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Niclosamide ethanolamine ameliorates
diabetes-related muscle wasting by
inhibiting autophagy
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Abstract

Background: Diabetes-related muscle wasting is one of the devastating complications of diabetes, which is
associated with muscle autophagy due to insulin-mediated glucose starvation. However, treatment for diabetes-
related muscle wasting is limited. Our previous study already found that niclosamide ethanolamine salt has the
therapeutic effects on insulin deficiency of type 1 diabetes mice and muscle wasting induced by doxorubicin.
Therefore, we aim to investigate the therapeutic effects of niclosamide ethanolamine salt on diabetes-induced
muscle wasting and to explore whether the mechanism is associated with muscle autophagy.

Methods: Type 1 diabetes mice were induced by intraperitoneal injection of streptozotocin, then were fed with
regular diet supplemented with 10 g/kg niclosamide ethanolamine salt. The whole experiment lasted for 8 weeks. At
the end of the study, grip strength, weights of tibialis anterior, gastrocnemius, soleus, and extensor digitorum longus
muscle were measured. Tibialis anterior muscles stained with PAS were used for evaluating the fiber cross sectional
area. Immunofluorescence analysis of myosin heavy chain expression in extensor digitorum longus and soleus muscle
was used for determining the composition of the muscle fiber type. Electronic microscopy was applied to observe the
autophagy in the atrophied muscle. Serum insulin levels and fasting blood glucose were also measured. Tissues of
gastrocnemius muscle were used for detecting the expression of the proteins related to autophagy.

Results: In this study, we found that niclosamide ethanolamine salt could ameliorate muscle atrophy in the type 1
diabetes mice as well, such as enhancing the declined grip strength, improving limb weight and increasing the
numbers of glycolytic muscle fiber. Electron microscopy also confirmed that there did exist abundant autophagic
vacuoles in the atrophied muscle of the type 1 diabetes mice. Specifically, niclosamide ethanolamine salt could reduce
the over expression of autophagy-related proteins, including p-AMPK (Thr172), FoxO3a, p-ULK1 (Ser555), LC3B II, and p-
p38 in gastrocnemius muscle of the type 1 diabetes mice.
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Conclusion: Niclosamide ethanolamine salt could ameliorate muscle wasting. The mechanisms underlying might be

associated with inhibition of muscle autophagy.

Keywords: Niclosamide ethanolamine salt, Diabetes-related muscle wasting, Autophagy

Background

Global diabetes prevalence has been increased rapidly in
recent decades. It was estimated that there were 463
million people suffering from diabetes in 2019, and the
number is assumed to reach as many as 700 million in
2045 [1]. In the past years, researches on the complica-
tions of diabetes have mostly focused on vascular dis-
eases [2, 3]. Accumulating evidences indicated that
accelerated loss of muscle mass and strength is also a
devastating complication of diabetes [4],which might
lead to slow movements, unstable gait, and even fre-
quent falls. What is more, alterations of the biomechan-
ics of the feet caused by muscle atrophy might increase
the risk of developing a foot ulcer in diabetes [5, 6].
Therefore, studies investigating the pathogenesis and ex-
ploring new medications for diabetes-related muscle at-
rophy are in an urgent need.

In diabetes, muscle atrophy might take place due to
inflammation, hyperglycemia, insulin deficiency, autoph-
agy activation, and ubiquitin-proteasome degradation.
However, protein degradation with a net loss of muscle
mass is the crucial feature in atrophic muscle. The
autophagy-lysosome systems are one of the major pro-
tein degradation pathways and proved to contribute to
muscle atrophy [7]. Insulin, which is key in the process
of glucose uptake, plays a crucial role in protein synthe-
sis and degradation in muscle [8]. Accumulating evi-
dences showed that the glucose starvation by insulin
deficiency might trigger the muscle autophagy.

Our previous study found that niclosamide ethanol-
amine salt (NEN), a classic anthelmintic drug approved
by FDA, can improve the declined insulin level and body
weight of streptozotocin (STZ)-induced diabetic mice
[9]. More important, NEN can improve the muscle wast-
ing induced by doxorubicin [10]. However, the effects of
NEN on diabetes-related muscle atrophy are not yet
clear. Therefore, this study aims to investigate the thera-
peutic effects of NEN on diabetes-induced muscle atro-
phy and to explore whether the mechanism is associated
with muscle autophagy.

Methods

Animal model

Animal studies were approved by the Guangzhou
University of Chinese Medicine Institutional Animal
Care and Use Committee and were performed under
protocols in accordance with relevant guidelines and

regulations. Male C57BL/6] mice were purchased
from Guangdong Medical Laboratory Animal Center
and were housed in the Laboratory Animal Center of
Shenzhen Graduate School of Peking University. The type
1 diabetes (T1D) mice were induced by the administration
of multiple low doses of STZ (Sigma-Aldrich, St. Louis,
MO, USA) dissolved in citrate buffer via intra-peritoneal
injection (55 mg/kg body weight per day) for 5 consecu-
tive days. Normal control (T1D-ctrl) mice were intra-
peritoneally injected with an equal volume of citrate
buffer. The T1D mice were randomly allocated into T1D
group and T1D + NEN group according to the fasting
blood glucose at the 9th day after the last injection of
STZ. Mice in T1D-ctrl and T1D groups were fed with
regular diet as before, while the T1D + NEN group were
fed with a regular diet supplemented with 10 g/kg NEN.
The whole treatment lasted for 8 weeks.

Grip strength test

Mice’s limb grip strength was measured by using a dyna-
mometer for mice (ZH-YLS-13A, Anhui Zhenghua Bio-
logical Instrument Equipment Co. Ltd., Huaibei, China)
the day before being sacrificed. Limb grip strength was
performed according to the manufacturer’s instructions.
The PC interface software automatically sensed com-
pression or tension and recorded the peak value (in
mV). Calibrate factor was measured by using standard
weight (1.98 N). Limb strength (in Newton) was calcu-
lated by peak value (in mV) x calibrate factor. For this
assay, three measurements were performed for each
mouse and average of the results was used for analyzing.

Blood glucose and body weight measurements

Every 2 weeks, each mouse was weighed and blood sam-
ples of them were obtained by tail vein puncture for
blood glucose measurements by using a blood glucose
meter (Roche, Basel, Switzerland).

Tissue preparation

At the end of the experiment, mice were sacrificed, then
the tibialis anterior (TA), soleus (SOL), extensor digi-
torum longus (EDL), and gastrocnemius (GAs) were dis-
sected and blotted on paper, and then weighed
immediately. TA muscle tissues were fixed in 10% for-
malin for fiber cross-sectional area determination. EDL
muscle tissues (sized 1 mm?) were fixed in 2.5% glutaral-
dehyde and then were post-fixed in 1% osmic acid for
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transmission electronic microscopy (TEM) examination.
The GAs muscle tissues were immediately snap-frozen
in liquid nitrogen and stored at — 80 °C for later analysis.
The SOL muscles and EDL muscles were firstly embed-
ded in O.C.T. compound (Tissue-Tek, Sakura Finetek,
USA), then frozen in liquid nitrogen-cooled isopentane,
and lastly stored at — 80 °C for fiber type determination.

Fiber cross-sectional area and fiber size distribution
determination

The muscles were photographed by digital camera.
Paraffin-embedded TA muscle sections were stained
with periodic acid-Schiff (PAS). At least 40% of all fibers
within a muscle cross section (about 550-1500 fibers)
were outlined to evaluate muscle fiber cross-sectional
area and the fiber size distribution by using Image]J Soft-
ware (National Institutes of Health, Bethesda, MD,
USA).

Fiber type determination

The prepared SOL and EDL tissues were cut into 10-
pum-thick cryo-sections with a cryostat (CM1950, Leica,
Germany) maintained at - 20 °C, then immunofluores-
cence analysis of MHC expression was performed in the
procedures as described previously [10]. Primary anti-
bodies against MHC-I (BA-F8), MHC-IIa (SC-71) and
MHC-IIb (BF-F3) were purchased from the Develop-
mental Studies Hybridoma Bank (University of Iowa,
National Institutes of Health, USA), whereas secondary
antibodies were purchased from Invitrogen (USA). The
resulting images were visualized and were captured on a
confocal microscopy (LSM710, Carl Zeiss, Oberkochen,
Germany). Individual images were taken across the en-
tire cross-section, then were assembled into a composite
panoramic image with Photoshop 7.0 (Adobe, USA). All
fibers within the entire image were characterized for
fiber type analysis.

Electronic microscopy

TEM images were photographed by JEM-1400(JEOL,
Tokyo, Japan). Autophagic vacuoles in inter-myofibrillar
area and sub-sarcolemmal area were observed and
photographed.

Enzyme-linked immunosorbent assay (ELISA)
Enzyme-linked immunosorbent assay kits were used to
measure serum insulin (Merck Millipore, Danvers, MA,
USA) according to the manufacturer’s instructions.

Immunoblotting analysis

Snap-frozen GAs muscle tissues were homogenized in
lysis buffer and prepared in sample loading buffer (Bio-
Rad, Hercules, CA, USA). Lysate proteins were separated
on a 10% SDS-PAGE gels and then transferred to
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polyvinylidenedifluoride (PVDF) membranes (Merck
Millipore, Danvers, MA, USA). After blocking in TBS
buffer containing 5% non-fat dry milk for 1 h at room
temperature, the membranes were incubated and gently
shaken overnight at 4 °C with primary antibodies. After
washing with TBS, the membranes were incubated with
secondary antibodies for 1 h at room temperature with
shaking. After washing, the protein bands were detected
and analyzed by a ChemiDoc™ MP Imaging System (Bio-
Rad, Hercules, CA, USA). Glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) was used as the loading control.
The results are expressed as the integrated optical density
relative to GAPDH. Primary antibodies against GAPDH
were used as the loading control. The results are expressed
as the integrated optical density relative to GAPDH.
Primary antibodies against p-ULKIl(ser555), ULK1, p-
AMPK (Thrl172), AMPK, LC3B, p-p38 MAPK(Thr180/
Tyr182), p38 MAPK, and FoxO3a were purchased from
Cell Signaling Technology (Danvers, MA, USA). Primary
antibody against GAPDH was from Proteintech Group, Inc.
(Chicago, IL, USA).

Statistical analysis

Data were expressed as mean * SD. Statistical differ-
ences between two groups were analyzed using unpaired
Student’s ¢ tests. Repeated measures analyses of variance
(ANOVA) were conducted for the blood glucose and
body weight data, the effects being group (T1D-ctrl vs.
T1D, T1D vs T1D + NEN) and week (week 0, 2, 4, 6, 8,
10). Post hoc testing was performed using Bonferroni.
Statistical analysis was performed using SPSS statistical
software, version 16.0, and P < 0.05 was considered
statistically significant.

Results

NEN prevented muscle weakness in the T1D mice

In order to detect whether the muscle function of the
T1D mice is affected by NEN, mice were subjected to
grip strength assessment. It turned out that the T1D
mice exhibited declined grip strength, while NEN treat-
ment could enhance the grip strength of the T1D mice
(Fig. 1).

NEN restored body weight and improved limb muscle
atrophy in the T1D mice

In addition to enhancing muscle strength, NEN also had
therapeutic effect on skeletal muscle atrophy in theT1D
mice. The T1D mice exhibited decreased bodyweight
significantly compared with normal control mice from
the 9th day after the injection of STZ (P = 0.000 <
0.001). Following the treatment with NEN, body weight
of the T1D mice were increasing gradually (P = 0.015<
0.05) (Fig. 2a). At the end of experiment, hindlimb mus-
cles of the T1D mice were smaller than those of the
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Fig. 2 NEN restored body weight and muscle mass in the T1D mice. a Body weight of mice was measured every 2 weeks; Repeated measures
analyses of variance (ANOVA) were conducted, then post hoc testing was performed using Bonferroni; the T1D mice exhibited decreased
bodyweight significantly compared with normal control mice from the 9th day after the injection of STZ (P = 0.000 < 0.001); following the
treatment with NEN, body weight of theT1D mice were increasing gradually (P = 0.015 < 0.05). b Representative images of muscle. ¢ Weight of
TA muscle. d Weight of GAs muscle. e Weight of EDL muscle. f Weight of SOL muscle. "P < 0.01 and ~ P < 0.001 vs. the T1D-Ctrl group. *P <
005 and **P < 0,001 vs. the T1D group. n = 6 in each group
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control mice, but were improved by the treatment with ~ NEN improved insulin deficiency and energy shortage in
NEN (Fig. 2b). The analysis of individual low hindlimb  T1D mice
muscles revealed that the weights of TA, GAs, EDL, and  Our previous study suggested that the protective effects
SOL were decreased in theT1D mice group compared of NEN on the diabetic mice might be due to improving
with control group significantly, while NEN could in-  p-cell function or inducing the «-to-fB-like cell conver-
crease the muscle mass of TA, GAs and SOL (Fig. 2c—f).  sion [11, 12]. Consistent with previous studies, the

serum insulin level of the T1D mice was significantly
NEN increased theT1D mice’s muscle fiber size lower than that of the control group and following NEN
We further measured cross-sectional area of skeletal ~treatment could raise it (Fig. 5a). In consequence, T1D +
muscle fibers in the mice. Likewise, the mean cross- NEN group showed lower blood glucose than the T1D
sectional area of TA muscle in the T1D mice had 8&roup (P =0.000 < 0.001) (Fig. 5b). The expression of p-
shrunken remarkably, and NEN did increase the mean AMPK (Thr172) increased remarkably as a consequence
cross-sectional area of TA muscle fiber (Fig. 3a, ¢). In of insulin deficiency in T1D mice’s muscle, which indi-
addition, the cross-sectional area distribution of TA  cated that there was short of energy supply. NEN could
muscle in the T1D mice developed a shift towards decrease the expression of p-AMPK (Thr172) (Fig. 7a, b,
smaller fibers, and NEN could normalized this change as c).
well (Fig. 3b).

NEN suppressed glucose starvation-induced muscle
NEN restored glycolytic muscle fiber in the T1D mice autophagy in T1D mice
As shown in Fig. 4a, ¢, e, the numbers of type II fiber  Electron microscopy revealed that autophagic vacuoles
were decreased in SOL muscle obviously but no change were abundant within inter-myofibrillar and sub-
in EDL muscle in theT1D mice, and NEN could increase  sarcolemmal area (Fig. 6a—h). Accordingly, we next in-
the numbers of type II fiber in SOL muscle. Further-  vestigated the expression of autophagy-related proteins
more, the composition of type II glycolytic fibers was an-  to see if there was excessive autophagy in the muscle of
alyzed, and it showed that the fiber subtypes were the T1D mice. It turned out that the protein expressions
altered in the T1D mice. Type Ila fibers decreased in the  of FoxO3a, p-ULK1 (Ser555), LC3B-I1, and p-p38 MAPK
SOL muscle (Fig. 4b, e), while type IIb fibers were less in ~ (Thr180/Tyr182) were greatly elevated in the T1D mice.
the EDL muscle (Fig. 4d, e). Interestingly, NEN could re-  Moreover, the excessive expressions of the above pro-

store these fiber subtypes (Fig. 4b, d, e). teins in the T1D mice were diminished in T1D + NEN
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Fig. 3 NEN improved the muscle fiber cross-sectional area. a TA muscle fiber cross-sectional area in each group. b Frequency histograms
showing the distribution of cross-sectional area of TA muscle fibers. ¢ Representative images of fiber size alteration (PAS stained. scale bar, 20
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group. These indicated that NEN could ameliorate
muscle autophagy (Fig. 7a—i).

Discussion

This study indicates that NEN prevents muscle wasting
in the T1D mice and the mechanism underlying might
be associated with the inhibition of muscle autophagy
induced by the glucose starvation.

It is reported that weight gains have benefit effects on
the enhancement of muscle strength [13]. Consistent
with our previous study [10], this study showed that
NEN could counteract the decrease of body weight,
muscle mass along with enhancing hindlimb grip

strength. It suggested that the effects of NEN on muscle
wasting might benefit from increasing the weight of
T1D mice muscle.

Skeletal muscle fibers are characterized as one type of
slow-twitch fiber (type I) and three types of fast-twitch
fibers (type Ila, type 1Ix/d, and type IIb), of which type
IIb fibers are primarily glycolytic. In diabetes, fibers
might change from fast-twitch type to slow-twitch type
with preferential atrophy of type II fiber [14, 15], as type
II fiber were more vulnerable to nutritional deficiencies
[16]. Loss of glycolytic muscles might lead to grip
strength declined [17]. In this study, the fibers of TA
muscle, which was almost composed of type II fibers,

Fig. 6 Ultra-structure of autophagic vacuoles in EDL muscle in T1D mice. a, b Early autophagic vacuole in inter-myofibrillar area. ¢, d Early

autophagic vacuole in sub-sarcolemmal area. e, f Late autophagic vacuole in inter-myofibrillar area. g, h Late autophagic vacuoles in sub-
sarcolemmal area. The arrowheads indicate the two limiting membranes in autophagic vacuoles. Scale bar 500 nm for a, ¢, e, g, 200 nm
for b, d, f, h
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Fig. 7 Autophagy-related proteins expression in GAs muscle tissues. a Western blot images of autophagy-related proteins in GAs muscle tissues
of each group. Bar graphs showing the fold change of p-AMPK/GAPDH (b), p-AMPK/AMPK (c), FoxO3a/GAPDH (d), p-ULK1(ser555)/GAPDH (e), p-
ULK1(ser555)/ULK1(f), LC3B II/GAPDH (g), p-p38/GAPDH (h), and p-p38/p38 MAPK (i) expression in GAs muscle tissues. "P<005and P <007 vs.

the T1D-Ctrl group. *P < 0.05 and *P < 0.01 vs. the T1D group. n = 4 in each group

were atrophy obviously in the T1D mice. We also found
that the fibers of fast/glycolytic were decreased in SOL
muscle and EDL muscle. Taken together, we implied
that the protection of NEN on diabetes-related muscle
wasting might be partly due to the restoration of type II
fiber.

Skeletal muscle is the prominent organ for insulin-
mediated glucose uptake [18]. Glucose starvation in skel-
etal muscle caused by insulin deficiency could result in
significant reduction in muscle mitochondrial ATP

production rate [19]. Interestingly, autophagy can acti-
vate bulk protein degradation to harvest amino acids as
a fuel for ATP production through the tricarboxylic acid
(TCA) cycle to maintain the energy balance [20]. There-
fore, in insulin deficiency T1D mice, autophagy plays a
crucial role in muscle atrophy, which might be activated
by the energy shortage to use amino acid as a substitute
for glucose. AMPK is a sensor of intracellular energy,
which can be activated by any mechanisms that disrupt
ATP generation [21]. Studies showed that AMPK
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activation can promote skeletal muscle cells autophagy by
activating FoxO3a and ULK1 [22, 23]. Accumulating evi-
dences indicate that FoxO3a is the main transcriptional
regulator of autophagy by controlling a broad range of
atrophy-related genes, including Fbxo32 (Atrogin-1) and
Trim63 (MuRF-1), and other autophagy genes [7, 11].
ULK1 is one of the essential inductors of the autophagy
pathway, which initiates the formation of the autophago-
some [24]. Our study showed that T1D mice treated with
NEN did develop less expression of p-AMPK (Thrl72),
FoxO3a, and p-ULK1 (Ser555) than T1D mice.

P38 MAPK is also known to regulate autophagy in
skeletal muscle [25, 26] due to the over phosphorylation
in skeletal muscle under variety of cellular stresses, in-
cluding endurance exercise and fasted state [27]. Our
previous study also found that NEN can prevent muscle
atrophy by inhibition of p38 MAPK/FoxO3a activation
in mice exposed to doxorubicin [10]. Similarly, as the
above results showed, NEN treatment also inhibited the
over-activation of p38MAPK in T1D mice. The level of
LC3BII, a marker of autophagosome presence [28], was
reduced by NEN treatment in T1D mice in this study.
The result further prompted that autophagy was sup-
pressed by NEN.

Conclusion

In summary, we concluded that NEN could ameliorate
muscle wasting. The mechanisms underlying might be
associated with inhibition of muscle autophagy.
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