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Abstract

Chemical reaction networks are ubiquitous in biology, and their dynamics is fundamentally

stochastic. Here, we present the software library pSSAlib, which provides a complete and

concise implementation of the most efficient partial-propensity methods for simulating

exact stochastic chemical kinetics. pSSAlib can import models encoded in Systems Biology

Markup Language, supports time delays in chemical reactions, and stochastic spatiotempo-

ral reaction-diffusion systems. It also provides tools for statistical analysis of simulation

results and supports multiple output formats. It has previously been used for studies of

biochemical reaction pathways and to benchmark other stochastic simulation methods.

Here, we describe pSSAlib in detail and apply it to a new model of the endocytic pathway in

eukaryotic cells, leading to the discovery of a stochastic counterpart of the cut-out switch

motif underlying early-to-late endosome conversion. pSSAlib is provided as a stand-alone

command-line tool and as a developer API. We also provide a plug-in for the SBMLToolbox.

The open-source code and pre-packaged installers are freely available from http://mosaic.

mpi-cbg.de.

This is a PLOS Computational Biology Software paper.

Introduction

Modeling chemical reaction networks is key to unraveling the mechanisms underlying cell

physiology and pathology [1–3]. Given the complexity of biochemical reaction networks and

the large number of interacting species, computational studies are often necessary to guide

experimental assays and to identify candidates for wet-lab perturbation. Numerical computer

simulations provide full control over all parameters of the model, enabling “what if” studies

that would be hard to address otherwise.
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Such computational studies, however, are often complicated by the fact that molecules

move and react stochastically. Biochemical reaction networks in sub-cellular compartments

are frequently characterized by low copy numbers for some of the involved molecules, which

leads to stochastic kinetics also of macroscopic quantities that can be qualitatively different

from the deterministic predictions of standard reaction-rate equations [4–7]. In addition,

biochemical reactions often incur a time delay (e.g., chaperoning through the nuclear pore

complex, multistage binding, and mRNA translation), causing additional fluctuations in the

molecular concentrations. Lastly, the spatial distribution of chemical species may play an

important role within the same compartment, as is for example the case for diffusion in the

endoplasmic reticulum [8]. A constructive role of fluctuations may also lie at the core of bio-

logical information processing, e.g., in transcription and translation [9, 10].

Accounting for the exact stochastic kinetics of a reaction network is typically done using

exact stochastic simulation algorithms (SSAs). They sample species populations from the exact

solution of the chemical master equation (CME) [11], preserving all information about the

molecular fluctuations in the system, and their dynamics. To accommodate time delays, some

of these algorithms have been extended accordingly [12]. Finally, a classical way of accommo-

dating spatial heterogeneity is to subdivide the system into a number of well-mixed sub-spaces

and to perform the reaction sampling in each of them according to the original scheme, aug-

mented by jump reactions between sub-spaces in order to model diffusion. This classical

algorithm is known as the nextsubvolume method (NSM) [13]. Together, these approaches

provide a toolbox to account for stochastic effects in chemical reaction networks with elemen-

tary rates.

The use of this toolbox for simulating large reaction networks with sufficient statistics is

mainly limited by the computational cost of the algorithms. Therefore, numerous improve-

ments to the computational efficiency of exact SSAs have been presented in the past, notably

the next reaction method (NRM) by Gibson and Bruck [14] and the SSA with Composition-

Rejection Sampling (SSA-CR) [15]. While all other known variants of exact SSA have a

computational cost that scales linearly with the number of reactions in the network [16], NRM

reduced the runtime to scale with the logarithm of the number of reactions and SSA-CR fur-

ther reduced it to constant-time. These improvements, however, only hold for weakly coupled

networks [16]. For strongly coupled networks, the scaling of the computational cost remains

linear with the number of reactions, which is unfavorable when simulating strongly coupled

biochemical networks that contain many more reactions than species. A new class of SSAs

based on factored-out reaction propensities has therefore been proposed [16] to improve the

cost also for strongly coupled networks (see Partial-propensity methods in Sec. Design and

implementation for the concept underlying this new class of methods). These so-called partial-

propensity SSAs have a computational cost that scales at most linearly with the number of spe-

cies, but not with the number of reactions, even for strongly coupled reaction networks. Two

such algorithms are the partial-propensity direct method(PDM) [16] and the sorting partial-

propensity direct method (SPDM) [16]. For weakly coupled networks, the computational cost

is further reduced to constant-time using the partial-propensity SSA with Composition-Rejec-

tion Sampling (PSSA-CR) [17]. Partial-propensity methods [18] have also been extended to

reactions with time delays (dPDM, the delay partial-propensity direct method) [19], and to

spatiotemporal reaction-diffusion systems (PSRD, the partial-propensity stochastic reaction-

diffusion method) [20]. Due to the state-of-the-art computational performance of partial-pro-

pensity methods, they are frequently used to benchmark newer SSAs [21–24]. In addition, par-

ticular instances of partial-propensity methods have been included in third-party software

libraries, such as ngss [21] and ssapredict [24]. However, no complete and concise software
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implementation of all partial-propensity algorithms is available with support for delayed

chemical reactions and spatiotemporal dynamics.

Here, we present the partial-propensity stochastic simulation algorithms library (pSSAlib),

a fast, flexible, and user-friendly implementation of all known partial-propensity SSAs. This

open-source library is implemented in C++, providing both an Application Programming

Interface (API) for incorporation into other software projects and a stand-alone simulator

application for direct use. The software imports biochemical model specifications from Sys-

tems Biology Markup Language (SBML) files and provides tools for statistical analysis and

visualization of the simulation results. Moreover, it provides a plug-in for the SBMLTool-

box [25], enabling the user to change the model using a graphical user interface, and it sup-

ports the use of parallel computing resources to parallelize over simulation trajectories using

the Message Passing Interface (MPI) [26]. pSSAlib adds partial-propensity methods to the

family of already available SSA simulation software packages, including Cain [27], StochKit2

[28], libRoadRunner [29], and URDME [30]. This further extends the choice for users to pick

the appropriate and most efficient SSA formulation for a problem at hand.

We present the software implementation of pSSAlib, validate pSSAlib, and benchmark its

computational efficiency in standard test cases, comparing with the efficient NRM implemen-

tations provided by Cain [27]. Then, we use the software in order to gain insight into a new

stochastic model of early-to-late endosome conversion in the endocytic pathway [31]. Besides

demonstrating practical use of pSSAlib, the results show that early-to-late endosome conver-

sion is robust to intrinsic fluctuations arising from low copy numbers of signaling molecules

in the endocytic pathway. Crucially, the stochastic effects modify the non-monotonic signal-

response characteristics of the deterministic counterpart of the cut-out switch and may explain

the observed variability of Rab5 density at the onset of early-to-late endosome conversion in

the endocytic pathway [32].

Design and implementation

Partial-propensity methods

As any Monte Carlo (MC) method, SSAs requires sampling a significant number of trajecto-

ries from the CME in order to acquire sufficient statistics of the system’s behavior [11]. At

each time step, sampling is performed over the reaction propensities, which scales linearly

with the number of reactions in the network. Partial-propensity methods reduce this computa-

tional cost by factorizing the reaction propensities. The propensity of a reaction is defined as

the product of its specific probability rate and its reaction degeneracy, which counts the num-

ber of distinct ways in which reactant molecules can interact [33]. All molecules are assumed

to be homogeneously distributed within the reactor. The partial propensity of a reaction is

defined as the propensity per molecule of one of the reactants [16]. This requires that the reac-

tion propensity has a structure that can be factorized. This is obviously the case for elementary

chemical reactions, i.e., reactions involving at most two reactants, but also for other reactions

where the propensity has a product structure.

The partial propensities are stored in a special data structure, called the partial-propensity
structure. Instead of sampling over reaction propensities, partial-propensity SSAs sample over

partial propensities, which can be interpreted as sampling reaction partners instead of reac-

tions. Hence, instead of asking “which reaction happens next?”, partial-propensity SSAs ask:

“which molecule is going to participate in the next reaction?” and then, given that: “which

partner is it going to react with?” This means that instead of choosing from the set of reactions,

the methods choose from the set of species, which explains why their computational cost scales

with species number rather than reaction number.

pSSAlib: The partial-propensity stochastic chemical network simulator
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Overview of pSSAlib

We give an overview of the partial-propensity stochastic simulation algorithms library (pSSA-

lib), a complete and portable implementation of all partial-propensity SSAs, complemented

with tools for running simulations and analyzing the results.

Features. pSSAlib has been designed to facilitate the process of simulating stochastic

chemical reaction networks using partial-propensity methods. pSSAlib is written in C++ and

is designed to be highly efficient, also supporting parallel execution on distributed-memory

computer clusters. It provides a simple and unified interface to SSAs for simulating networks

of elementary chemical reactions, including delayed reactions (both consuming and non-con-

suming) and spatiotemporal reaction-diffusion systems in box-shaped domains. In addition to

elementary reactions, pSSAlib can also simulate non-elementary reactions with at most two

reactant species of which one may have a stoichiometry larger than one (i.e., reactions of the

type A + NB! . . ., N = 1, 2, 3, . . .).

The following SSAs are currently implemented in the library:

• Gillespie’s direct method (DM) [11] as a reference;

• partial-propensity direct method (PDM) [16];

• sorting partial-propensity direct method (SPDM) [16];

• partial-propensity SSA with Composition-Rejection Sampling (PSSA-CR) [17];

• delay partial-propensity direct method (dPDM) [19]

• partial-propensity stochastic reaction-diffusion method (PSRD) [20].

Apart from the classes provided by the C++ Standard Template Library (STL), pSSAlib

requires other external open-source libraries: random number generators from the GNU Sci-

entific Library (GSL) [34], Boost header-only libraries [35], and the SBML library [36] for

importing model descriptions. The supported model specifications are based on SBML Level 2

Version 4 specifications. A feature comparison between pSSAlib and other popular SSA simu-

lation packages is shown in Table 1. pSSAlib does not support the definition of Events, and

spatial reaction-diffusion simulations are limited to uniform Cartesian grids using the stan-

dard NSM [13], whereas URDME supports arbitrary geometries using tetrahedral meshes.

Since the diffusion part in pSSAlib is standard, we expect speedups to mainly come from

the reaction part, where the use of partial-propensity methods is particularly beneficial for

strongly-coupled reaction networks and for reaction-dominated dynamics.

User interface. pSSAlib functionality can be accessed by either (i) direct calls from C++

code using the library’s API or (ii) using the pSSAlib Command Line Interface (CLI). The

input can be either an SBML model from a file or defined dynamically and passed to the library

using the API. Parameters, including diffusion constants, reaction rates, and time delays are

defined in the SBML model as annotations. In the case of a model file, this can either be done

by manual editing or through the SBMLToolbox [25] plug-in of pSSAlib.

Integration with the SBMLToolbox. In order to facilitate manual editing of reaction

rates, reaction delays, and diffusion constants, pSSAlib includes a plug-in for the SBMLTool-

box [25], see Fig 1a. For ease of installation, we provide a pre-packaged distribution of the

SBMLToolbox for download on the pSSAlib website. Alternatively, the plug-in can also be

added to any existing installation of the SBMLToolbox by following the instructions on our

website. The plug-in is activated via the respective menu item and, when active, indicates

whether the model components (reactions and species) contain valid annotations that can be

processed by pSSAlib. The plug-in also provides a graphical user interface for editing the

pSSAlib: The partial-propensity stochastic chemical network simulator
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respective annotations. Reaction annotations contain the reaction rates and time delays with

their respective values, see Fig 1b. The plug-in uses a color code to highlight SBML nodes that

can be edited, marking a node without annotation with a yellow background, red background

for an invalid annotation, and green background for a valid node, see Fig 1.

Validation

We use two standard reaction networks (see Validation test cases in Sec. Supporting

information) to validate the correctness of the partial-propensity methods implemented in

pSSAlib. For each case, different numbers of MC samples are acquired, starting from time

t = 0 until steady state. The simulated steady-state probability distribution functions (PDFs) of

species populations are shown in Fig 2a and 2b along with the corresponding analytical PDFs.

To quantify similarity between empirical and analytical PDFs, we use the Kullback-Leibler

divergence. Fig 2c and 2d show that the simulated PDFs converge to the analytical ones. The

Table 1. Feature comparison of pSSAlib with other exact SSA simulation packages. (SBML: supports SBML model input, pSSA: provides partial-pro-

pensity SSAs, Diffusion: provides spatiotemporal stochastic reaction-diffusion, Delays: provides chemical reactions with time delays, Events: provides event

triggers).

Software package SBML pSSA Diffusion Delays Events

pSSAlib 2.0.0 ☑ ☑ Cartesian NSM ☑ □
libRoadRunner 1.3.0 [29] ☑ □ □ □ ☑
StochKit 2.0.13 [28] ☑ □ □ □ ☑
Cain 1.10 [27] ☑ □ □ □ ☑
URDME 1.3 [30] □ □ Tetrahedral NSM □ □

https://doi.org/10.1371/journal.pcbi.1005865.t001

Fig 1. a. Screenshots of the new pSSAlib plug-in for the SBMLeditor, offering a graphical user interface for model editing using the SBMLToolbox [25]. b.

Screenshots of the annotation editor for simulations using pSSAlib.

https://doi.org/10.1371/journal.pcbi.1005865.g001
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weak (i.e., in distribution) order of convergence of −1 (dashed black line) is expected for a MC

method with a strong order of convergence of −1/2.

Benchmarking

We benchmark the computational performance of pSSAlib on weakly coupled and strongly

coupled reaction networks and compare with the highly optimized nrm implementations pro-

vided by Cain [27]. We use the cyclic linear chain model and the colloidal aggregation model

as representative examples of the two classes of reaction networks (see Benchmark test cases in

Sec. Supporting information). Fig 2e and 2f show the average computer runtime per simulated

reaction as a function of the number of species for the pSSAlib implementations of PDM,

SPDM, PSSA-CR, and DM, compared with the fastest (on this problem: next reaction method

partition size adaptive (NRM-PSA)) and slowest (on this problem: next reaction method linear

search (NRM-LS)) NRM implementations offered by the Cain software package [27]. The

results confirm that the runtime of PDM and SPDM is linear in the number of species. As a

result, they are orders of magnitude faster than traditional SSAs such as DM, whose runtime is

Fig 2. a-d. Results for the homo- (top row) and heteroreaction (bottom row) test cases (see Validation test cases in Sec. Supporting

information): a,b. Simulated PDFs computed from different numbers of MC samples (symbols) using DM and plotted in comparison with the

analytical PDF (solid line); c,d. Kullback-Leibler divergence between the analytical PDFs and the simulated ones using DM, PDM, SPDM,

and PSSA-CR, computed for different numbers of samples in log—log scale. Each point represents 10 repetitions with mean and standard

deviation indicated. As a guide, the black dashed line represents a slope of S−1, where S is the number of MC samples. e,f. Comparison of

computational costs for various partial-propensity SSAs with respect to DM and the fastest (on this problem NRM-PSA) and slowest (on this

problem NRM-LS) NRM variants implemented in Cain [27]. e. Results for the weakly coupled Cyclic Linear Chain model (see Benchmark

test cases in Sec. Supporting information). f. Results for the strongly coupled Colloidal Aggregation model. In both panels, the black dashed

line represents a slope of N1 (i.e., linear scaling), and the black dotted line in panel (f) has a slope of N2, where N is the number of species.

Error bars in c-f represent standard deviations.

https://doi.org/10.1371/journal.pcbi.1005865.g002
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proportional to the number of reactions. In addition, for weakly coupled networks, PSSA-CR

shows constant-time computational cost. For strongly coupled networks (Fig 2f), PDM and

SPDM outperform all other methods. For weakly coupled networks (Fig 2e), NRM-PSA of

Cain is the fastest, while PSSA-CR shows the expected constant-time scaling.

Results

New insights for a biochemical switch

Eukaryotic cells sort signaling molecules and nutrients through a number of distinct intracel-

lular membrane compartments called endosomes. The decision to switch endosome types

depends on the abundance of competing Rab GTPases, especially membrane-associated GTP-

bound Rab5 (denoted R5) and Rab7 (denoted R7), see Fig 3a where the inactive GDP-bound

forms are superscripted with a minus. Experimental evidence [31] suggests that a change in

endosome type, characterized by a sharp decrease in R5 copy number, is triggered at peak

abundance of R5 as the copy number of R5’s effectors increases (see Fig 3b). Theoretical investi-

gation has revealed that such a behavior is characteristic of a cut-out switch [32, 37].

Previously, this cut-out switch has been modeled at the macroscopic level by ordinary dif-

ferential equations (ODEs) using empirical species interactions [32]. Here, we propose a novel

model for this switch using a reaction network that is composed of chemical reactions that

obey mass-action kinetics (see Eq (1)). The corresponding species interactions are shown in

Fig 3a. Here, S0 and S1 are the active and inactive forms of R5’s effector proteins, respectively.

Likewise, S2 and S3 denote the active and inactive forms of R7’s effector proteins. The dynamics

of S2 and S3, however, are considered identical to those of S0 and S1 in the present model and,

hence, S2 is replaced by S0, and S3 by S1 in our model (see Eq (1)). By construction, the sum of

copy numbers of S0 and S1 is a conserved quantity, which we denote S01. As an early endosome

accumulates signaling molecules and effector proteins (S0, S1) during multiple rounds of endo-

some fusion and fission [38], we interpret different fixed values of S01 as different degrees of

endosome progression from nascent early endosomes at low S01 to large early endosomes

at high S01. The switch should be triggered by increasing the value of S01. As shown below,

our mass-action-based model reproduces the experimental observations of Refs. [31, 32].

Importantly, this novel set of 7 biochemical reactions (1) allows us to use pSSAlib to study the

exact stochastic system behavior for low copy numbers of molecules. Low copy numbers are

expected for the small (100–500 nm diameter [39]) endosomes.

S0 � !
k01 R5 þ S0

S0 þ 2R7 � !
k02 S1 þ 2R7

S1 � !
k0� 2 S0

R5 � !
k1
;

R5 � !
k21 R7 þ R5

S0 þ 2R7 � !
k22 S0 þ 3R7

R7 � !
k3
;

ð1Þ

We perform stochastic simulations of this model using PDM and SPDM as implemented in

pSSAlib. Parameter values are given in the caption of Fig 3, and model analysis is repeated for

a range of fixed parameter values S01. The simulations reveal a cut-off switch pattern in the

copy numbers of R5 and R7. Specifically, as the abundance of effector proteins crosses a

pSSAlib: The partial-propensity stochastic chemical network simulator

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005865 December 4, 2017 7 / 15

https://doi.org/10.1371/journal.pcbi.1005865


threshold, we observe a sharp decrease in R5 abundance accompanied by a sharp increase in R7

abundance (see Fig 3c). This observation confirms that the present model, based solely on a

chemical reaction network that obeys mass-action kinetics, reconstitutes the cut-out switch

that triggers transition from early to late endosomes. In addition, we observe that even for

such a small chemical reaction network, both PDM and SPDM are approximately 20% faster

than DM (see Fig 3d).

Until now, we have considered only temporal dynamics of the cut-out switch model by

neglecting diffusion of R5 and R7. Next, we perform spatiotemporal simulations using the

PSRD implementation of pSSAlib. Specifically, we consider a one-dimensional membrane

section of the endosome between its two poles and account for finite diffusivity of R5 and R7.

Starting from uniform spatial profiles and abundance corresponding to early endosomes, we

perform stochastic simulations using PSRD. In these simulations, the abundance of effector

proteins is set close to the cut-out switch threshold observed in the well-mixed simulations.

Fig 3e shows the kymograph of R5 copy number obtained from the simulation. We observe

that the switch in R5 abundance is triggered at multiple locations on the membrane. These

Fig 3. Biochemical network and self-organization underlying early-to-late endosome conversion in the endocytic pathway of

eukaryotic cells. a. Novel reaction network diagram extending previous models of this system [32, 37]. See main text for species

description; inactive GDP-bound forms are superscripted with a minus. b. Cut-out switch motif represented by its idealized stimulus-

response diagram showing the underlying bifurcation structure. c. Simulated bifurcation diagram with respect to the total number of S0 and

S1 molecules (parameter S01). Symbols represent final states of stochastic simulations for 100 individual samples at each parameter value,

each run for 100 min of simulated time using PDM with initial conditions corresponding to the early endosome state (R5 = 1.0 mol m−3, R7 =

0, S0 = S01 and S1 = 0). The S01 value indicated by the red arrow is used in panels d,e. Other parameter values are: k01 = 1 min−1, k02 = 100

m6 mol−2 min−1, k0–2 = 10 min−1, k1 = 1 min−1, k21 = 0.1 min−1, k22 = 100 m6 mol−2 min−1, k3 = 10 min−1. d. Computer runtime per simulated

reaction for DM, PDM, and SPDM with initial condition R5 = R7 = 1 mol m−3. e. Kymograph of local Rab5 molecule number within 20

subvolumes with diffusive R5 and R7 coupling, mimicking sectors on the endosomal surface. Stochastic dynamics results in spontaneous

local triggering of the switch, with fronts robustly propagating the switch across space. Compartment volume was 4 × 10−21 m3 in all cases

and both diffusion constants for R5 and R7 equal 10−21 m2 min−1.

https://doi.org/10.1371/journal.pcbi.1005865.g003
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locations are not deterministic, but determined by stochastic dynamics. Once the switch is

triggered locally, the change in R5 abundance propagates to the rest of the membrane until the

stochastic activation waves fuse (see Fig 3e). This behavior is observed over many parameter

combinations and for different initial conditions (data not shown).

Through these simulations, we show for the first time that the cut-out switch model is

robust against fluctuations, which are intrinsic to biological cells. In addition, we show that

spatial coupling renders the concentration of Rab GTPases spatially homogeneous at steady

state, despite a local trigger, thereby ensuring unique identity of individual endosomes.

Discussion and conclusion

We have presented pSSAlib, the first complete and concise implementation of all exact partial-

propensity SSAs. Partial-propensity SSAs reduce the computational cost of exact stochastic

simulations of chemical reaction networks from scaling with the number of reactions to scal-

ing at most with the smaller number of species. This is particularly beneficial for strongly cou-

pled networks, where the number of reactions can approach the square of the number of

species. In weakly coupled networks, the scaling of the computational cost of partial-propen-

sity SSAs is identical to that of previous SSAs and is independent of system size.

pSSAlib implements and provides partial-propensity methods for strongly and weakly cou-

pled networks, for networks involving time delays, and for spatiotemporal stochastic reaction-

diffusion simulations in uniform Cartesian grids. It is implemented in C++ and can be used

both stand-alone and as part of other software projects. pSSAlib is based on widely-used open-

source libraries, including Boost [35], the GNU Scientific Library [34], the Message Passing

Interface (MPI) [26] for parallel processing, and the SBML library [36] for portable model

definition and exchange. The pSSAlib library is complemented by stand-alone software to

simulate SBML models and to analyze the results. Additionally, we provide a plug-in to the

SBMLToolbox for user-friendly model editing and parameter annotation (see Overview of

pSSAlib in Sec. Design and implementation).

pSSAlib has previously been applied to a large biochemical reaction pathway with ATP

turnover, revealing fluctuations in metabolite copy numbers on the order of 20% [23]. In

the Heat-shock-response tutorial in Sec. Supporting information, we apply pSSAlib to a previ-

ously developed model of the heat shock response pathway in single cells [40]. In this manu-

script, we have shown the application of pSSAlib to a novel stochastic model of endosome

maturation.

We have described the architecture, functionality, and use of pSSAlib, and we have com-

pared its functionality and computational performance with popular implementations of clas-

sical, full-propensity SSAs. Validation cases for which the exact solution of the chemical

master equation is known have been used to verify correctness of the software implementation.

The performance benchmarks have shown that the user-friendly implementation in pSSAlib

has the beneficial scaling of partial-propensity SSAs and outperforms traditional SSAs for large

or strongly coupled networks. Finally, we have applied pSSAlib and its analysis workflow to

the open biological question of robust intracellular compartmentalization despite low copy

numbers of the controlling molecules. To this end, we developed a new model of the endocytic

pathway in eukaryotic cells and uncovered the stochastic counterpart of the cut-out switch

motif underlying early-to-late endosome conversion.

Even though pSSAlib offers all partial-propensity SSAs, the choice of the most efficient

method depends on problem type and size. As shown in our benchmarks, other implementa-

tions, such as the NRM variants offered by Cain [27], may be more efficient in some cases. In

addition, for very small reaction networks, possibly none of the partial-propensity SSAs
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amortize the overhead incurred by the partial-propensity data structures and the memory

look-up therein. However, pSSAlib complements the family of SSA simulation packages and

provides an efficient way for existing simulation packages, like Morpheus [41] and Copasi

[42], to make partial-propensity methods available to their users.

Availability

The pSSAlib source code and pre-packaged installers are freely available from mosaic.mpi-cbg.

de as open source under the GNU LGPL v3 license. The web site also contains an online man-

ual, user tutorial, and a complete developer’s reference to the API.

Supporting information

Heat-shock-response tutorial

We demonstrate the application of pSSAlib to a model of age-related impairment of the heat-

shock response, showing that efficient simulations enable large sample sizes and that the corre-

spondingly accurate population averages reproduce published results [40].

Chaperones play an important role in cell physiology by assisting in proper folding of

nascent proteins, refolding of misfolded ones, catalyzing protein degradation in the lysosomes,

and preventing protein aggregation. However, the amount of damaged protein in a cell

increases with cell age, suggesting an impairment of the heat-shock response.

An SBML model [43] of this system is publicly available from the BioModels Database [44].

After downloading this model, we added the reaction annotations using the pSSAlib plug-in

for the SBMLToolbox and saved the file under a new name. The model was then ready to be

processed by pSSAlib. We first reproduced the results from Fig. 2 of Ref. [40], covering tens of

thousands of chaperone-protein interactions in an unstressed cell.

We let the simulation engine sample 100 trajectories using SPDM as the simulation algo-

rithm. We chose to collect simulation output every 10 seconds of simulated time. The respec-

tive CLI call to the simulator read:
<path-to-pSSA-CLI>/simulator -m spdm -i <path-to-model-file> -n 100
--tend 10000 --dt 10 -o <output-path>

Listing 1. Simulator usage for 100 samples using SPDM.

We then used the pSSAlib analyzer to statistically analyze the simulation data and to plot

the results. We selected the species to be included in the analysis using the -s command-line

option followed by the respective species names as a comma-separated list. The two calls to the

analyzer below serve to plot a single trajectory for the selected species by specifying both -n 1
and -r trajectories.
<path-to-pSSA-CLI>/analyzer -i <path-to-simulator-output>

-s NatP, MisP, AggP, Hsp90 -n 1 -r trajectories -o <output-path>
--gnuplot
<path-to-pSSA-CLI>/analyzer -i <path-to-simulator-output>

-s ATP, ADP, ROS -n 1 -r trajectories -o <output-path> --gnuplot

Listing 2. Analyzer usage to plot individual trajectories, as shown in Fig 4.

The --gnuplot option causes the analyzer to write gnuplot scripts for visualizing the

results. These were directly visualized by the open-source plotting program gnuplot, including

legends with species names as given in the model specification; see Fig 4 for an example.

The results are shown in Fig 4a and 4b and confirm Figs. 2a and 2b of Ref. [40]. Similarly, a

model extension that incorporates Hsp90 misfolding in a stressed cell (see Fig 4c and 4d)

reproduced Fig. 6 of Ref. [40]. Both stochastic results were thereby confirmed using a different

method than in the original work.
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Validation test cases

Homoreaction model. The following two reactions define the homoreaction test case

[45]:

Aþ A � !
k1
;; ; � !

k2 A: ð2Þ

Here, k1 and k2 are macroscopic rates. In addition, we consider that these reactions happen

within a finite-sized compartment of volume V. Using simulations, we track the copy number

n(t) of molecules A. The parameter values are: k1/V = 0.016 s−1, k2V = 10 s−1. The initial copy

number n(t = 0) is set to 25. The analytical steady-state population distribution is:

�ðnÞ ¼
1

ffiffiffi
2
p
I1ð2

ffiffiffiffiffiffi
2K
p

Þ

ð
ffiffiffiffi
K
p
Þ
n

n!
In� 1 2

ffiffiffiffi
K
p� �

; ð3Þ

Fig 4. a,b. Heat-shock response of an unstressed cell. Visualization of the pSSAlib simulation results showing time courses for a single cell,

confirming Figs. 2a and 2b from Ref. [40]. The legend of panel b applies to all panels. c,d. Heat-shock response of a stressed cell.

Visualization of the pSSAlib simulation results showing time courses for a single cell, confirming Figs. 6a and 6b from Ref. [40]. The results

shown here were obtained using SPDM as implemented in pSSAlib.

https://doi.org/10.1371/journal.pcbi.1005865.g004
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where ϕ(n) is the discrete PDF for finding n� 0 molecules of species A at steady state, K ¼ k2V2

k1
,

and Im(�) is the modified Bessel function of the first kind.

Heteroreaction model. The heteroreaction test case [45] is defined by the following two

reactions:

Aþ B � !
k1 B; ; � !

k2 A: ð4Þ

Here again k’s are macroscopic rates, and we consider these reactions happening within a

compartment of volume V. Using simulations, we track the copy number na(t) of species A.

For this reaction network, the copy number nb of species B remains unchanged from its initial

value. The parameter values are k1/V = 0.04 s−1, k2V = 1 s−1. The initial copy numbers are

na(t = 0) = 25 and nb(t)� nb(t = 0) = 1. The analytical steady-state population distribution for

species A is:

�ðnaÞ ¼
1

na!
K
nb

� �na
exp �

K
nb

� �

; ð5Þ

where ϕ(na) is the discrete PDF for finding namolecules A at steady state, nb is the constant

copy number of species B, and K ¼ k2V2

k1
.

Benchmark test cases

Cyclic linear chain reaction network. We benchmark partial-propensity SSAs on a

weakly coupled model in order to assess their limitations in cases where other SSA formula-

tions might be more efficient. We choose the cyclic linear chain model from [16] since it is the

most weakly coupled reaction network possible. ForM reactions, it involves the minimum

number of species N =M + 1, and the maximum out-degree of the dependency graph is con-

stant at the smallest possible value of 2, since every reaction at most influences the population

of its only reactant and of the only reactant of the subsequent reaction. The reactions of the

cyclic linear chain model are given by:

Si � !
ki Siþ1 i ¼ 1; . . . ;N � 1:

SN � !
kN S1:

ð6Þ

where Si is chemical species i, ki are macroscopic reaction rates, and N is the total number of

species in the model. For the simulations we set ki = 1 and Si(t = 0) = 1 for all i = 1,. . ., N.

Colloidal aggregation model. We use the colloidal aggregation model from [16] as an

example of a strongly coupled reaction network that can be used to model, e.g., aggregation of

solvated proteins, nanobeads, or viruses. For N chemical species it consists ofM ¼ bN2

2
c reac-

tions. The maximum out-degree of the dependency graph is 3N − 7 and hence scales with sys-

tem size, which is the definition of strong coupling. The reactions of the colloidal aggregation

model are given by:

Sn þ Sm � !
kn;m Snþm n ¼ 1; . . . ;

�
N
2

�

;

m ¼ n; . . . ;N � n;

Sp � !
�kp;q Sq þ Sp� q p ¼ 1; . . . ;N;

q ¼ 1; . . . ;

�
p
2

�

;

ð7Þ

pSSAlib: The partial-propensity stochastic chemical network simulator

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005865 December 4, 2017 12 / 15

https://doi.org/10.1371/journal.pcbi.1005865


where Si is chemical species i, kn,m and �kp;q are macroscopic reaction rates, and N is the

total number of species in the model. For the simulations we set all rate constants to 1 and

Si(t = 0) = 1 for all i = 1,. . ., N.
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5. Ramaswamy R, Sbalzarini IF, González-Segredo N. Noise-Induced Modulation of the Relaxation Kinet-

ics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks. PLoS ONE.

2011; 6(1):e16045. https://doi.org/10.1371/journal.pone.0016045 PMID: 21297975

6. Ramaswamy R, Sbalzarini IF. Intrinsic noise alters the frequency spectrum of mesoscopic oscillatory

chemical reaction systems. Sci Rep. 2011; 1:154. https://doi.org/10.1038/srep00154 PMID: 22545192
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