word) might not have a robust differential effect on
recollection and familiarity, intrinsic image memorability
might be a more promising candidate.

We complemented the conventional remember/know
procedure, in which remember/know judgments are only
made for items recognized as old, with equivalent
detailed/unfamiliar judgments for items rejected as new. We
found that image memorability not only boosted the pro-
portion of remember judgments for old items but also the
proportion of detailed-new judgments (i.e., “I would have
remembered this object if I had seen this image before”)
for new stimuli. Moreover, both judgments were correlated
across images, meaning that images that are recollected

when old also tend to be rejected based on image details
when new. The description of our detailed-new category
resembles the description of a recollect-to-reject process.
For instance, Yonelinas (1997) reasoned that “after study-
ing a short list of words, one would likely not false alarm
to one’s own name if it appeared in the test list” (p. 752).
Likewise, it stands to reason that in a visual memory exper-
iment subjects would also not false alarm to an image of
their own house (“I would remember if I had seen my own
house”). While the present study was not designed specifi-
cally to test recollection to reject new items, it is interesting
to compare these lines of research. A typical procedure for
studying recollect-to-reject processes is associative recogni-
tion, where subjects learn lists of word-pairs (tree-shoe) and
are tested with the original word pairs and rearranged foils
(e.g., tree-dog). A related procedure is the plurality recog-
nition task, where subjects learn lists of singular and plural
words and are tested with the original plurality (e.g.,“frog”)
or the reversed plurality (“frogs”). Studies analyzing the
shapes of ROC curves (Yonelinas, 1997) and response time
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Fig. 8 ROC and model results
experiment 2. a ROC-curves are
more hockey-stick-shaped for
highly memorable images, bent
upwards for more confident
decisions and with larger area
under the curve, indicating more
recollection and familiarity for
highly memorable images. b
z-ROCs are bent upwards for
most conservative responses,
suggesting increased
recollection. c Recollection
parameter in the DPSD model is
larger for highly compared to
low memorable images. d
Familiarity parameter in the
DPSD model is larger for highly
compared to low memorable
images
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distributions (Rotello & Heit, 1999; 2000) found that sub-
jects not only could recollect that original items had been
on the study list, but occasionally recollected that new items
had not been studied. An intuitive explanation for this find-
ing is that on some trials, a foil item like “tree-dog” (or
“frogs”) can evoke the recollection of having learned “tree-
shoe” (“frog”). Interestingly, and in contrast to Yonelinas’
illustrative example, these studies have found no evidence
for a recollect-to-reject process in simple item recognition
tasks that are equivalent to our image recognition task.

However, in spite of the apparent similarity between
the detailed-new response category and recollection to
reject, there is reason to doubt that they correspond to the
exact same mnemonic process. First, previous studies have
inferred recollect-to-reject processes from ROC curves and
response time distributions, but have not required subjects
to make detailed-new vs. unfamiliar statements (i.e., the
equivalent of remember/know statements), making our
paradigm difficult to compare. Second, as just described,
previous studies introduced for each new foil item a
corresponding original old item, for which the foil could
trigger a recollection. Our study did not have similar
corresponding original and foil items; it is unlikely that
judging that “I would remember if I had seen this
playground before” is actually based on recollecting all the
other playground images from the study phase. Even if
that were the case, then the probability of a detailed-new
response to a new image should have been determined by

the memorability of these other studied images. By contrast,
we found that the proportion of detailed-new responses was
strongly determined by the new image’s own memorability.
Finally, recollection of new items in associative recognition
or plurality tasks requires that the foils be similar to
their associated original item to trigger the old item’s
recollection. By contrast, highly memorable images, for
which we found the highest proportion of detailed-new
responses, are particularly dissimilar from other images
(Bylinskii et al., 2015; Lukavskẏ & Děchtěrenko, 2017). In
sum, it is not clear if detailed-new reports in our study are
equivalent to recollect-to-reject processes found in previous
studies, or if findings from experiments using word stimuli
are generalizable to experiments using scene images.

Interestingly, the analysis of remember/know and
detailed-new/unfamiliar judgments associated with individ-
ual images also revealed a great deal of variability even at
the same level of memorability. Especially at high mem-
orability, some images were almost exclusively judged as
remembered when recognized and as new-detailed when
rejected, while almost as many others were predominantly
judged as known and unfamiliar, respectively. Only the least
memorable images were predominantly judged as famil-
iar and unfamiliar, respectively (see Fig. 7b and d). This
finding shows that the strong relationship between memo-
rability and recollection is not unitary across images: some
images actually achieve high recognition rates by selectively
boosting familiarity.
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Performance in Experiment 2 was substantially better
than in Experiment 1, with both higher hit-rates and lower
false-alarm rates. This suggests that the modified task
and procedures allowed for better encoding and more
recollection of specific image aspects. First, we almost
halved the number of images participants had to memorize,
decreasing the overall memory load. Previous memorability
work largely utilized continuous recognition tasks where the
number of items between encoding and test is significantly
smaller compared to a design with separate encoding and
testing blocks. Secondly, in Experiment 2 participants were
allowed to simply view and encode the images, whereas in
Experiment 1 participants performed an indoor/outdoor gist
discrimination task while encoding the images. Previous
research has shown that memory performance is strongly
impaired when attention is divided between encoding and
a concurrent task (Naveh-Benjamin, Guez, & Sorek, 2007).
Moreover, the frequency of recollective experiences is
reduced under divided-attention conditions at test (Jacoby,
1991). Lastly, picture presentation times were quadrupled
from 0.5 to 2 s in the encoding block and doubled from
1 to 2 s in the testing block. Ahmad, Moscovitch, and
Hockley (2017) showed that an increase in presentation
time increased memory performance based on perceptual
details of an image. Hence, by reducing the number of to-
be-remembered stimuli, dropping the dual-task requirement
during encoding and increasing the presentation time at
both encoding and testing in Experiment 2, more memory
and attentional resources could be allocated to encoding of
specific image details for subsequent recollection.

It is important to mention that not only recollection
but memory performance overall improved substantially
from Experiment 1 to Experiment 2, which has direct
consequences for our model selection process, given that
the two experiments favor different models. In contrast to
Experiment 1, ROC curves were not well fitted with the
single-process UVSD model; the overall shapes of ROC
curves were visually and quantitatively more consistent with
the DPSD model. As a case in point, ROCs in z-space were
curved (see Fig. 8b), which is a finding typically observed
in relational recognition tasks where participants have to
judge not only whether an item is old but also whether it
occurred in a specific encoding context (e.g., as member
of a list or a word pair)(Yonelinas, 1997). Importantly,
curved ROCs in z-space are a prediction specifically made
by dual-process and not single-process accounts (Yonelinas
& Parks, 2007). In addition, the DPSD model outperformed
the UVSD model in the aggregate data, but only in 60%
of individual participants. However, the superiority of
the DPSD model was also supported by an exploratory
(i.e., not preregistered) analysis in which we used ordinal
regression to predict the images’ memorability based on the
DPSD and UVSD model parameters, respectively. Although

the difference in explained variance (e.g., 2%) was not
large, memorability was best predicted by DPSD model
parameters, where the recollection parameter made larger
contributions to the regression model compared to the
familiarity parameter. In the regression based on UVSD-
parameter, the parameter indicating old item variance did
not contribute to the regression model, corroborating the
findings from Experiment 1.

Even though the model comparison was not as unequivo-
cal as anticipated in the preregistration and unlike the results
of Experiment 1, the results of Experiment 2 clearly indi-
cate that memorability boosts recollection, arguable due to
the overall better overall performance in Experiment 2. This
conclusion is supported by the R/K judgments, the ROC
model comparison, and our exploratory regression analy-
sis. In sum, the results strongly support the notion that
higher memorability is specifically associated with a higher
incidence of recollection.

General discussion

Previous research has defined memorability exclusively in
terms of objective recognition performance (i.e., hit rates),
which can be predicted with machine vision algorithms
(Isola et al., 2014; Khosla et al., 2015; Peng et al., 2015).
However, the features making an image memorable and the
cognitive mechanisms affected by these features are still
elusive. Although it is reasonable to assume that there is
something special and subjectively remarkable about mem-
orable images, subjective ratings of interestingness are only
poorly correlated with memorability and observers actually
cannot accurately judge which images are memorable (Isola
et al., 2014). Memorable images do not differ from non-
memorable images in terms of low-level image statistics
(Isola et al., 2014) and they do not differentially acti-
vate early visual cortex (Bainbridge, Dilks, & Oliva, 2017;
Bainbridge & Rissman, 2018) but they are more easily per-
ceived at ultra-fast presentation times (Broers et al., 2018).
Furthermore, Bainbridge (2020) found that the difference
between memorable and non-memorable images is not due
to more elaborate encoding, stronger attentional capture,
or stronger motivation to remember an image. Lastly, an
image’s memorability is only moderately determined by its
distinctiveness relative to other images shown in the same
experiment: an image’s memorability is largely preserved
whether it is one of few exemplars of its semantic category,
or one of many (Bylinskii et al., 2015). Instead, memora-
bility is correlated with specific semantic image content:
images of social activities, faces, human-made objects, ani-
mals, and interiors are on average recognized better than
panoramic views of nature. However, each of these scene
categories comprises a full spectrum ranging from highly
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memorable to forgettable, indicating that memorability can-
not be exclusively explained by semantic image category
(Bylinskii et al., 2015).

Which psychological mechanisms are affected by mem-
orable image features; which mechanisms are responsible
for their improved recognition? A common thread in the
previous literature (with the exception of Bainbridge, 2020)
has been a focus on image features correlated with mem-
orability, but not on the cognitive processes involved in
remembering such images. The present study aimed to con-
tribute to the latter question by investigating how intrinsic
image memorability affects recollection and familiarity. The
results of our remember/know (R/K) procedure in Experi-
ment 2 revealed that, on average, memorability specifically
boosts recollection, indicating that intrinsic image memo-
rability affects both objective (i.e., hit rates) and subjective
(i.e., R/K judgments) indices of recognition memory con-
sistently across people. Interestingly, a more fine-grained
analysis revealed that, even at a given level of memora-
bility, there is considerable variability across images in
how they are remembered, especially for highly memorable
images: while some images were recognized almost exclu-
sively based on recollection, others were mostly recognized
based on familiarity. It would be interesting for future work
to investigate which image content determines an image’s
potential for recollection or familiarity.

While the R/K judgments revealed a clear effect of
memorability on recollective experience, the results of
the ROC analysis were more ambiguous regarding the
nature of the underlying cognitive mechanisms. ROC
curves in Experiment 1 were largely curvilinear and
were better fitted, in all participants, by a single-process
model. By contrast, In Experiment 2, ROCs and z-
ROCs visually indicated recollection and were better fitted
by a DPSD model, albeit in only 60% of participants.
However, DPSD model parameters performed better in an
additional regression model. Here, memorability was best
predicted by DPSD model parameters, and the recollection
parameter made larger contributions to the regression
model compared to the familiarity parameter. Given that
the additional regression analysis was not included in
our preregistration, its results should be interpreted with
caution. Nonetheless, we conclude that R/K judgments,
ROC models, and the regression analysis support the
DPSD model in Experiment 2, showing that memorability
specifically boosts recollection. Whether recollection and
familiarity sway on a single continuum of memory strength
(Donaldson, 1996; Dunn, 2004, e.g.,), or operate on separate
continua (Wixted & Mickes, 2010), or are two qualitatively
different processes (Yonelinas, 1994; Eichenbaum et al.,
2007) has been an ongoing matter of debate for decades
(Yonelinas, 2002; Wixted & Mickes, 2010). Most of the
work has shown that both single- and dual-process models

generally fit ROC data quite well (Yonelinas & Parks,
2007). From a computational modeling perspective, the
DPSD model has one theoretical advantage over single-
process accounts: its parameters can disentangle when an
item is associated with recollection rather than familiarity.
The complexity of natural scenes makes it particularly
difficult to understand what aspects of a scene are eventually
recollected. Future research could study what images are
associated with specific parameter configurations, rather
than exclusively relying on fit statistics. Thus, a particularly
promising research avenue would be to study ROC curves
related to individual images, instead of aggregating data
across images.

Our findings have important implications for the application
of machine vision algorithms for predicting human memory
performance, and for understanding human memory mecha-
nisms. Overall, we show that images differ not only in how
accurately people can judge them as old or new (i.e., how
memorability has been technically defined), but also in their
potential for recollection or familiarity. Importantly, a large
portion of this variability is not explained by memora-
bility, i.e., even among the most memorable images that
almost every person will accurately recognize as old, some
are almost always recognized based on familiarity, others
on recollection. This unaccounted variability in the phe-
nomenology of scene memory demonstrates that we have
not yet fully understood the nature of intrinsic scene mem-
orability. Given that different neural structures underlie
recollective compared to familiar experiences (Eichenbaum
et al., 2007), it is likely that the image information that is
selectively recollected is differentially processed and rep-
resented compared to globally familiar scene information.
Machine vision identified scene and object semantics most
and least predictive of memorability (Isola et al., 2014).
Deep layers in a Convolutional Neural Network (CNNs)
identified areas of an image that are most associated with
successful memory (Khosla et al., 2015) or single objects
that contribute most to the overall memorability score of the
entire scene (Dubey, Peterson, Khosla, Yang, & Ghanem,
2015). Thus, a machine can learn the information that com-
prises successful or unsuccessful memory. As impressive
as that is, these algorithms are thus far agnostic regard-
ing the quality of the memory signal it aims to predict.
As a case in point, consider a hypothetical scene of a
family waiting at a busy airport terminal, accompanied by
their two dogs. A machine vision algorithm might predict
the scene to be memorable and several image parts and
objects will contribute most to that overall memorability:
it is an indoor scene, with humans, animals and numerous
man-made objects. However, to what extent such informa-
tion plays a role in human memory and how it is related
to the phenomenology of remembering remains elusive.
Observers might have a strong sense of familiarity for the
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overall scene narrative but no particular object or aspect
might play a role in the phenomenology of remembering.
On the other hand, observers might recollect the image
because of associations made to their own autobiographical
memories of travels, pets, etc. The CNN feature combina-
tions predictive of memorability likely turn out to be of
different relevance for different recognition experiences.

This discrepancy between machine and human intelli-
gence was highlighted in a recent review (Rust & Mehrpour,
2020). More specifically, previous research has shown that
neuronal activity for memorable versus non-memorable
images is pooled together in the medial temporal lobe (Bain-
bridge et al., 2017) and in monkey inferotemporal cortex
(Jaegle et al., 2019). This finding suggests that memorable
scene information might be very close in neuronal represen-
tational space, such that object identity is coded by neural
spike pattern coding, and memorability is coded by spike
magnitude coding (Rust & Mehrpour, 2020). In contrast,
Lukavskẏ and Děchtěrenko (2017) showed that memorable
scenes are more distant in a multidimensional space rep-
resenting CNN-based image features. Thus, it is currently
unclear how scene representations in a CNN map onto neu-
ronal representations; whatever information allows a com-
puter algorithm to predict a scene’s memorability may be
different from the information that people actually remem-
ber. Hence, while state-of-the-art machine vision algorithms
are powerful tools for predicting scene memorability, their
psychological plausibility remains to be determined. Elabo-
rating such algorithms to predict not only recognition accu-
racy, but also its phenomenology would therefore improve
their value as practical tools and as theoretical tools for
understanding human memory.

We see a few limitations in this study. First, the model
comparison was not optimally tailored to the present
models, which are generally difficult to discern based
on goodness-of-fit measures only. Bayesian Information
Criteria (as well as Akaike Information Criteria) can only
capture differences in model complexity when the number
of parameters differ between models. However, any given
parameter in a model can have strong or small effects
on the model’s ability to fit the data. It has been shown
that the UVSD model is more complex in its functional
form, meaning that, compared to the DPSD, its parameters
contribute more to the model’s general ability to fit ROC
data (Klauer & Kellen, 2011). For stronger claims about
the models’ veracity, experiments should be tailored to
specifically study how parameters change under different
tasks (Koen et al., 2013) and how model complexity changes
fit statistics within participants across multiple experiments
(Wixted et al., 2010). Second, we cannot exclude the
possibility that some “remember” statements were based
on memory strength or strong confidence instead of
a recollective experience. Thus, a direct assessment of

recollective experience and content with “think aloud”
protocols could be a promising avenue for future research.

Conclusion Understanding what makes information memo-
rable offers numerous applications to improve the effective-
ness of educational materials, marketing strategies, public
relations, or pop-culture materials. However, the effect of
memorability on the subjective experience of remember-
ing has so far been neglected. We found conclusive evi-
dence that memorability scales with a greater likelihood
of episodic recollection but that that there is still con-
siderable variability in the recognition experience: while
some memorable images are recognized almost exclusively
based on recollection, others are mostly recognized only
based on familiarity. This variability is currently not cap-
tured by state-of-the-art computer vision algorithms. Which
image aspects are differentially associated with the phe-
nomenological experience of recollection? What are the
subjective associations that observers make with the infor-
mation that is more likely to be recollected? Why are certain
images highly memorable, but are consistently associated
with mere familiarity rather than recollection? Our work is
an important first step in asking these questions as it empha-
sizes the importance of considering the phenomenology of
remembering both for psychological and computer science
research on intrinsic image memorability.
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Table 4 Number of unique
semantic categories per
memorability category and
indoor/outdoor scene gist,
Experiment 1. Note that the
absolute number of exemplars
per indoor/outdoor scene gist
was counterbalanced across
memorability categories

Memorability Scene Number of unique

Category Gist Semantic Categories

High Indoor 47

High Outdoor 60

Medium Indoor 51

Medium Outdoor 57

Low Indoor 29

Low Outdoor 61

Table 5 T test equivalents of Bayesian analysis framework

Test Yold Ynew Yoldf Ynewf

t(41) p t(41) p t(40) p t(41) p

High-Mem vs. Low-Mem 12.20 < .001 14.4 < .001 3.75 < .001 7.35 < .001

High-Mem vs. Zero 4.01 < .001 −.95 .34

Abbreviations: Yold = R/K Scaled Difference, Ynew = D/U Scaled Difference. Yoldf = R/K Scaled Difference based on false alarms, Ynewf =
D/U Scaled Difference based on false rejections

Table 6 Percentage of unique
semantic categories and
indoor/outdoor scene gist,
Experiment 2. Note that the
absolut number of exemplars
per indoor/outdoor scene gist
was counterbalanced across
memorability categories

Semantic
Category

Percentage of exem-
plars in stimuli-set

Indoor/Outdoor
Scene Gist

badlands 7% outdoor

bathroom 16% indoor

bedroom 9% indoor

bridge 4% indoor

conference-room 5% indoor

dining-room 7% indoor

conference-room 5% indoor

dining-room 7% indoor

golf-course 7% outdoor

highway 7% outdoor

kitchen 7% indoor

lighthouse 4% outdoor

living-room 7% indoor

playground 7% outdoor

skyscraper 8% outdoor

tower 7% outdoor
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Table 7 Frequencies and proportions of phenomenology across confidence levels

Confidence Remember Know Detailed-New Unknown

Freq. Prop. Freq. Prop. Freq. Prop. Freq. Prop.

Sure 2351 16% 447 3% 1533 10% 703 5%

Medium Sure 346 2% 1006 7% 842 6% 2133 14%

Unsure 131 0.01% 2294 15% 305 0.02% 2984 20%

Abbreviations: Freq. = Frequencies, Prop. = Proportions

Fig. 9 Distribution of
memorability scores across
semantic categories,
Experiment 2
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