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Abstract: Lead (Pb) neurotoxicity is a major concern, particularly in children. Developmental exposure
to Pb can alter neurodevelopmental trajectory and has permanent neuropathological consequences,
including an increased vulnerability to further stressors. Ascorbic acid is among most researched
antioxidant nutrients and has a special role in maintaining redox homeostasis in physiological and
physio-pathological brain states. Furthermore, because of its capacity to chelate metal ions, ascorbic
acid may particularly serve as a potent therapeutic agent in Pb poisoning. The present review first
discusses the major consequences of Pb exposure in children and then proceeds to present evidence
from human and animal studies for ascorbic acid as an efficient ameliorative supplemental nutrient
in Pb poisoning, with a particular focus on developmental Pb neurotoxicity. In doing so, it is hoped
that there is a revitalization for further research on understanding the brain functions of this essential,
safe, and readily available vitamin in physiological states, as well to justify and establish it as an
effective neuroprotective and modulatory factor in the pathologies of the nervous system, including
developmental neuropathologies.

Keywords: lead; ascorbate; neuronal; antioxidant; chelation; nutrient; vitamin C; dehydroascorbate;
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1. Introduction

Lead (Pb) is a metallic contaminant. Though it is not a particularly abundant element,
Pb contamination is prevalent in all phases of the environment (air, water, soil, and food chain).
Hence, its exposure can be mediated through all these sources. Pb is among the oldest known
occupational toxins. However, due to its widespread employment in the manufacturing of batteries,
paint pigments, alloys for solder, ammunition, and plastics; the commercial usage of Pb has exceeded
all other previous periods in the 20th century. This has resulted in a significant mobilization of free Pb
in the environmental and biological spheres, with a consequent increase in its potency as a toxicant.
Of note, almost all forms (metallic, organic, and inorganic) of Pb can be equally potent in their toxicities.
Unfortunately, Pb is also nonbiodegradable and as such has a prolonged persistence. Because it
detrimentally effects a broad-range of physiological, biochemical, and behavioral functions, Pb is a
well-studied toxicant [1]. In fact, it affects almost all tissues and organ systems, such as the respiratory,
hematopoietic, renal, cardiovascular, urinary, and urogenital systems, as well as bones [2–5]. Moreover,
apart from its widely characterized effects in humans [4–8] and animals [3], the detrimental effects of
Pb on the physiology of plants [9] and fish [10–12] have also been well-documented.

2. Pb Neurotoxicity in Children

The brain is a prominent target of Pb toxicity. The developing brain is particularly vulnerable to
exposure to environmental neurotoxicants such as Pb [13–16]. Interestingly, contemporary researchers
have repeatedly documented no safe blood lead level (BLL) in children [15,17,18], indicating that
any early-life exposure to Pb, even in minute quantities, leads to sustained neuropathological
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alterations [19–22]. Because of the disproportionate incidence of Pb exposure in children, it is
not surprising that the majority of epidemiological research on the health effects of Pb has been
focused on children [13,15,23,24]. There are a number of factors responsible for this. First, children
exhibit an increased gastrointestinal absorption of Pb [7,25]. Second, their behavior and lifestyle
(more hand-to-mouth activities and outdoor time, as well as physical proximity to ground level)
increase the likelihood of Pb exposure from contaminated soil and dust [19]. Moreover, children’s
immature nervous system is particularly vulnerable to Pb toxicity because of a developing blood–brain
barrier (BBB) [6,26]. The neurodevelopmental phenomena of cell division, migration, synaptogenesis,
synapse pruning, and the formation of neuronal–glial interactions occur during critical periods in fetal
and early childhood, and Pb can suppress all these processes [7,26]. It is therefore not surprising that
early-life Pb exposure can have detrimental effects on neurodevelopmental trajectory and long-lasting
implications for neurocognition [7,26,27]. It should be noted that Pb neurotoxicity is exacerbated by
concomitant exposure to other neurotoxicants [28]. For the purpose of this review, however, we solely
concentrate on the Pb-mediated effects. Interestingly, Pb exposure in children can also reduce the intake
of essential nutrients, as indicated by a strong negative correlation between BBLs and dietary iron
intake [29,30], signifying the potency of the multiple and sometimes indirect effects of Pb exposure.

2.1. Sources of Pb Exposure in Children

Sources of Pb exposure are mainly environment-dependent but are highly varied. The exposure
of children from mothers who have been exposed occupationally [31], for example, can be through
the placenta in utero and through breast milk [32–36]. Dwelling in geographical locations, such as
mines and smelters [37,38], industrial sites [39,40], and waste sites [41], have also been known to result
in significant elevations in BLLs in children. Socioeconomic status is another key determinant that
increases the likelihood of early-life exposure to Pb [40,42,43]. This might be due to low nutritional
status and increased likelihood of exposure to Pb, e.g., from the air or in low income accommodation
containing lead paints [7,44]. In particular, a poor diet and deficiency of essential nutrients, such as
milk products, are critical predictors of the Pb burden and BLLs [45]. Parental and community factors,
such as parental education and occupation, number of siblings, standard of living indices, living in
a crowded neighborhood, exposure to tobacco smoke, and playing outdoors, might also explain
the association between socioeconomic status and Pb burden in children [37,46–48]. Interestingly,
recreational activities like shooting have also been shown to result in Pb exposure and elevated BLLs
in humans, including high school students [49]. Moreover, dietary exposure to Pb in wild gamebirds
shot with lead ammunition significantly increases BLLs in children concomitantly with reductions in
intelligence quotient (IQ) levels [50]. Lastly, man-made disasters, such as wars and military assaults
on civilian populations, contribute tremendously to the likelihood of heavy metal neurotoxicity in
children. This is particularly concerning for the besieged Palestinian population in the Gaza Strip who
have endured three successive wars in the recent years [51–54].

It is of interest to note that genetic factors can predispose children to Pb-mediated effects
on neurodevelopment and behavioral outcomes. Polymorphisms in the δ-aminolaevulinic acid
dehydratase (ALAD) and vitamin D receptor (VDR) genes may potentially modify the effects of Pb
exposure [55]. Gender is another critical factor that might contribute to the Pb burden and its effects in
events of early-life exposure [56,57].

Conclusively, while this means that Pb neurotoxicity in children is dependent on a number of
environmental factors (and genetic factors to some extent), considerable efforts are needed to reduce
the risk of exposure at several levels [14,28,36,58,59]. Legislative measures, particularly concerning
leaded gasoline, have indeed aided in reducing the incidences of Pb exposure [60–62]. Other factors
such as improved protocols for pediatric screening by primary care givers might also prove to be
helpful in this regard [63].
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2.2. Neurobehavioral Effects of Early-Life Pb Exposure

Widespread studies in diverse environments have been conducted to understand the physiological
implications of Pb exposure and elevations in BLLs in children. Multiple effects have been found
to underlie the pathophysiology of Pb intoxication in children that manifest early in the subjects’
lives and predisposes them to development of neurological and psychological diseases much later in
adulthood [7,26].

General cognition outcomes, as well as IQs, have been found to be correlated with BLLs in
children [7,19], and the severity of deficits as measured by decrements in IQ points parallels the
elevations in BLLs [22,64]. The steepest decrements in IQs have been observed to occur at BLLs in
excess of <100 µg/L [19]. Fetal exposure to Pb has also been observed to induce an adverse effect on
neurodevelopment, with observable deficits even at two years of age [35]. Similarly, a prospective
study showed that a low exposure to Pb early in the life at 18–30 months of age resulted in a persistent
decrease in IQ up to four-to-six years of age [65]. Consistent with the notion that early-life Pb exposure
can have detrimental effects on neurodevelopmental trajectory and long-lasting implications for
neurocognition, Baghurst et al. reported prenatal Pb exposure to have a lingering inverse effect on IQ
levels for children up to seven years old [66] and further effects at up to 11–13 years [67] in children
of the lead smelting community of Port Pirie, Australia. In a nine-year prospective study conducted
in children based in Taiwan, BLLs were found to be significantly correlated with decreasing IQs,
as well as delayed cognitive development, at five-to-eight years of age [68]. An inverse association
of intellect function in children measured by an IQ-based assessment with BLL was found in a
population of Italian adolescents [69]. Apart from general cognition, a strong inverse relationship
between postnatal Pb exposure and executive functioning and goal-oriented problem solving (involving
working memory, cognitive flexibility, attention/inhibition, and unitary executive functions) in children
has been observed [21,70]. Even infants aged less than six months with prenatal exposure to Pb
elicited strong neurobehavioral abnormalities [28]. Other aspects of child intelligence that are adversely
affected by pre- and post-natal exposure to Pb include reading/language and arithmetic skills [56,71–73],
nonverbal reasoning [32], reaction times [72], visual–auditory integration, visual–motor integration,
and fine motor skills [71,74,75], as well as short term memory [7,70–72]. Lastly, a prospective cohort
study in a New Zealand population born in 1972–1973 with possibly the longest follow-up period
(four decades) to assess the effects of early-life Pb exposure confirmed the persistent effects of childhood
Pb exposure, as indicated by a strong correlation between childhood BLLs with deficits in cognitive
functions (perceptual reasoning, working memory, and IQ) and decline in socioeconomic status at
38 years [76].

Exposure to environmental and dietary Pb has been proposed to be a significant risk factor for
attention deficit hyperactivity disorder (ADHD) in children, which is characterized by inattention,
impulsivity, and hyperactivity [77,78]. Thus, using a child behavior assessment rating scale,
Boucher et al. found that low levels of childhood Pb exposure were associated with ADHD behavior [79].
Other studies have also proposed a significant link between Pb burden, clinical ADHD cases,
and AHDH-like behavior in children [28,70,80,81]. Interestingly, children with medically diagnosed
AHDH conditions and controls dwelling near the Pb investigation area of a former refinery showed an
association of BLL (but not blood Hg and Cd levels) with the disorder, indicating an elevated risk due
to postnatal Pb, but not Hg or Cd, exposure [82]. Consistent with these findings, a questionnaire- and
performance-based assessment of Romanian children found significant associations of ADHD-like
behavior with BLL but not with other toxic metals, notably Hg and Al [83]. Interestingly, animal
studies have also provided evidence for similar hyperactivity and attention deficits in rodents exposed
to Pb [84–87].

ADHD-like behavioral attributes are considered as major risk factors for delinquent behavior
including drug abuse later on in life. Indeed, childhood Pb exposure has been observed to be
associated with substance abuse as adolescents [88,89]. Elevated Pb burden, as assessed by bone [90]
and blood [89] Pb levels, has been associated with aggression and antisocial behavior in arrested
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juveniles. An association of delinquency, as measured by hostility, disruptive behavior, and difficulty
in emotional regulation and processing of emotional cues with low BLLs, has also been observed in
9–11-years-old children from the Environmental Exposures and Child Health Outcomes (EECHO)
project in the US [91]. An association of emotional problems in children with BLLs was also proposed
in an independent study [92]. Predisposition of children to neuropsychiatric stress and anxiety by Pb
exposure has been confirmed in a study conducted on young children in Chennai, India; wherein
higher incidence of anxiety was observed as a function of BLL [70]. Delinquent behavior and emotional
problems are often found to be associated with disruptions in signaling at the hypothalamus pituitary
adrenal (HPA) axis [93,94]. Not surprisingly, models of developmental Pb exposure in animals have
supported the hypothesis of neurodevelopmental alterations in emotional regulation via functional
alterations in the HPA axis response system [95–98].

The incidence of autism spectrum disorders (ASD) in children is also often associated with early-life
Pb exposure and elevations in BLLs [28,58,99]. In fact, the degree of autism severity may strongly
correlate with Pb levels in hair and nail samples [100]. Schizophrenia is another disease that is heavily
influenced by gene–environment interactions. There is evidence that early-life exposure to Pb can
predispose individuals to develop psychiatric conditions like schizophrenia later in the life [101–103].
Indeed, developmental Pb exposure in experimental animals recapitulates certain behavioral and
neuropathological characteristics of schizophrenic conditions, such as the disruption of the ontogenetic
switch of N-methyl-D-aspartate receptor (NMDAR) subunits, the selective loss of parvalbumin-positive
γ-aminobutyric acid (GABA)ergic interneurons, and the hyperactivity of subcortical dopaminergic
system [104,105]. Moreover, Pb exposure in mutant disrupted-in-schizophrenia 1 (mDISC1) has
provided further electrophysiological and behavioral evidence in support of developmental Pb as a
risk factor for neuropsychiatric conditions [106].

Alzheimer’s disease (AD) is among the most common causes of dementia in the aged population.
Noteworthy, most AD cases are sporadic in nature and influenced by a range of genetic and
environmental factors. Recent epidemiological studies suggest an association of Pb burden and
AD dementia (reviewed in [107,108]). Childhood Pb exposure, particularly in the critical period,
leads to permanent alterations in nervous system functions, and this might extend to predisposing
the brain to ageing-induced neurodegeneration, such as AD [109]. Indeed, evidence from studies
conducted in zebrafish, rodent, and non-human primate models by Zawia’s and other research groups
has supported the proposition that developmental exposure to Pb can result in an increased risk of
developing AD pathology later on in life. Importantly, developmental Pb can result in alterations
(at protein and gene levels) of the major players involved in the regulation of both of the major
pathogenic species of AD (amyloid-beta and hyperphosphorylated tau) [110–122].

3. Molecular and Cellular Mechanisms of Developmental Pb Neurotoxicity

The neuropathological pathways of Pb toxicity in the developing brain have been extensively
studied. Pb2+ mimics and substitutes for essential divalent cations like Ca2+ and Zn2+. In fact,
the cellular entry of Pb2+ is dependent on Ca2+-permeant channels [18]. Because most of its
deleterious effects on cellular physiology stem from its ability to substitute essential divalent cations
like Ca2+ and Zn2+, Pb can influence a plethora of wide-ranging aspects of cellular physiology [18].
In the brain, particularly the developing brain, Pb can affect almost all of the processes critical
to neuronal functions, such as pre- and post-synaptic functions, redox homeostasis, calcium
regulation, protein homeostasis and signaling, epigenetics, genotoxicity and gene expression regulation,
neuroinflammation, lipid metabolism, mitochondrial functions, and metabolism. Because there are
several excellent reviews extensively describing the molecular and cellular aspects of Pb neurotoxicity,
both alone [8,123–134] and as a component of toxic metal mixtures [135–137], we do not attempt to
summarize them again in this review.
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4. Ascorbic Acid (AA): Structure–Function

Ascorbic acid (AA) or vitamin C is water-soluble hexanoic sugar acid required for the normal
healthy functioning and repair of every tissue type, mainly due to its function as a key endogenous
antioxidant and a cofactor for enzymatic reactions [138,139]. Many animals can produce AA from
glucose in the liver. However, because of the lack of a functional enzyme in higher primates including
humans, AA is not synthesized endogenously and, hence, is an essential vitamin [140]. Significant
presence in many fruits and vegetables commonly consumed by humans means that the physiological
requirement for AA can normally be met satisfactorily. However, things can get complicated in cases
of pathophysiological insults, a befitting example being that of scurvy [141].

At physiological pH, AA occurs as a monovalent anion, ascorbate. As a lactone with an
enediol group, it can donate electrons to convert to its neutral form, dehydroascorbate, which is
formed upon the two-electron oxidation of ascorbate (Figure 1). Most biologically relevant oxidizing
free radicals, however, result in one electron oxidation of ascorbate to form an ascorbyl radical or
semi-dehydroascorbate. The ability to undergo transition to semi-dehydroascorbate by the action of
free radicals actually forms the basis for the antioxidant property of AA and its capability to scavenge
free radicals. Moreover, because ascorbate has a low redox potential, it can act as a broad-spectrum
scavenger against free radicals such as peroxyl- and hydroxyl-radicals, superoxide, singlet oxygen,
and peroxynitrite [142–145]. The recycling of both dehydroascorbate and semi-dehydroascorbate
into ascorbate occurs by the action of glutathione and other intracellular thiol redox systems such as
thioredoxin [146–149]. The antioxidant property of AA is singularly important for brain tissues because
of a high rate of energy consumption, a high rate of metabolic activity, and a high polyunsaturated fatty
acid content, all of which make it particularly vulnerable to oxidative damage. It is noteworthy that
the antioxidant free scavenging activity of AA is not limited to the aqueous phase but also includes the
protection of membranes and hydrophobic compartments through interaction with vitamin E [150,151],
making it the first line of antioxidant defense [140].
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Figure 1. Ascorbate oxidation and recycling. Ascorbate is converted to an ascorbyl radical or
semi-dehydroascorbate upon the loss of an e−, which is further oxidized to dehydroascorbate. Both the
ascorbyl radical and dehydroascorbate can be recycled back to a monovalent, negatively-charged
ascorbate ion by the action of enzyme coupled reactions utilizing thiol-based antioxidants such as
glutathione and thioredoxin.

The electron donating ability of ascorbate is also responsible for its ability to serve as an enzyme
cofactor for redox-coupled reactions in collagen biosynthesis [152,153], noradrenaline–adrenaline
synthesis [154] and biosynthesis of neuroendocrine peptides [155]. It should be noted that AA can act as
a pro-oxidant in vitro and in the active sites of biosynthetic enzymes by virtue of acting as a reductant
for redox-active transition metal ions such as ferric and cupric ions [156]. However, free ferric and
cupric ions that are required for the pro-oxidant effects of AA are largely sequestered in forms unable
to catalyze free radical reactions, at least in the healthy body [156,157]. Indeed, the in vivo pro-oxidant
activities of AA, even in the presence of free, catalytically-active metal cations, have not been confirmed
in physiological conditions [140,156,157]. In this respect, it should be noted the debate for in vivo
pro-oxidant effects of AA have mainly relied upon a controversial study entitled “Vitamin C exhibits
pro-oxidant properties” published in Nature, which reported elevated levels of DNA damage markers
in human volunteers supplemented with AA [158]. However, serious questions have been raised
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regarding the results and their implications [159,160]. Furthermore, two major observations have
supported the predominant role of AA as an antioxidant in vivo. First, AA is depleted in pathological
states associated with an oxidative stress, and second, the lethality of glutathione deficiency in newborn
rodents can be prevented by high doses of AA. Not surprisingly, animal and human supplementation
studies have consistently supported an antioxidant function of AA with and without oxidative challenge,
as evidenced by an evaluation of the markers of oxidative damage to DNA, lipids, and proteins [157].
Lastly, it should be noted here that in vitro pro-oxidant effects are not limited to AA. Some well-known
reducing agents, such as glutathione and plant flavonoids, have often been found to exert damaging
pro-oxidant effects when mixed with ferric or cupric ions [156,161,162].

5. Safety of AA

Upon the dietary intake of AA, its plasma concentration is tightly controlled at <100 µM in
humans [163]. Increased amounts of ingested AA do not lead to a proportional increase in plasma
AA levels; instead, it reaches a maximal upper limit due to a reduction in its intestinal absorption
and an increase in its renal clearance [164,165]. While this may mean that there is no pharmacokinetic
justification of using high doses of ascorbic acid, it also indicates that AA administration, even in
megadoses, is practically harmless [164,166–171]. In fact, the safety of AA can be judged from the
fact that the consumption of 10,000 mg AA daily for three years does not lead to any adverse health
effects [172]. Moreover, claims of adverse effects of AA supplementation in higher doses have not
been substantiated. For a more detailed comprehension of the pharmacokinetics of AA, readers are
suggested to refer to an excellent recent review [173].

It should, however, be noted that recent studies have suggested that sustaining higher plasma levels
of AA may be possible by using the oral infusion of liposomal AA [174]. Interestingly, recent studies
have outlined the preparation of novel oral liposomal formulations of AA with increased bioavailability
and improved antioxidant efficiency [175,176].

6. AA in the Brain

While AA is distributed throughout the body, the brain has the highest levels of and greatest
retention capacity for AA [177–180], particularly the fetal brain [181]. Compared to the AA levels of
50 µM in plasma, AA is present at concentrations of 500 µM in cerebrospinal fluid (CSF) and 200–400 µM
in extracellular fluid (ECF), highlighting presence of an active AA uptake in the brain. Indeed, the major
carrier mechanisms for AA are the secondarily active specific transporters, the sodium-dependent
ascorbate transporters (SVCT1 and SVCT2). While SVCT1 is responsible for the absorption of AA in
the gut and its renal retention [138,140], SVCT2 has a high expression in the central nervous system
(CNS), including the epithelial cells of the choroid plexus, and manages the uptake of AA from the
blood into the CSF [182–184]. AA may also accumulate in extracellular fluid via simple diffusion
across the BBB [185]. Moreover, ascorbate entry across the BBB is thought to occur by facilitative
glucose transporter 1 (GLUT1), which requires the conversion into its neutral oxidation product,
dehydroascorbate [186]. Dehydroascorbate is reconverted to ascorbate once inside the cells [187].
This route, however, may only be a minor pathway for ascorbate transport [183].

From the CSF, AA equilibrates with ECF and is accumulated in neurons and glia, where its
concentration can reach up to 1 mM in glia and 10 mM in neurons [178,188]. The uptake of AA
by brain cells is again mainly mediated by SVCT2 [184,189]. Neuronal and ECF levels of ascorbate
can also be regulated by a glutamate–ascorbate hetero-exchange mechanism, possibly involving
glutamate receptors [190,191]. In general, ascorbate content in neuron-rich grey matter is much
higher than that in white matter, which is evident from its higher levels in anterior brain regions
(cerebral cortex and hippocampus) and progressively lower levels in posterior regions (brain stem
and spinal cord) [178]. There is also evidence that astrocytes rely on the GLUT-mediated transport
of dehydroascorbate for regulating their intracellular AA levels [189,192]. Since, unlike the active
SVCT-mediated ascorbate transport, the facilitated diffusion of dehydroascorbate via GLUTs is
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bidirectional, glial cells can regulate the levels of dehydroascorbate both intracellularly and in the
vicinity of the synaptic contacts [138,193]. This is particularly important in the activity-induced
brain state. Upon the stimulation of neuronal activity, AA is released from glial reservoirs into
extracellular space [194,195]. AA in the synaptic cleft is taken up by neuronal terminals using SVCT2
(Figure 2) [196], where it is utilized for scavenging oxidizing free radicals. The consequently formed
dehydroascorbate is then released in to the extracellular space by GLUTs [193,197], from where it is
taken up by astrocytes through facilitated diffusion via GLUTs [193,197] and is then recycled back to
ascorbate using glutathione and other antioxidant systems [140,198]. To this end, it seems logical to
assume that a high concentration of AA in the brain (particularly in neurons) is an allostatic measure
to match the higher oxidative metabolism rate, thus indicating that AA may act as a major endogenous
antioxidant that maintains redox homeostasis [140,199]. Indeed, neurons have a much higher oxidative
metabolic rate and lower level of redox resistance relative to glia [200]. In fact, neurons may be
particularly sensitive to AA deficiency because of higher rates of metabolic activity [138,196].
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Figure 2. Ascorbate uptake and metabolism. Asc: Ascorbic acid in its anionic ascorbate form; GLUT:
glucose transporter; SVCT: sodium-dependent ascorbate transporter; CSF: cerebrospinal fluid; DHA:
dehydroascorbate; X•: free radical species; XH: reduced/scavenged radicals. Ascorbic acid enters the
CSF in its anionic ascorbate form (Asc) through the choroid plexus via SVCT2 in the epithelial cells
and as dehydroascorbate (DHA) through the GLUTs across the BBB. The entry of Asc in neurons is
also mediated by SVCT2, wherein it scavenges various free radicals (X•) upon its oxidation to DHA.
Neuronal DHA is released into the extracellular fluid for uptake by astrocytes via the GLUT-mediated
transport. DHA is then recycled back to Asc for its own need or release into the extracellular space for
uptake by neurons.

From the neuronal perspective, AA can act both as a neuromodulator [201–203] and
a neuroprotectant [139,178,180]. The modulation of neurotransmission by AA is known to
occur at cholinergic, catecholaminergic, and glutamatergic synapses, wherein it can influence
neurotransmitter release, binding, and uptake, and serves as a cofactor for their biosynthesis [204].
Neuroprotection mediated by AA in neuropathological states also occurs in a multimodal fashion.
Apart from its described-above antioxidant functions, AA has anti-inflammatory and anti-depressive
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functions, as well as modulatory actions on epigenetic and gene expression mechanisms (reviewed
in [139,140,199,204–207]).

Surprisingly, relatively little attention has been paid to the role of AA in CNS development
and maturation [138]. AA is known to influence the myelination and differentiation of neuronal
progenitors [208–213]. Equally important is the modulation exerted by AA at the DNA level during
brain development [206,214,215]. It is of interest to note that the targeted deletion of SVCT2 (the major
AA-specific transporter in the brain) and the consequent diminishment of brain AA to low-to-undetected
levels result in death of newborn mice shortly after birth [138], thus indicating a major role of AA in
the development of the brain and CNS function.

On the other hand of the developmental spectrum, plasma AA might be associated with improved
memory and cognition in aged populations and, in fact, may reduce the incidence of AD, although this
remains controversial [216]. Interestingly, the ex vivo uptake of AA is retarded in acute hippocampal
slices in aged rats; consequently, even exogenous application of AA does not alleviate oxidative
stress in these animals [217]. Further evidence for a relationship between brain AA uptake and
metabolism in exacerbating ageing-related pathologies of the brain has come from two recent studies.
The first study provided evidence for impaired SCVT2 functions and a consequent deficiency in the
neuronal uptake of AA in cellular and mouse models of Huntington’s disease [196]. The second
study illustrated increased susceptibility of a transgenic mouse model of AD to kainic acid-induced
seizures by decrement in AA uptake mediated by the partial knockout of SCVT2 [218]. Data from
these studies suggest that a disruption in AA uptake and metabolism in the brain may be a common
feature of ageing-related neurodegeneration. It is of note that AA was found to concomitantly instigate
hippocampal neurogenesis in an experimental rat model of d-galactose-induced brain ageing with the
restoration of hippocampal-dependent memory functions [219]. Indeed, aged human subjects with
dementia and AD-like symptoms have reduced plasma AA levels [220,221], and supplementation
with AA may be beneficial in reducing the risk for the development of AD [222]. Interestingly, in a
study conducted in hospitalized, acutely-ill aged patients, AA deficiency was found to be significantly
associated with symptoms of depression [223], indicating that AA deficiency in ageing may elicit
multiple neurocognitive consequences.

7. AA as a Potential Ameliorative Agent in Pb Neurotoxicity

How effective is AA against Pb neurotoxicity? Mechanistically, AA can influence Pb-induced
effects by multiple means, e.g., the chelation of Pb2+ ions that results in both reduced absorption
in the gut and increased renal excretion. Is it of note that AA fulfils all the criteria for being an
effective chelator against Pb2+ due to its (1) water solubility, (2) resistance to metabolic degradation,
(3) ability to access metal storage sites, (4) prompt renal excretion, (5) retention of its chelation ability at
a physiological pH, and (6) ability to reduce the toxicity of the metal upon formation of a complex with
it [224]. Animal studies have supported the idea that orally administrated AA can chelate Pb and both
increase its urinary clearance and reduce its intestinal absorption [225–228], as detailed in Section 7.2.
Moreover, AA also reverses oxidative damage induced by Pb (see Section 4). In fact, AA also fulfils all
the three criteria for acting as an effective antioxidant in Pb poisoning due to its abilities to (1) retard
generation of free radicals and inactivate radical chain reaction; (2) chelate Pb2+ and prevent further
radical generation; and (3) activate other endogenous antioxidant systems [229]. Indeed, animal
studies have provided unequivocal evidence that AA both reduces oxidative damage and augments
endogenous antioxidant potential in events of Pb exposure. Because of its multimodal effects, AA has
unsurprisingly been proposed as a potential detoxifying agent in Pb toxicity (Figure 3) [4,229–231].
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Figure 3. Mechanisms of ascorbic acid-mediated neuroprotection in Pb neurotoxicity. Stemming
from its ability for metal ion chelation, antioxidant potential, and neuromodulation function, ascorbic
acid attenuates Pb neurotoxicity in a multimodal manner, ranging from decreasing the Pb burden to
alleviating biochemical and neurobehavioral deficits.

What are the advantages of AA over commonly used therapeutic agents against Pb neurotoxicity?
The most commonly used antidotes for Pb toxicity are metal chelators, calcium disodium ethylene
diamine tetra-acetic acid (CaNa2EDTA), and 2,3-meso-dimercaptosuccinic acid (succimer) [232,233].
However, the usage of these agents is rife with problems, such as delivery, bioavailability,
and non-specific actions and toxicity. Hence, they may not be suitable in high-dose and long-term
treatments [226,232–237]. This issue is especially important for cases where the subjects cannot be
moved away from the sources of poisoning. Moreover, the use of chelators is not recommended in
children, particularly for mild Pb exposure, which comprises majority of the cases [58,234]. In fact,
chelation therapy in Pb-exposed children has not shown any benefits in reducing BLLs over time
or stimulating cognitive, behavioral, and neuromotor attributes [24,238,239]. Interestingly, the use
of succimer during pregnancy might actually enhance Pb-induced fetal developmental toxicity in
mice, while Ca and AA reduce the maternal transfer of Pb to a fetus [240]. Hence, more attention
should be given to safe and efficient natural dietary supplements. AA excellently fulfils the criteria in
these respects.

7.1. Human Studies

Many human studies have provided evidence for the suitability of using AA as an ameliorative
therapeutic agent in Pb exposure. Interestingly, the beneficial effects of AA in human Pb poisoning cases
have been known since late 1930s. Thus, two case studies reported significant clinical improvements
among a population of workers with occupational Pb exposure after the daily administration of
AA [241,242]. Much later, Papaioannou et al. reported a reduction in BLLs in battery industry
workers upon supplementation with 2 g of AA and 60 mg of zinc per day—importantly, while the
workers were still on the job and constantly exposed to a Pb-rich environment [243]. Consistent with
those studies, the amelioration of occupational Pb toxicity in a small sample of 36 Indian battery
workers by AA supplementation (500 mg/day for a month) was observed, as evidenced by the
reduction in the oxidative stress markers of lipid peroxides and nitrites in serum and the stimulation
of antioxidant parameters, erythrocyte superoxide dismutase, and catalase; however and surprisingly,
these effects occurred with no reduction in BLLs [244]. Ademuyiwa’s group conducted a series of
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studies on the effects of AA supplementation in Nigerian workers who were occupationally exposed
to Pb. AA administration to auto-mechanics and attendants in petrol stations at a daily dose of
500 mg for two weeks resulted in marked decreases in BLLs, incidentally with increased urinary
Pb excretion [245–248]. The AA-mediated reversal of the biochemical effects of Pb toxicity—such as
reversal of elevated plasma, urine δ-aminolaevulinic acid (ALA), and glutathione levels; inhibition of
ALAD; increased erythrocyte protoporphyrin; amelioration of ionoreglatory disruptions; inhibition
of erythrocyte Ca2+-Mg2+-ATPase; and alterations in plasma Ca2+ and Mg2+ levels—have also been
observed [245–247]. In a more recent study conducted in Mexican workers occupationally exposed to
Pb, prolonged administration of AA significantly lowered BLL; restored blood ALAD activity, total
antioxidant capacity, and the activities of antioxidant enzymes (such as superoxide dismutase (SOD),
glutathione reductase (GR), and glutathione peroxidase (GPx)); and repressed blood oxidative damage,
as assessed by lipid peroxidation products [249]. Pb-induced testicular dysfunction, as assessed by
sperm parameters and sperm DNA fragmentation in workers from the battery-manufacturing industry
from India, was found to be significantly reduced by AA supplementation at a dose of 1000 mg/day,
five days per week, for a duration of three months [250]. Oral administration of 500 mg of AA daily
for a month resulted in marked decreases in BLLs in Indian silver refiners who were occupationally
exposed to Pb, in parallel with the reversal of the inhibition of the blood ALAD activity and increased
blood Cu and Fe levels [251].

AA’s relationship with Pb in human subjects with nonoccupational and mild Pb exposure
(including pregnant women and children) has also been characterized. For example, Sohler et al.
conducted an uncontrolled trial and observed the effects of combined zinc and AA administration
with a marked reduction of BLLs in a population of over 1000 psychiatric outpatients [252]. AA was
also found to decrease BLLs in 85 subjects who volunteered to consume Pb-spiked drinks [253].
In another study conducted on heavy smokers, AA administration for a week had a pronounced
(>80%) decrease in BLLs, but urinary Pb levels were not affected, compelling the authors to propose a
reduced absorption of Pb [254]. Two other studies observed mild but nonsignificant decreases in BLLs
upon the administration of AA [255,256], possibly due to the small sample size of their respective
studies. After adjusting for age, education level, smoking, and alcohol consumption, the dietary intake
of AA was found to be inversely correlated with BLLs in a population of over 700 male adults aged
between 49 and 93 [257]. In one of the most prominent studies, Simon and Hudes conducted a large
scale (over 19,000 subjects) population-based study in both American youths and adults, and they
reported an independent inverse relationship between serum AA and BLLs among subjects [258],
thus suggesting that a higher intake of AA may be effective in preventing Pb toxicity. Importantly,
adults in the upper two quartiles of serum AA levels were found to have 65% and 68% less chances of
eliciting high BLLs. Moreover, children in the highest serum AA quartile were found to be 89% less
likely to have increased BLLs when compared to children in the lowest quartile for AA levels [258].
This study made the first significant contribution to the analysis of a relationship between AA and Pb
with a large human sample size [259]. In another study with pregnant women, a significant reduction
in BLLs was observed upon vitamin and mineral supplementation, with negative correlations between
blood AA levels and BLLs in both supplemented and non-supplemented women [260]. It has been
suggested that AA as a nutritional factor may be critical in the determination of BLLs in young
children [259]. Indeed, AA supplementation has been shown to reduce the Pb burden in rural children,
as assessed by Pb content in their hair samples, possibly by increasing the urinary excretion of the
Pb–ascorbate complex [231]. In pregnant women, the supplementation of AA in combination with
calcium phosphate was found to reduce the Pb burden in the placenta by 90% and in mothers’ milk by
15% [261]. In an urban population of Korean adults with the supplementation of dietary antioxidants,
an increase in AA levels was significantly correlated with decrease in BLLs and the urinary oxidative
stress marker 8-hydroxy-2′-deoxyguanosine (8-OHdG) [262]. In an interesting study combining clinical
and animal data, Jin et al. observed significant ameliorative effects of AA (in combination with succimer
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and calcium supplementation) in early-life, mild Pb toxicity with significant reversals of Pb burdens in
blood and bones and blood ALAD activity [263].

7.2. Animal Models: Reducing Pb Burden and Amelioration of Neuropathological Defects

Among the first studies that probed the effectiveness of AA as a prophylactic agent in reducing the
Pb burden in experimental animals, Rudra et al. found partial rescue effects of AA supplementation in
Pb-poisoned rats in terms of Pb burden and AA metabolism [264]. Suzuki and Yoshida found that
dietary AA (upon co-administration with Fe) reduced the Pb burden in the liver, kidneys, and tibia
bone, and it also reduced anemia and growth deficits in growing rats challenged with Pb for short [265]
and moderately long terms [266], although the curative effects in the long term regime were only
modest. An experimental model of chicks surprisingly did not show any interaction between AA and
Pb [267]. Goyer and Cherian observed an increased urinary excretion of Pb and a reduced Pb burden in
the blood, bone, brain, kidney, and liver in Pb-exposed, one-month-old rats treated with a combination
of AA and EDTA [268]. An independent study also confirmed AA-mediated stimulation of the renal
clearance of Pb and a consequent decrease in BLLs in rats [225], attesting to the proposed role of AA as
a potential therapeutic agent in Pb poisoning. Consistently, a number of publications by Tondon and
co-authors in the late 1980s also provided evidence supporting the effects of AA as a protective agent
as part of a combinatorial supplementary regime on the reduction of the whole body Pb burden in
multiple organs of experimental animals challenged with Pb [224,269,270]. In a study conducted in
New Zealand, Dalley et al. found a strong prophylactic effect of AA supplementation in reducing the
Pb burden in the femur bone, liver, kidney, and plasma of rats challenged with intravenous Pb [226].
A combinatorial therapeutic strategy against Pb exposure in drinking water in mice consisting of a
supplementation of succimer, Ca, and AA was found to achieve significant ameliorative effects on the
mobilization of blood, renal, hepatic, and brain Pb, as well as blood ALAD activity [271]. Collectively,
data from these studies indicate that AA, particularly as part of a combinatorial therapeutic strategy,
is efficient in reducing the Pb burden in multiple organs in animals challenged with Pb insults.

Recent studies have extended the knowledge base of AA–Pb interactions with respect to the
ameliorative mechanisms involved at the behavioral, electrophysiological, and biochemical levels.
For example, chronic intraperitoneal infusion of AA was found to rescue electrophysiological deficits in
synaptic transmission (both spontaneous and evoked) in the neuromuscular junctions in the dorsiflexor
skeletal muscle of mice exposed to Pb, thus indicating the protective roles of AA against Pb in
peripheral nerves [272]. AA has also been shown to attenuate Pb-induced deficits in neurobehavior,
such as memory-dependent cognitive functions including novel object recognition [273], anxiety,
and aggression [274]. The assessment of a range of antioxidant nutrients for their effectiveness in
reducing the Pb burden in adult mice identified AA as one of the promising chelating antioxidant
nutrients with the capacity to reduce BBLs to almost 60% without any adverse effects on Ca, Fe, and Zn
absorption [275]. The amelioration of Pb-induced oxidative stress in rat brains has also been proposed
in other studies [230,274,276–278].

7.3. Animal Models: Developing Brain

Several animal studies have indicated that AA may serve as an effective ameliorative agent
in events of gestational and lactational exposure to Pb. AA, as part of a dietary supplemental
regime, was recently shown to reduce BLLs and reverse serum ALAD activity levels in juvenile mice
pre-exposed to Pb with the consequent alleviation of deficits in behavior and redox homeostasis,
importantly without eliciting any unwanted side-effects [233]. In juvenile rats co-exposed to lead
and chlorpyrifos, an organophosphate insecticide, the administration of AA resulted in a marked
reduction in oxidative damage concomitantly with the reversal of neurobehavioral and sensorimotor
deficits [279]. An enriched milk formula consisting of AA and other antioxidants reduced BLLs and the
Pb burden in organs such as the liver, kidney, bones, and brain in mouse pups exposed to Pb, along with
ameliorative effects on blood ALAD, protoporphyrin, and thiobarbituric acid reactive substances
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(TBARS) levels [280]. The AA-mediated rescue of brain oxidative damage induced by perinatal
exposure to Pb in rat pups was confirmed upon coadministration with a mixture of antioxidants
including vitamin C and E during pregnancy and lactation [229]. In the follow-up study, the authors
found further evidence for AA as a potential therapeutic agent with the partial reversal of deficits
in ALAD activity, as well as the activity of catalase enzyme and levels of TBARS, in the same model
of early-life Pb exposure [281]. In addition to lowering the Pb burden in the brain, Ghasemi et al.
found neuroprotective effects of AA supplementation in juvenile rats exposed to Pb on oxidative stress
markers, oxidized thiols, and TBARS, as well as spatial memory tested in a Morris water maze and
passive avoidance learning [282,283]. Memory deficits in rat pups induced by chronic Pb exposure
during gestation and lactation have been shown to be attenuated by AA and AA-rich traditional
medicine lemon balm (Melissa officianlis) with comparable prophylactic effects, indicating AA as the
major neuroprotective agent in Melissa [284]. A histopathological evaluation of young adult rats
revealed that the intragastric intubation and oral supplementation of AA rescued Pb-induced effects
on brain edema, satellitosis, monocytic aggregation, and encephalomalacia [285]. In an early-life Pb
exposure model with gestational and lactational Pb exposure, AA in combination with fresh garlic juice
extract was found to efficiently reduce blood and brain Pb levels, as well as to attenuate the detrimental
effects of Pb-induced neurogenesis, as observed by doublecortin immunostaining [286]. Concomitant
with a reduction in BLLs, retinal apoptosis, as assessed by terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) staining was found to be significantly attenuated by AA alone and with the
coadministration with garlic juice extract in a developmental model of Pb toxicity in rat pups [287].
Moreover, there were AA-mediated protective effects on hippocampal long-term potentiation (LTP),
with both population spike amplitude and slope of excitatory postsynaptic potentials), possibly due
to reduced oxidative stress and an increase in antioxidant potential in rats challenged with Pb [288].
Consistently, AA alone or in combination with vitamin E was found to reduce oxidative damage and
rescue deficits in endogenous antioxidant enzymes, such as GPx and SOD, in the hippocampi of rats
challenged with Pb. In addition, the authors observed the attenuation of Pb-induced dysfunction in
nitric oxide synthase (NOS) [289]. The preventive effects of AA in young adult rats challenged with Pb
on biochemical antioxidant and signaling components (SOD, NOS, NO, Ca2+/calmodulin-dependent
protein kinase II (CamKII), and cAMP response element binding protein (CREB)) in the hippocampus
were reported and paralleled with the amelioration of spatial memory deficits in a Morris water maze
test [290]. Other studies have also found ameliorative effects of AA alone and upon coadministration
with a garlic juice extract on hippocampal apoptosis and neuronal degeneration in all the three major
subregions (CA1, CA3, and dentate gyrus) examined and in a gestational and lactational model of Pb
toxicity in rats [291,292].

Our own studies have provided evidence for the amelioration of early-life (perinatal and
postnatal—from gestational day (GD) 15 to postnatal day (PND) 21) Pb-mediated effects on the
nerve terminals of multiple brain regions, such as cerebral [293], hippocampal [293], and cerebellar
synapses [294], by maternal AA supplementation. In particular, we observed a marked reversal of
Pb-mediated alterations in synaptic bioenergetics with the rescue of defects in the mitochondrial
membrane potential (MMP) and activities of the enzymes of the electron transport chain (ETC) [294,295].
Improvements in endogenous antioxidant pathways (particularly glutathione signaling) concomitantly
with reduced oxidative damage to proteins and lipids were also observed in our model of AA
supplementation in rats developmentally exposed to Pb [294,295]. An independent, recently published
study also observed synergistic actions of AA and Schisandra chinensis extracts, but not AA alone, in the
positive modulation of mitochondrial respiration in normal, wild-type mice [296]. Of note, we also
provided evidence for altered de novo hippocampal protein translation in rats with early-life Pb
exposure, mediated by deficits in signaling through the protein kinase Akt pathway [293]. These effects
were also shown to be rescued by treatment with AA [293], which is consistent with other studies
that have proposed positive modulatory actions of AA on hippocampal Akt signaling. For example,
Fraga et al. found that AA supplementation in unchallenged rats resulted in the upregulation of
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hippocampal synaptic proteins such as synapsin, as well as increased dendritic spine density, maturation,
and performance, in a novelty suppressed feeding test through the activation of the Akt pathway and its
downstream effector 70S6K [297], which phosphorylates and regulates the function of ribosomal protein
S6, a component of the translational machinery. Moreover, anti-depressant-like effects elicited by the
oral delivery of AA have been shown to be mediated by the activation of phosphoinositide 3-kinase
(PI3K) and Akt signaling, as well as the consequent activation of 70S6K that occurs simultaneously with
a sharp elevation in postsynaptic density protein 95 (PSD-95) levels in the hippocampi of two-month-old
young adult mice [298]. AA has also been shown to partially reverse the detrimental effects of maternal
Pb exposure in rat pups on the morphology of hippocampal CA1 neurons, as assessed by Golgi staining
and Sholl’s analysis [299].

In a series of studies, an independent contemporary research group based in South Korea
also provided further evidence in favor of using AA as a therapeutic agent in developmental Pb
neurotoxicity, particularly its effects on cellular apoptosis, endogenous antioxidant enzymes, synaptic
dysfunction, and axonal myelination. Their data suggest that AA induces marked stimulation of the
endogenous antioxidant enzymes Mn and Cu/Zn SODs and catalase in the hippocampi of rat pups
that were gestationally and postnatally exposed to Pb, in parallel with the rescue of degenerating
neurons and attenuation of the induction of the pro-apoptotic protein Bax [300,301]. In follow-up
studies focusing on cerebellar cortices, the authors observed appreciable rescue of cellular degeneration,
as assessed by TUNEL staining by AA administration, concomitantly with the amelioration of the
Pb-induced induction of apoptotic protein Bax [302] and degenerative changes such as the reduction of
glutamic acid decarboxylase 67 (GAD67) and receptor tyrosine kinase c-kit proteins [303]. The authors
further provided evidence for AA-mediated attenuation of Pb-induced effects on glutamatergic
signaling and oxidative stress, as assessed by the expression of the synaptic proteins synaptophysin,
PSD95, NMDA receptor subunit 1 (NMDAR1), and brain-derived neurotrophic factor (BDNF), as well
as antioxidant SODs, in a developmental Pb exposure model [304,305]. Furthermore, reversal of
Pb-induced effects on Purkinje cells in parallel with rescue of Pb-induced alterations in calcium binding
proteins such as calbindin, calretinin, and parvalbumin, as well as γ-aminobutyric acid transporter
1 (GABAT1) [306], osteopontin, Olig2-immunorecative oligodendrocytes, and axonal myelination
(assessed by the expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP))
upon AA supplementation was also reported [305,307]. A recent study corroborates the attenuation
of toxicity of early-life (gestational and lactational) Pb exposure in the cerebellum of rat pups upon
the supplementation of AA by oral gavage by using the assessments of oxidative stress markers and
the antioxidant system, as well as histopathological examinations and tests for neuromotor functions
(forelimb grip and negative geotaxis) [308]. Interestingly, ameliorative effects of AA in Pb poisoning in
the cerebellum of adult rats have also been proposed [309].

8. Other Non-Neuronal Attenuative Effects of AA in Pb Poisoning

It should be noted that the effect of AA in the restoration of Pb-induced toxicity is not limited to
the brain. Indeed, the non-neuronal amelioration of Pb-mediated effects in experimental animals by
AA either alone or in combination with other proposed neuroprotective agents has been observed
in blood biochemistry and hematological parameters [265,306–316], cardiac functions [317], hepatic
physiology [277,285,312,318–324], renal functions [285,310,312,325,326], the colon [327], testicular
functions and spermatogenesis [285,328–332], sperm morphology and physiology [333], thyroid
hormone synthesis [334], the lungs [335], and clastogenicity in bone marrow cells [336–338]. Readers
are suggested to refer to a recent review paper [339] for a brief overview of the non-neuronal effects of
AA in Pb poisoning.

In vitro cell culture systems have also been employed to successfully access the ameliorative
effects of AA on Pb uptake and release [340], Pb-induced genotoxicity and death [341,342], xenobiotics
metabolism [343], and oxidative damage to cellular lipids, the nuclear factor (erythroid-derived 2)
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like 2–Kelch-like ECH-associated protein 1 (Nrf2–KEAP1) antioxidant pathway, and that pathway’s
downstream enzyme effectors [344].

Finally, the dietary supplementation of AA has also been shown to be effective in Pb poisoning
in other experimentational animals such as sea cucumbers (Apostichopus japonicus) [345], rockfish
(Sebastes schlehelii) [346], egg-laying hens [347], and rabbits (Oryctolagus cuniculus) [348,349].

9. Conclusions

As a safe, readily available, and low-cost supplemental biomolecule, ascorbic acid might prove to
be a useful ameliorative therapeutic agent against Pb toxicity, both in reducing BLLs and reversing the
effects of Pb poisoning. This is particularly true in children, where prominent chelation therapeutic
agents have largely failed. It should be noted that most of the recent studies delineating the effects of
AA on Pb neurotoxicity have come from developing countries. This is expected because Pb toxicity
is a major concern in these countries in particular because of their emerging industrial potential and
issues such as a lack of proper legislation and compliance that aggravate the conditions. This can be
related to recent outbreak of a ‘mystery’ illness that grasped several hundreds of individuals, including
children, with symptoms such as nausea and seizures in the Eluru district of southern Indian state of
Andhra Pradesh. A preliminary investigation of blood samples of the subjects indicated high level of
contamination with heavy metals, particularly Pb and Ni. Our understanding of AA–Pb interactions is
nevertheless still limited, and we are far from fully appreciating the usefulness of this vitamin as an
effective ameliorative agent. Further studies are hence required (1) to confirm the prophylactic effects
of AA in both animal models and human subjects with Pb exposure, as well as (2) to understand the
mechanisms of protection offered by AA. With this review, we hope to rekindle research interest in
this essential, water-soluble, and practically harmless vitamin as an effective neuroprotective agent,
not only in developmental Pb neurotoxicity but also in other neuropathologies.
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Abbreviations

70S6K S6 kinase 70 kDa
8-OHdG 8-hydroxy-2′-deoxyguanosine
AA ascorbic acid; AD: Alzheimer’s disease
ADHD attention deficit hyperactivity disorder
ALA δ-aminolaevulinic acid
ALAD δ-aminolaevulinic acid dehydratase
ASD autism spectrum disorder
BBB blood–brain barrier
BLL blood lead level
CamKII Ca2+/calmodulin-dependent protein kinase II
CaNa2EDTA calcium disodium ethylenediaminetetraacetic acid
CREB cAMP response element binding protein
CSF cerebrospinal fluid
ECF extracellular fluid
EECHO environmental exposures and child health outcomes
ETC electron transport chain
GABAT1 γ-aminobutyric acid transporter 1
GAD67 glutamic acid decarboxylase 67 kDa
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GD gestational day
GLUT1 glucose transporter 1
GPx glutathione peroxidase
GR glutathione reductase
HPA hypothalamic pituitary adrenal
IQ intelligence quotient
KEAP1 Kelch-like ECH-associated protein
LTP long-term potentiation
MAG myelin-associated glycoprotein
MBP myelin basic protein
mDISC1 mutated-in-schizophrenia 1
MMP mitochondrial membrane potential
NMDAR1 N-methyl-D-aspartate receptor 1
NOS nitric oxide synthase
Nrf2 nuclear factor (erythroid-derived 2)-like 2
Pb Lead (plumbum)
PI3K phosphoinositide 3-kinase
PND postnatal day
PSD95 postsynaptic density protein 95
SOD superoxide dismutase
SVCT1 sodium-dependent vitamin C transporter 1
SVCT2 sodium-dependent vitamin C transporter 1
TBARS thiobarbituric acid reactive substances
VDR vitamin D receptor
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55. Pawlas, N.; Broberg, K.; Olewińska, E.; Prokopowicz, A.; Skerfving, S.; Pawlas, K. Modification by the genes
ALAD and VDR of lead-induced cognitive effects in children. Neurotoxicology 2012, 33, 37–43. [CrossRef]
[PubMed]

56. Jedrychowski, W.; Perera, F.; Jankowski, J.; Mrozek-Budzyn, D.; Mroz, E.; Flak, E.; Edwards, S.; Skarupa, A.;
Lisowska-Miszczyk, I. Gender specific differences in neurodevelopmental effects of prenatal exposure to
very low-lead levels: The prospective cohort study in three-year olds. Early Hum. Dev. 2009, 85, 503–510.
[CrossRef] [PubMed]

57. Llop, S.; Lopez-Espinosa, M.J.; Rebagliato, M.; Ballester, F. Gender differences in the neurotoxicity of metals
in children. Toxicology 2013, 311, 3–12. [CrossRef] [PubMed]

58. Hauptman, M.; Stierman, B.; Woolf, A.D. Children with autism spectrum disorder and lead poisoning:
Diagnostic challenges and management complexities. Clin. Pediatrics (Phila.) 2019, 58, 605–612. [CrossRef]

59. Meyer, P.A.; McGeehin, M.A.; Falk, H. A global approach to childhood lead poisoning prevention. Int. J.
Hyg. Environ. Health 2003, 206, 363–369. [CrossRef]

60. Nichani, V.; Li, W.I.; Smith, M.A.; Noonan, G.; Kulkarni, M.; Kodavor, M.; Naeher, L.P. Blood lead levels in
children after phase-out of leaded gasoline in Bombay, India. Sci. Total Environ. 2006, 363, 95–106. [CrossRef]

61. Hwang, Y.H.; Ko, Y.; Chiang, C.D.; Hsu, S.P.; Lee, Y.H.; Yu, C.H.; Chiou, C.H.; Der Wang, J.; Chuang, H.Y.
Transition of cord blood lead level, 1985-2002, in the Taipei area and its determinants after the cease of leaded
gasoline use. Environ. Res. 2004, 96, 274–282. [CrossRef] [PubMed]

62. Mathee, A.; Röllin, H.; Von Schirnding, Y.; Levin, J.; Naik, I. Reductions in blood lead levels among school
children following the introduction of unleaded petrol in South Africa. Environ. Res. 2006, 100, 319–322.
[CrossRef] [PubMed]

63. Wood, S.K.; Sperling, R. Pediatric screening: Development, anemia, and lead. Prim. Care—Clin. Off. Pract.
2019, 46, 69–84. [CrossRef] [PubMed]

64. Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.;
Bornschein, R.; Greene, T.; et al. Low-level environmental lead exposure and children’s intellectual function:
An international pooled analysis. Environ. Health Perspect. 2005, 113, 894–899. [CrossRef]

65. Chen, A.; Dietrich, K.N.; Ware, J.H.; Radcliffe, J.; Rogan, W.J. IQ and blood lead from 2 to 7 years of age: Are the
effects in older children the residual of high blood lead concentrations in 2-year-olds? Environ. Health Perspect.
2005, 113, 597–601. [CrossRef]

66. Baghurst, P.A.; McMichael, A.J.; Wigg, N.R.; Vimpani, G.V.; Robertson, E.F.; Roberts, R.J.; Tong, S.-L.
Environmental exposure to lead and children’s intelligence at the age of seven years. N. Engl. J. Med. 1992,
327, 1279–1284. [CrossRef]

67. Tong, S.; Baghurst, P.; McMichael, A.; Sawyer, M.; Mudge, J. Lifetime exposure to environmental lead and
children’s intelligence at 11–13 years: The Port Pirie cohort study. Br. Med. J. 1996, 312, 1569–1575. [CrossRef]

68. Huang, P.C.; Su, P.H.; Chen, H.Y.; Bin Huang, H.; Tsai, J.L.; Huang, H.I.; Wang, S.L. Childhood blood lead
levels and intellectual development after ban of leaded gasoline in Taiwan: A 9-year prospective study.
Environ. Int. 2012, 40, 88–96. [CrossRef]

69. Lucchini, R.G.; Zoni, S.; Guazzetti, S.; Bontempi, E.; Micheletti, S.; Broberg, K.; Parrinello, G.; Smith, D.R.
Inverse association of intellectual function with very low blood lead but not with manganese exposure in
Italian adolescents. Environ. Res. 2012, 118, 65–71. [CrossRef]

70. Roy, A.; Bellinger, D.; Hu, H.; Schwartz, J.; Ettinger, A.S.; Wright, R.O.; Bouchard, M.;
Palaniappan, K.; Balakrishnan, K. Lead exposure and behavior among young children in Chennai, India.
Environ. Health Perspect. 2009, 117, 1607–1611. [CrossRef]

71. Frndak, S.; Barg, G.; Canfield, R.L.; Quierolo, E.I.; Mañay, N.; Kordas, K. Latent subgroups of cognitive
performance in lead- and manganese-exposed Uruguayan children: Examining behavioral signatures.
Neurotoxicology 2019, 73, 188–198. [CrossRef] [PubMed]

72. Jedrychowski, W.; Perera, F.P.; Jankowski, J.; Mrozek-Budzyn, D.; Mroz, E.; Flak, E.; Edwards, S.; Skarupa, A.;
Lisowska-Miszczyk, I. Very low prenatal exposure to lead and mental development of children in infancy
and early childhood. Neuroepidemiology 2009, 32, 270–278. [CrossRef] [PubMed]

73. McLaine, P.; Navas-Acien, A.; Lee, R.; Simon, P.; Diener-West, M.; Agnew, J. Elevated blood lead levels and
reading readiness at the start of kindergarten. Pediatrics 2013, 131, 1081–1089. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.neuro.2011.10.012
http://www.ncbi.nlm.nih.gov/pubmed/22101007
http://dx.doi.org/10.1016/j.earlhumdev.2009.04.006
http://www.ncbi.nlm.nih.gov/pubmed/19450938
http://dx.doi.org/10.1016/j.tox.2013.04.015
http://www.ncbi.nlm.nih.gov/pubmed/23632092
http://dx.doi.org/10.1177/0009922819839237
http://dx.doi.org/10.1078/1438-4639-00232
http://dx.doi.org/10.1016/j.scitotenv.2005.06.033
http://dx.doi.org/10.1016/j.envres.2004.02.002
http://www.ncbi.nlm.nih.gov/pubmed/15364594
http://dx.doi.org/10.1016/j.envres.2005.08.001
http://www.ncbi.nlm.nih.gov/pubmed/16213479
http://dx.doi.org/10.1016/j.pop.2018.10.008
http://www.ncbi.nlm.nih.gov/pubmed/30704661
http://dx.doi.org/10.1289/ehp.7688
http://dx.doi.org/10.1289/ehp.7625
http://dx.doi.org/10.1056/NEJM199210293271805
http://dx.doi.org/10.1136/bmj.312.7046.1569
http://dx.doi.org/10.1016/j.envint.2011.10.011
http://dx.doi.org/10.1016/j.envres.2012.08.003
http://dx.doi.org/10.1289/ehp.0900625
http://dx.doi.org/10.1016/j.neuro.2019.04.004
http://www.ncbi.nlm.nih.gov/pubmed/30978412
http://dx.doi.org/10.1159/000203075
http://www.ncbi.nlm.nih.gov/pubmed/19223686
http://dx.doi.org/10.1542/peds.2012-2277
http://www.ncbi.nlm.nih.gov/pubmed/23669514


Antioxidants 2020, 9, 1311 19 of 32

74. Polanska, K.; Hanke, W.; Pawlas, N.; Wesolowska, E.; Jankowska, A.; Jagodic, M.; Mazej, D.; Dominowska, J.;
Grzesiak, M.; Mirabella, F.; et al. Sex-dependent impact of low-level lead exposure during prenatal period
on child psychomotor functions. Int. J. Environ. Res. Public Health 2018, 15, 2263. [CrossRef]

75. Hou, S.; Yuan, L.; Jin, P.; Ding, B.; Qin, N.; Li, L.; Liu, X.; Wu, Z.; Zhao, G.; Deng, Y. A clinical study of the
effects of lead poisoning on the intelligence and neurobehavioral abilities of children. Theor. Biol. Med. Model.
2013, 10, 13. [CrossRef]

76. Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.;
Poulton, R.; Moffitt, T.E. Association of childhood blood lead levels with cognitive function and socioeconomic
status at age 38 years and with IQ change and socioeconomic mobility between childhood and adulthood.
JAMA 2017, 317, 1244–1251. [CrossRef]
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