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Macrophages are key components of the innate immune system and exhibit extensive
plasticity and heterogeneity. They play a significant role in the non-pregnant cycling uterus
and throughout gestation they contribute to various processes underpinning reproductive
success including implantation, placentation and parturition. Macrophages are also
present in breast milk and impart immunomodulatory benefits to the infant. For a
healthy pregnancy, the maternal immune system must adapt to prevent fetal rejection
and support development of the semi-allogenic fetus without compromising host defense.
These functions are dependent on macrophage polarization which is governed by the
local tissue microenvironmental milieu. Disruption of this microenvironment, possibly by
environmental factors of infectious and non-infectious origin, can affect macrophage
phenotype and function and is linked to adverse obstetric outcomes, e.g. spontaneous
miscarriage and preterm birth. Determining environmental influences on cellular and
molecular mechanisms that control macrophage polarization at the maternal-fetal
interface and the role of this in pregnancy complications could support approaches to
alleviating adverse pregnancy outcomes.
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INTRODUCTION

The establishment and ongoing success of pregnancy is reliant on finely tuned, dynamic maternal
immune adaptations. It is critical that a balance between maintaining tolerance to the semi-allogenic
fetus and upholding immune function for protection against infection is established to ensure a
healthy pregnancy (1). A unique immunological crosstalk is established between mother and fetus
which continues postpartum through breastfeeding. Important to this process of immune
adaptation is the increase of innate immune cells at the maternal-fetal interface, specifically
natural killer (NK) cells and macrophages, evident from the very beginning of pregnancy (2, 3).
These macrophages and NK cells not only regulate local immune function but also directly promote
migration and other functions of extravillous trophoblasts (EVT), support spiral artery remodeling
and angiogenesis, and provide mediators that support fetal growth and development; all critical
processes in placental and fetal development (4–6). Macrophages remain an important immune cell
org January 2021 | Volume 11 | Article 6073281
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type to the maternal-fetal dyad post-partum as they exist in
high numbers in breast milk and provide an element of
protection against infection and inflammation to the nursing
infant (7, 8).

Macrophages are found in all tissues where they play a role
in maintaining tissue homeostasis and responding to the
presence of infectious and non-infectious threat via the
detection, ingestion and elimination of dead cells, foreign
matter and other debris (9). They are a heterogenous
population of immune cells displaying remarkable plasticity
with their phenotype and function very much dependent on the
local tissue microenvironment (6). Macrophages are classically
divided into two groups; M1 macrophages (stimulated by
interferon (IFNg) or Toll-like receptor (TLR) ligands, such as
lipopolysaccharide (LPS)) typically associated with pro-
inflammatory responses and M2 macrophages (stimulated by
interleukin (IL)-4/IL-13) typically associated with anti-
inflammatory responses (10). While this has emerged as an
over-simplification of the spectrum of macrophage phenotypes
linked to specific effector functions it provides a starting point
for discussing the role of macrophages in pregnancy. As such,
the balance of macrophage polarization at the maternal-fetal
interface has emerged as vital in sustaining a healthy
pregnancy. Throughout gestation the number and proportion of
M1/M2macrophages at the maternal-fetal interface is finely tuned
with the initial polarization state skewed towards M1 during the
window of implantation contributing to the inflammatory
response that is important for successful implantation (11).
As pregnancy progresses M2-like macrophages are more
abundant in order to establish and maintain tolerance to the
fetus as well as contribute to the normal development and
functioning of the placenta (5, 12, 13). Parturition has been
characterized as an inflammatory process with macrophages
being key to this process as demonstrated by increased numbers
of M1 macrophages in the decidua of laboring tissue (14, 15).
Failure to support the necessary immunological changes by
macrophage maladaptation to or perturbations in the local
tissue microenvironment, possibly due to alterations in the
wider environment that the mother is being exposed to, is
increasingly implicated in various pregnancy complications such
as preeclampsia and preterm birth (1, 16).

This review will discuss the current understanding of the role of
macrophages in the reproductive setting, namely the maternal-
fetal interface as well as in breast milk, and the environmental
factors that can influence their function including infection,
obesity, and pollution.
MACROPHAGE POLARIZATION AND
PLASTICITY

The diverse roles of macrophages are governed by their incredible
plasticity. In response to extrinsic factors derived from the tissue
microenvironment, macrophages activate different intracellular
pathways leading to specific polarization patterns. As noted
above, macrophages are categorized broadly into classically
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activated/M1 macrophages or alternatively activated/M2
macrophages and based on their response to differing stimuli
M1 macrophages were suggested to preferentially elicit a Th1 type
response andM2 a Th2 response (17–19). However, we now know
that these classifications represent macrophages at either ends of a
continuum andmacrophage phenotype may be better described as
a series of gradations within a large spectrum (20). Consequently,
M2 macrophages have been further categorized into M2a, M2b,
M2c, and M2d based on the molecules that lead to their activation
as well as their gene expression profiles (21). The various groups of
macrophages differ in their expression of cell surface markers,
cytokine secretion and biological function which are summarized
in Figure 1.

The activation of macrophages by LPS and Th1 cytokines
(including IFNg and TNFa) results in M1 polarization with
granulocyte-macrophage colony-stimulating factor (GM-CSF)
also implicated as an important M1-inducer (22). These
macrophages are characterized by surface marker expression
that includes CD80, CD86, TLR4, and TLR2 and the release of
cytokines and chemokines such as TNFa, IL-1b, CXCL9, and
CXCL10. These soluble mediators drive further M1 polarization
via positive feedback, yielding potent pro-inflammatory cells
with critical microbicidal and tumoricidal functions (Figure 1)
(22). M2 polarization on the other hand is induced by signals
from anti-inflammatory cytokines such as IL-4 and IL-13 as well
as macrophage colony-stimulating factor (M-CSF) (22). M2
macrophages express surface markers such as CD206, CD209,
and CD163 and upregulate the production of cytokines and
chemokines such as IL-10, transforming growth factor (TGF-b),
CCL1, and vascular endothelial growth factor (VEGF; Figure 1).
M2 macrophages play important roles in tissue repair,
angiogenesis, and immunomodulation (22).

A growing body of evidence demonstrates specific metabolic
processes as critical determinants of immune cell effector
functions including macrophages. A multitude of metabolic
processes have been implicated in pro- and anti-inflammatory
macrophage activation. These processes include glycolysis, the
Krebs cycle, oxidative phosphorylation (OXPHOS), amino acid
metabolism and fatty acid metabolism (23). Under homeostatic
conditions and in an anti-inflammatory environment,
macrophages rely primarily on catabolic pathways such as
glucose oxidation for their energy supply and function (24, 25).
Upon activation via pattern recognition receptor (PRR; e.g. TLR)
signals, macrophages engage in anabolic metabolism in order to
maintain inflammatory function (24, 26). Thus in M1
macrophages, aerobic glycolysis is recognized as a crucial
metabolic event with inhibition of glycolysis affecting pro-
inflammatory functions such as phagocytosis and cytokine
release (27, 28). A high proportion of glycolysis-derived carbon
is shunted into the pentose phosphate pathway to produce
biosynthetic precursors required for nucleotide synthesis
(pentose sugars and ribose-5-phosphate), and nicotinamide
adenine dinucleotide phosphate (NADPH) which is required
for reductive biosynthesis reactions and as a substrate for
NADPH oxidase (NOX2) to generate ROS as part of their
anti-microbial response (29, 30).
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The Krebs cycle has emerged as a central immunometabolic
regulator of macrophages, at least in mice, with specific
breakpoints in the cycle resulting in accumulation of the
intermediates succinate and citrate during pro-inflammatory
macrophage activation. These metabolites are involved in the
regulation of inflammatory gene expression (31, 32). The
metabolite itaconate, which is synthesized from the Krebs cycle
intermediate cis-aconitate, is also an important immunomodulator
in M1 activated macrophages. Itaconate is produced in large
quantities in LPS activated macrophages where it regulates
inflammation by inhibiting pro-inflammatory cytokine and ROS
production (33). Itaconate additionally displays antimicrobial
properties by inhibiting bacterial isocitrate lyase (34). Another
Krebs cycle intermediate, a-ketoglutarate, has been demonstrated
as crucial for complete murine M2 macrophage activation via
epigenetic alterations in M2-associated genes. These epigenetic
alterations involve the demethylation of histone H3 K27 on the
promoters of M2 marker genes thus enhancing their expression
(35). However, while the Krebs cycle is implicated in both M1 and
M2 polarization, it is intact in M2 cells with no breakpoints
observed. M2 macrophage metabolism is also characterized by
enhanced glucose oxidation via OXPHOS, with the anti-
inflammatory cytokine IL-10 reported to stimulate OXPHOS to
oppose M1 polarization (36–38). Originally, fatty acid oxidation
(FAO) was thought to be important in supporting OXPHOS in
these anti-inflammatory macrophages, however, the importance of
FAO in M2 polarization is under scrutiny as many studies based
this conclusion on inhibition of carnitine palmitoyltransferase-
1A (facilitates long-chain fatty acid transport across the
mitochondrial outer membrane) using etomoxir. However, high
concentrations of etomoxir (exceeding 3 µM) have been
demonstrated to disrupt free coenzyme A levels disrupting M2
Frontiers in Immunology | www.frontiersin.org 3
polarization (39). The effect of FAO on murine macrophage
polarization also has been studied using fatty acid transporter
protein (FATP1) knockouts and overexpression models. FATP1
deficiency in macrophages induced a switch from FAO to glycolysis
whereas overexpression inhibited pro-inflammatory macrophage
responses supporting the hypothesis that FAO is important for anti-
inflammatory M2 polarization (40). However, despite this evidence
linking murine M2 polarization to FAO, FAO was found to be
dispensable for M2 polarization of human macrophages and the
role of FAO in human M2 polarization awaits clarification (41).
Differential metabolism of the amino acid arginine might also
contribute to M1/M2 polarization. M1 macrophages favor the
inducible nitric oxide synthase (iNOS) pathway in which arginine
is converted to citrulline and nitric oxide (NO) enhancing
cytotoxicity, whereas M2 macrophages utilize the arginase
pathway which involves the hydrolysis of arginine into urea and
ornithine which is important for cell proliferation and tissue repair
(42).While there aremany fascinating insights into the link between
macrophage metabolism and function the vast majority of
macrophage metabolism studies have been carried out using
murine cells and availability of human data is limited. Thus, more
effort to understand the effects of metabolism on macrophage
polarization in humans is needed.

The polarization patterns of macrophages within the female
reproductive system varies throughout the menstrual cycle and
during pregnancy. These patterns are dependent on gestational
age, must be finely tuned to ensure pregnancy success and
are perturbed in adverse pregnancy outcomes. Here we will
provide an overview of human macrophage populations
within the non-pregnant uterus (uterine macrophages),
pregnant uterus (decidual macrophages), placenta (placental
macrophages or Hofbauer cells) and breast milk. While
FIGURE 1 | Macrophage polarization. Overview of the polarization spectrum of macrophages highlighting stimuli, surface marker expression, cytokine and
chemokine secretion and functions of M1 and M2 polarized macrophages. AR, adenosine receptor; CCL, chemokine (C-C motif) ligand; CXCL, chemokine (C-X-C)
ligand; IFNg, interferon-gamma; GC, glucocorticoids; IC, immune complexes; LPS, lipopolysaccharide; MHC, major histocompatibility complex; TGFb, transforming
growth factor-beta; TNFa, tumour necrosis factor alpha; TLR, Toll-like receptor; iNOS, inducible nitric oxide synthase; VEGF, vascular endothelial growth factor.
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placental macrophages are of fetal origin all other populations are
of maternal origin.

Uterine Macrophages
The uterine endometrium is an important site of mucosal
immunity and must simultaneously maintain a hospitable
environment for implantation while providing protection
against pathogens. The physiological processes of the female
reproductive system such as the menstrual cycle, implantation
and the onset of labor all have been described as inflammatory
events (43). Key to these inflammatory events are macrophages
which are distributed throughout the uterine tissue and
constitute about 10% of the leukocytes present in the human
uterus and 10% of total uterine cells in the mouse (44, 45). These
uterine macrophages have been demonstrated to display an M2-
like phenotype characterized by high secretion of anti-
inflammatory IL-10 and the typical M2 cell membrane
markers CD163 and CD206 (46). This population of
macrophages is likely regulated by the sex hormones estrogen
and progesterone as inferred by the alterations in leukocyte
populations which correspond to the menstrual cycle (Figure
2) (47, 48). Early murine studies revealed that ovariectomy,
which prevents cyclical estrogen and progesterone production,
leads to decreased macrophage numbers in the uterus within 6
days. Upon injection with estrogen and progesterone,
macrophage numbers were restored highlighting a role for
these hormones in macrophage regulation in the uterus (49).
The macrophages in the uterine endometrium express the
Frontiers in Immunology | www.frontiersin.org 4
estrogen related receptor-b indicating the possibility of
estrogen-dependent regulation of these cells (50). However,
uterine macrophages lack progesterone receptor expression
implying indirect regulation via factors secreted by other
progesterone-responsive endometrial cells (51). Progesterone
and estrogen additionally stimulate uterine cells to produce M-
CSF and levels of this cytokine correlate to the presence of
macrophages in the mouse uterus highlighting the role for sex
steroids in controlling uterine macrophage numbers indirectly
(52). The estrogen dominant follicular or proliferative phase of
the menstrual cycle involves the proliferation and thickening of
the endometrium. During the secretory or luteal phase of the
menstrual cycle, in which progesterone dominates, decidualization
involving morphological and functional changes of the
endometrial stromal cells as well as spiral arteriole development
to prepare for implantation begins (53). If implantation occurs,
the decidualization reaction continues. However, in the absence
of pregnancy, progesterone levels decrease resulting in an
inflammatory cascade and the breakdown and loss of the
functional layer of the endometrium in menses.

Despite the apparent M2 phenotype of uterine macrophages
they secrete both anti-inflammatory (e.g., IL-10 and IL-1
receptor antagonist (IL-1RA)) and pro-inflammatory (e.g.
TNFa and IL-1b) cytokines and express variations of surface
markers throughout the menstrual cycle (54). Macrophage
numbers are low during the proliferative phase and they
express the activation markers CD69 and CD71 and the
adhesion marker CD54 suggesting their potential involvement
FIGURE 2 | Macrophage polarization in the non-pregnant and pregnant uterus. The number and function of macrophages in the non-pregnant uterus changes
during the menstrual cycle with numbers peaking during menses where they play a role in the breakdown of the endometrial functional layer through secretion of
MMPs as well as debris clearance through phagocytosis. Upon exposure to seminal fluid, the endometrium is thought to induce an inflammatory response resulting
in the recruitment of macrophages that display an M1-like phenotype. As pregnancy proceeds and extravillous trophoblasts (EVTs) invade the decidual stroma,
decidual macrophages (DMs) shift towards a mixed M1/M2 profile and eventually a predominantly M2 phenotype to prevent fetal rejection. Placental macrophages
(PMs) additionally display an M2 phenotype and aid in regulation of angiogenesis in the feto-placental vasculature through secretion of VEGF and fibroblast growth
factor (FGF)2. Term labor is associated with an increased number of M1 macrophages and inflammatory cytokines in the decidua and it is this inflammatory
environment which is thought to induce labor.
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in the proliferation and regeneration of the functional
endometrium (55). An influx of macrophages occurs in the
secretory phase of the menstrual cycle where they are thought
to be important in the preparation of the endometrium for
implantation. Leukemia inhibitory factor (LIF) is a key
molecule involved in implantation contributing through, for
example, chemoattraction of macrophages. This role of LIF is
best demonstrated in mouse models wherein LIF-knockout mice
have a more than 50% reduction in macrophages in uteri that
experience implantation failure (56).

The uterine macrophage population peaks during the menses
phase following progesterone withdrawal (57). The decrease in
progesterone levels as well as the release of paracrine factors
from various cells of the endometrium results in the
upregulation of matrix metalloproteinases (MMPs). These
proteolytic proteinases are key to the breakdown of the
endometrium during menstruation (58). Macrophages express
various forms of these MMPs and additionally secrete various
molecules involved in their regulation such as IL-17 which
has been shown to upregulate MMP expression (59–61).
Immunolocalization techniques have revealed that MMP-9
colocalizes with various leukocytes including macrophages
immediately prior to and during menstruation suggesting that
these immune cells are the major MMP-9 source in the menstrual
tissue (61). MMP-12 is also secreted by uterine macrophages and
is upregulated during menstruation highlighting the role of
macrophage-derived MMPs in the tissue degradation associated
with menstruation (62, 63). The endometrium resembles a
“wound” during menstruation and it is critical that the wound-
healing process maintains reproductive function (64).
Inflammation is key to wound healing with macrophages having
a pivotal role through removal of dead cells (64) and the
remodeling of tissue (65). Endometrial cells shed during
menstruation undergo apoptosis and are phagocytosed by
macrophages (66). Subsequent vascular remodeling following
progesterone withdrawal results in vasoconstriction and a
hypoxic environment that creates proangiogenic macrophages
and stimulates the release of VEGF by macrophages and stromal
cells (67, 68).

Macrophages are therefore important for the normal
functioning of the uterus throughout the menstrual cycle.
Consequently, dysregulation of their activity seems to have a
significant role in abnormalities and pathologies of the uterus
including endometriosis and endometrial cancer (66).
Endometriosis is a common condition affecting many
menstruating women. It is characterized by hormone-dependent
growth of vascularized endometrial tissue outside of the uterus
resulting in pelvic pain and infertility. Macrophages are abundant
in endometrial lesions found outside of the uterus (primarily in the
peritoneum) and are implicated in endometriosis (69, 70).
Macrophages within the peritoneum demonstrate increased
secretion of pro-inflammatory cytokines (IL-1b, IL-6, and
TNFa) and angiogenic factors (VEGF) contributing to a
microenvironment that favors the implantation of endometrial
cells outside of the uterus to establish and maintain endometriosis
(71). The growth of endometrial lesions is likely enhanced by the
Frontiers in Immunology | www.frontiersin.org 5
presence of macrophages as demonstrated by the increased
proliferation and invasiveness of endometrial stromal cells when
co-cultured with macrophages (72). As well as endometrial lesion-
associated macrophages in the peritoneum, macrophages were
also increased in the endometrium of women with endometriosis
during the proliferative phase of the menstrual cycle however
alterations in their functions are yet to be identified (66). Elevated
macrophage numbers in the endometrium of women with
endometriosis may be due to the increased levels of macrophage
migration inhibitory factor (MIF) and monocyte/macrophage
activating chemoattractant protein (MCP-1/CCL2) that
simultaneously limit macrophage migration from and
recruitment of macrophages into the endometrium, respectively
(73, 74). It is not clear whether these alterations in macrophages
and other immune cell types implicated in endometriosis are cause
or effect (75) but clarification of mechanisms mediating
macrophage maladaptation could be critical in the development
of treatment for endometriosis.

Decidual Macrophages
As mentioned above, fluctuation of macrophage number and
function in the endometrium is a physiological feature of the
normal menstrual cycle in non-pregnant women (76). When
pregnancy occurs there is an increase in the number of
macrophages so that they comprise 20% to 30% of decidual
leukocytes (77). During the peri-implantation period in mice,
when the uterus is exposed to seminal fluid, there is an increase
in M1-skewed macrophages (11) recruited by chemokines
secreted by decidual stromal cells (78). The extent to which
seminal fluid impacts the human endometrial environment is
not well understood, however a similar inflammatory response is
observed in the human cervix upon exposure to seminal fluid
which results in the recruitment of leukocytes including
macrophages, accompanied by inflammatory cytokines and
chemokines such as IL-6 and IL-8 (CXCL8) (79). These
immune changes are thought to facilitate preparation of the
female reproductive tissue for pregnancy through clearance
of debris and pathogens and sperm selection (80). Despite
the primary site of semen deposition in the human
female reproductive tract being the cervix, in vitro studies
demonstrate that these immune changes probably extend to
the uterus as seminal plasma was able to induce expression of
proinflammatory cytokines in primary endometrial epithelial
cells from fertile woman (81).

Although this initial inflammatory, pro-M1 period is key in
the preparation for pregnancy, a shift towards a more immune
tolerant environment must occur for pregnancy to continue (6).
As EVTs begin to invade the uterine stroma, a mixed profile of
M1/M2 macrophages is established (11). A shift towards a
predominantly M2 phenotype then occurs in order to prevent
fetal rejection (Figure 2) (6). However, the diverse phenotypes of
decidual macrophages in the first and second trimester differ
from conventional M1/M2 cells. Early murine studies
demonstrated that macrophages, identified by expression of
Fcg receptor expression, isolated from the pregnant uterus
were immunosuppressive as they were able to inhibit the
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inflammatory response of spleen cells to polyclonal mitogen
phytohemagglutinin (PHA) suggesting that these macrophages
may contribute to the immunoregulatory environment at the
maternal-fetal interface (82).

Two distinct subsets of first trimester decidual macrophages
classified by the level of expression of CD11c have been described
(83). Gene expression analysis using RNA microarray revealed
that CD11chi macrophages express genes involved in
inflammation and lipid metabolism such as OLR1 (oxidized
low-density lipoprotein) and LPL (lipoprotein lipase). This
subset was additionally much better at antigen processing and
may therefore be the major antigen presenting population in the
decidua. On the other hand, CD11clo macrophages upregulate
expression of genes associated with extracellular matrix
formation, muscle regulation, and tissue growth such as DMD
(dystrophin), an important gene in muscle cell viability, and
IGF1 (insulin-like growth factor 1), a gene important for the
development and functional maturation of skeletal tissues and
reproductive organs (83). However, both of these decidual
macrophage subsets secrete pro- and anti-inflammatory
cytokines and might contribute to the inflammatory balance
during the first trimester that maintains immune homeostasis
without compromising defense against invading pathogens at the
maternal-fetal interface (83). In contrast, gene expression
profiling and phenotyping by surface marker expression of
term decidual macrophages demonstrates that they most
closely resemble M2 skewed cells (12, 15, 84). This phenotype
is important for immunomodulatory functions and tissue
remodeling (12). These term decidual macrophages are the
major source of the immunosuppressive cytokine IL-10 in the
decidua and display low expression of CD80 and CD86 (co-
stimulatory molecules necessary for antigen presentation and T-
cell activation) thus confirming their immunomodulatory role
(85). As well as IL-10, there are many other factors at the
maternal-fetal interface that are responsible for modulating
this phenotype. For example, trophoblast-derived M-CSF along
with IL-10 have been demonstrated to induce this M2 regulatory
phenotype in maternal monocytes (86). Soluble human
leukocyte antigen G5 (sHLAG5), a soluble isoform of human
leukocyte antigen, has additionally been implicated as an
important soluble factor responsible for macrophage
polarization during pregnancy. sHLAG5 is able to promote
differentiation of macrophages to an immunomodulatory
phenotype with reduced expression of CD86 and increased
CD163 expression (87). These macrophages additionally
displayed increased phagocytic ability as well as greater
expression of indoleamine 2,3-dioxygenase [a marker of
decidual macrophages (85)] and secretion of IL-6 which
prevented proliferation of and IFN-g production by T cells.

Decidual macrophages have been reported to be involved in
various stages of placental development. They contribute to
decidual invasion of EVT from placental villi and uterine spiral
artery remodeling that support the nutritional and oxygen
demands of the growing fetus. As with endometrial remodeling
in the menstrual cycle the production of MMPs, specifically
MMP-7 and -9, is critical as these degrade the extracellular
Frontiers in Immunology | www.frontiersin.org 6
matrix enhancing EVT invasion (88). Additionally, the secretion
of M2-associated factors such as IL-33 and Wnt-5a by decidual
macrophages may enhance proximal cell column proliferation
and could be important for EVT development (89). Macrophages
also localize in the immediate vicinity of spiral arteries even
before EVTs are present highlighting their role in early vascular
remodeling (88).

Apoptosis is central to appropriate development of the
decidua (90), for example, trophoblast cells lost via apoptosis
are replaced with a younger population (91), and macrophages
engulf these apoptotic cells preventing the release of their
potential ly pro-inflammatory and pro-immunogenic
intracellular contents that might be lethal for the fetus (90).
Thus, appropriate removal of apoptotic cells by macrophages
and potentially the production of anti-inflammatory mediators
such IL-10 and TGF-b in response to apoptotic cells (92) is
important for maintaining tissue homeostasis at the maternal-
fetal interface.

While an M2-like decidual macrophage phenotype dominates
for much of pregnancy, labor at term is associated with an
increased number of M1 macrophages when compared with
term in the absence of labor suggesting a role for pro-
inflammatory macrophages in the induction of term labor (15).
Additionally, parturition is associated not only with the
infiltration of macrophages but also increased mRNA
expression of the pro-inflammatory cytokines IL1B and IL6 in
laboring tissue (93). However, an earlier study identified only
marginal differences in macrophage activation status between
spontaneous vaginal delivery compared with caesarean section
questioning the involvement of decidual macrophage activation
in parturition (84).

Placental Macrophages
Placental macrophages, also known as Hofbauer cells, are fetal
macrophages found within the chorionic villi. They appear as early
as the 18th day of gestation and are round, highly vacuolated cells
(94). As placental macrophages are observed before the fetal
circulation is established, it is suggested that they are derived
from mesenchymal cells in the villous stroma from early stages of
gestation (95–97). A recent study additionally concluded that first
trimester placental macrophages were derived from primitive
hematopoiesis as they are transcriptionally similar to yolk sac
derived macrophages but not embryonic monocytes (98). Other
studies have suggested that upon development of the fetal
circulation, placental macrophages are recruited from fetal
monocytes in later stages of pregnancy as transitional forms of
monocytes and placental macrophages are observed (99–101). The
pool of placental macrophages is thought to be sustained through
recruitment of monocytes by factors such as MCP-1 produced by
villous fibroblasts (102). It is additionally debated whether
placental macrophages are able to self-renew with some studies
demonstrating mitotic activity (103) while others did not (104).
Placental macrophages also have been shown to display an M2-
like phenotype. M1-associated genes such as TLR9, IL1B, IL12RB2,
and CD48 were silenced by hypermethylation whereas pro-M2
genes including CCL2, CCL13, CCL14, and CD209 were
January 2021 | Volume 11 | Article 607328
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hypomethylated (105). Flow cytometry confirms the presence of
the M2 cell surface markers CD209 and CD206 on placental
macrophages and supernatants from these cells have high
concentrations of immunosuppressive cytokines such as IL-10
and TGF-b (106, 107). This M2 phenotype aids in the prevention
of fetal rejection and allows for fetal growth (107) and is dictated
by the local microenvironment. For example, M1 polarized
monocyte-derived macrophages favor the M2 phenotype upon
co-culture with placental mesenchymal stem cells isolated from
the chorionic villi (108).

The phenotype and function of placental macrophages
remains poorly understood and has recently been debated due
to the finding that a population of maternal derived macrophages
is present in placental digests that have likely been unaccounted
for in previous studies (98). Despite this, a number of studies
support a key role for them in angiogenesis, vasculogenesis, and
placental mesenchyme development (94, 109, 110) which
remains true even with the removal of this contaminating
population of maternal macrophages (98). The placenta is a
highly vascularized organ and placental macrophage secretion of
VEGF and fibroblast growth factors (FGFs) such as FGF2
underscores their likely role in the regulation of angiogenesis
in the feto-placental vasculature (109, 111). Additionally,
placental macrophages express Sprouty (Spry) proteins which
are involved in regulating branching morphogenesis and
attracting fibroblasts to support this process (102). Although
characterized as M2-like, placental macrophages can mount a
pro-inflammatory response upon activation via TLRs (98, 112).
TLRs are a group of transmembrane proteins that function as
PRRs, recognizing pattern-associated molecular patterns
(PAMPs) and danger-associated molecular patterns (DAMPs)
(113). Activation of term placental macrophages via TLR4 (with
LPS) or TLR3 (with polyinosinic-polycytidylic acid (poly I:C))
increased IL-6 and IL-8 secretion suggesting that placental
macrophages have an important role in host defense within the
placenta and the triggering of local inflammation (112). Placental
macrophage anti-viral responses have been studied further using
5′ triphosphate double-stranded RNA (5′ppp-dsRNA) which is a
synthetic ligand for the retinoic acid-inducible protein I (RIG-I)
(114), another type of PRR. There are gestational differences
in the capacity of placental macrophages to respond to 5′ppp-
dsRNA. Early/mid gestation placental macrophages quickly
adopted classically activated phenotypes with the production of
some inflammatory cytokines whereas term macrophages
remained outwardly inactivated despite the transcriptional
upregulation of the antiviral genes MX1 and Viperin (114).
These results suggest that placental macrophage response to
viral stimulation may be temporally regulated across gestation.
First trimester placental macrophages additionally demonstrate
microbicidal activity as they display phagocytic capacity and
ROS production (98).

Breast Milk Macrophages
Macrophages continue to have an important role even after the
baby is born via the breast milk. Breast milk is composed of many
immunological factors which facilitate immune development of
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the neonate (115). Macrophages are present in breast milk in
large numbers comprising up to 80% of total cells in early human
milk with numbers per milliliter of milk declining with milk
maturation (116). These cells are thought to be derived from
maternal peripheral blood monocytes which extravasate and
migrate to the mammary gland and enter the breast milk
through the epithelium. Upon arrival, breast milk macrophages
demonstrate great phagocytic activity without prompting a
significant, uncontrolled immune reaction that would result in
inflammation and tissue damage (117).

Although monocytes are thought to be the precursors of
breast milk macrophages, these two populations have distinct
phenotypes. Breast milk macrophages are larger, contain
numerous cytoplasmic inclusions and display increased
expression of molecules involved in T cell stimulation,
including HLA-DR, CD86, and CD40 (116). The glycoprotein
CD83, a molecule expressed by mature dendritic cells (DCs) and
in activated cells of other lineages such as neutrophils (118), is
expressed by breast milk macrophages but not monocytes (116).
These results suggest that breast milk macrophages are
committed to DC differentiation. This is also supported by
their spontaneous production of GM-CSF, the most potent
monocyte-derived DC differentiation factor. Indeed, upon
exposure to IL-4 breast milk macrophages can differentiate
into DCs able to stimulate T cells and potentially mediate T
cell dependent immune responses (116). Breast milk
macrophages also secrete the multifunctional protein
osteopontin which activates Th1 cells highlighting the role for
these macrophages in T cell modulation (119). A Th1
gastrointestinal environment in the infant has been implicated
in the prevention of allergies however clear evidence is limited
due to environmental influences on individual levels of any
mediators measured in breast milk (119). Breast milk
macrophages can survive in the neonatal murine gut for
several hours with some mucosal uptake suggesting a direct
contribution of breast milk macrophages to gastrointestinal
immune response in the offspring (120). However, the function
and transfer of breast milk macrophages in human infants
remains poorly understood.

Breast milk macrophages are also suggested to have a host
defense role. An increase in breast milk macrophage numbers
beyond what is considered normal at the different lactation
stages occurs with infection in both the mother and infant
(121, 122). However, as well as this protective role, breast milk
macrophages might contribute to mother to child transmission
of pathogens (123). For example, TLR10 is especially
overexpressed on breast milk macrophages from women
infected with HIV-1 compared with uninfected women. TLR10
contributes to HIV-1 infection and replication in breast milk
macrophages through interaction with the HIV-1–specific
structural protein gp41 leading to the production of IL-8 (124).

Environmental Factors Implicated in
Adverse Obstetric Outcomes
The central role of macrophages is to respond to the local tissue
environment to maintain and restore tissue homeostasis
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including mounting an inflammatory response to pathogenic
and non-pathogenic insult. Consequently, macrophages are
uniquely positioned to respond to maternal environmental
pressures with infection and obesity among the most studied
but with increasing interest in other factors such as air pollution.
The effects of environmental influences on macrophage
phenotype and function at the maternal-fetal interface and
resulting adverse outcomes are summarized in Figure 3.

Infection
Infection is included here as the best studied environmental
influence to provide a comparison to the other environments of
interest rather than an extensive review. The immune response
during pregnancy is finely controlled to allow close contact
between maternal and fetal cells. However, maternal systemic
infections as well as ascending infections from the vagina can
result in placental dysfunction and thereby adverse pregnancy
outcomes (Figure 3). Viruses and bacteria can reach the decidua
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and placenta through hematogenous transmission or by
ascending from the lower reproductive tract (125). Infection by
the family of TORCH organisms which include Toxoplasma,
Others (syphilis, varicella-zoster, parvovirus B19), Rubella,
Cytomegalovirus (CMV), and Herpes as well as Hepatitis E
virus (HEV-1) and Zika virus (ZIKV) during pregnancy can
result in severe maternal and/or fetal morbidity (126). Decidual
and placental macrophages have been proposed as a line of
defense against these pathogens however progressive research
has demonstrated that these macrophages rather harbor live
pathogens serving as a reservoir for fetal infection (127, 128).
These invading pathogens manipulate the macrophages resulting
in perturbed function. For example, infection of placental
macrophages by ZIKV results in cell proliferation and
hyperplasia of these cells (129). ZIKV infection also increased
secretion of pro-inflammatory cytokines, such as IFNa and IL-6,
and chemokines such as MCP-1, implicated in monocyte
infiltration, and IP-10, involved in effector T cell recruitment
FIGURE 3 | Environmental influences on macrophages in the female reproductive system resulting in adverse obstetric outcomes. Maternal obesity, infection and air
pollution have all been linked to adverse obstetric outcomes and this could be linked to macrophage alterations at the maternal-fetal interface. Obese mothers have
demonstrated increased numbers of placental macrophages along with increased levels of pro-inflammatory cytokines. This placental inflammation has been linked
to preeclampsia, preterm birth and fetal programming of organ function. In utero infection by bacteria and viruses can result in neural defects, preterm and stillbirth.
Placental and decidual macrophages have been shown to act as reservoirs for these pathogens as well as upregulate their pro-inflammatory cytokine production
resulting in an imbalance of M1/M2 macrophages at the maternal-fetal interface. Air pollutants such as black carbon and chemicals found in plastics that are inhaled
as well as ingested can cross the placental barrier and be phagocytosed by macrophages. The effects of air pollution on placental/decidual macrophage function are
yet to be fully elucidated however certain pollutants have been shown to increase pro-inflammatory cytokine production as well as increase prostaglandin production
which could lead to preterm birth.
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(128). The putative migratory abilities of these infected placental
macrophages might facilitate the spread of the virus to the fetal
brain resulting in neural abnormalities and microcephaly (130).

Aberrant macrophage activation also occurs with Toxoplasma
gondii infection during pregnancy, especially if this occurs
during the first trimester, and can lead to neural defects as well
as stillbirth, miscarriage and preterm labor (131). A number of
studies have demonstrated aberrant decidual macrophage
activation upon infection with T. gondii. Expression of M1-
associated molecules, such as CD80 and CD86, was upregulated
and M2 functional molecule expression was down-regulated in
infected decidua (131, 132). T. gondii infection also increased
pro-inflammatory cytokine secretion from decidual
macrophages which have been shown to induce trophoblast
apoptosis (131, 133). Altered balance of M1 versus M2
decidual macrophages might contribute to T. gondii-mediated
adverse obstetric outcomes by dysregulating immune tolerance.

Placental macrophages can however provide some protection
against certain infections. For example, they have been found to
limit HIV-1 replication and possibly contribute to reduced
mother to child transmission despite the expression of HIV-1
co-receptors such as CD4 and DC-SIGN on their surface (107).
This limited replication is thought to be due to the increased
production of immunoregulatory cytokines such as IL-10 by
these placental macrophages as IL-10 has been shown to inhibit
HIV-1 replication (107).

Therefore, macrophages at the maternal-fetal interface are a
double-edged sword during infection as polarization towards an
M1 microbicidal phenotype will result in compromised tolerance
and threat to fetal health however an anti-inflammatory M2
phenotype compromises maternal and fetal protection
from pathogens.

Obesity
Obesity in women of child-bearing age is increasing worldwide.
The 2019 National Maternity and Perinatal Audit Clinical
Report reports that more than half (50.4%) of UK women were
overweight or obese at the time of initial antenatal booking
appointment and an estimated obesity prevalence of 31.8% in
women aged 20–39 years was recorded in the United States in
2012 (134, 135). Obesity has been associated with infertility as
well as a number of obstetric complications such as spontaneous
miscarriage, preeclampsia and macrosomia (Figure 3) (134). The
mechanisms underpinning this are not completely understood
but as obesity demonstrates characteristics of a low-grade
inflammatory state (136), an altered immune balance likely
contributes. Little data is available on the role uterine
macrophages play in infertility in obese woman however a
study on women with polycystic ovary syndrome (which is
associated with infertility) revealed that obesity induces an
inflammatory environment with increased numbers of
macrophages and TNFa signaling in the endometrium of these
women (137). This inflammatory environment could contribute
to fertility failures in these women. Additionally, obesity is a risk
factor for the gynecological disorder known as adenomyosis
which is characterized by invasion of endometrial glands and
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stroma within the uterine myometrium (138, 139). Women with
adenomyosis have reduced IVF implantation rates and it has
been demonstrated that there is an increased density of
macrophages and NK cells in these women suggesting
successful implantation in these women may be hindered
through an immunological mechanism (140). Placental
macrophages are emerging as having a role in this with
increased numbers in placentas from obese compared with
normal weight women and an accompanying augmentation of
the pro-inflammatory cytokines TNFa, IL-1, and IL-6 (141).
However, not all studies report an increase in placental
macrophages with maternal obesity although greater
expression of pro-inflammatory cytokines in placentas of obese
women is emerging as a consistent finding (142). Placental
macrophages therefore seem to be contributing to the
inflammatory environment observed in chronic villitis
associated with maternal obesity (143). Placental macrophages
express PRRs such as TLR4 and can bind saturated fatty acids to
induce production of potent pro-inflammatory mediators such
as TNFa, IL-6, and IL-8 (144, 145). An in vitro model of obesity
using high levels of glucose, insulin and palmitic acid (saturated
lipid) in culture additionally demonstrated that palmitate alone
was enough to cause NLRP3 inflammasome activation, resulting
in the release of IL-1b, as well as induce placental macrophage
apoptosis (146). This placental inflammation might have
negative impacts on the development of the fetus, including
the brain, resulting in long term alteration in neural
function (147).

The effects of obesity on decidual macrophage populations
have also been studied. Macrophage populations in the decidua
parietalis of obese women show fewer M1 macrophages but no
change in M2 macrophages compared with healthy controls
(148). This decrease in M1 macrophages in the decidua
parietalis might be a compensatory mechanism for the
heightened inflammatory state observed in obesity. While only
term placentas from uncomplicated pregnancies were included
in this study, it was suggested that failure of this compensatory
mechanism could lead to adverse pregnancy outcomes associated
with obesity (148).

Obesity has been considered a risk factor for preeclampsia, a
condition characterized by new onset hypertension and
proteinuria (149). Preeclampsia is associated with deficient
spiral artery remodeling and is linked to altered numbers of
placental immune and trophoblast cells (149). Many
mechanisms linking the two conditions have been proposed
including that insulin resistance and hyperinsulinemia
(commonly observed in obesity) precede the clinical
manifestation of preeclampsia (150). Additionally, increased
insulin levels in pregnant rodents led to raised blood pressure
(151). Metabolic alterations associated with obesity including
hyperinsulinemia, hyperleptinemia and hyperlipidemia all affect
placental function and perfusion (152). Increased levels of low-
density lipoproteins (LDL) and triglycerides have been observed
in women with preeclampsia and LDLs have been reported to
reduce trophoblast migration (153). Increased numbers of
decidual macrophages from patients with preeclampsia that
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were localized to the spiral arteries whereby trophoblast invasion
was reduced also has been demonstrated (154). While apparently
paradoxical, this increase in placental macrophages might
accompany the increased apoptosis of placental trophoblasts
implicated in preeclampsia pathogenesis (155). This likely
reflects increased sensitivity of EVTs to Fas-mediated apoptosis
(156) with decidual macrophages in preeclamptic placentas
displaying increased Fas-ligand expression potentiating their
ability to induce Fas-mediated apoptosis of the Fas-expressing
trophoblasts and limiting trophoblast invasion (155). Restricted
trophoblast invasion leads to decreased spiral artery remodeling
and reduced uteroplacental blood flow. TNFa has a key role in
this increased apoptosis of trophoblast implicating M1-like
macrophages (157). Local enhanced levels of GM-CSF, a
potent inducer of M1 macrophages (see Figure 1), occurs in
the preeclamptic placenta and might underpin changes in
macrophage phenotype and function (158). However, the
increase in pro-inflammatory cytokines will stimulate decidual
cells to upregulate factors, such as M-CSF, that induce M2
polarization for increased phagocytosis of the apoptotic
trophoblasts (159).

Studies on the effects of maternal obesity on breast milk
macrophage phenotype and function are limited. Two recent ex
vivo studies revealed that breast milk macrophages from mothers
with high BMI displayed reduced phagocytic ability as well as
reduced ROS production upon exposure to zymosan particles
(160, 161). These results suggest that breast milk macrophages
from obese mothers might be less efficient at responding
to infection.

Air Pollution
Tobacco smoke exposure is the best studied maternal inhaled
exposure and the detrimental effects of tobacco smoking on
pregnancy outcomes such as miscarriage, stillbirth and preterm
birth are well recognized (162). Many molecules in tobacco
cigarettes can cross the placental barrier and affect placental
function and fetal development but the specific causal
mechanisms are not completely understood (163). Term
placental macrophages become dysfunctional upon in vitro
exposure to cigarette smoke extract (164). Phagocytosis is
compromised and increased release of TNFa and IL-33 but
decreased IL-10 potentially perturbs the immune tolerance
ecosystem within the placenta leading to adverse pregnancy
outcomes. Increasing epidemiological and experimental
evidence highlight an association between other air pollution
exposures during fetal development and similar adverse obstetric
outcomes including low birth weight, preterm birth and
preeclampsia as well as long term-term complications for the
offspring (165, 166). While numerous studies have described
these associations, little is known about the mechanisms
underpinning these adverse outcomes. Both indirect (such as
respiratory and intrauterine inflammation) and direct (such as
particle translocation) processes probably contribute. Black
carbon, as found in particulate matter (PM), has been observed
in the human placenta where it seems to localize to and be
phagocytosed by placental macrophages (167, 168). PM
negatively affects placental trophoblast cells with endocytosis-
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mediated accumulation of PM associated with increased IL-6
production and decreased cell growth linked to decreased human
chorionic gonadotropin (hCGb) (169). Other phenotypic
responses of trophoblast exposed to PM related to molecular
transport, cell survival and inflammation were reminiscent of
those described in preeclampsia and intrauterine growth
restriction but effects of PM on human placental macrophages
are unknown. Mouse placental macrophage exposure to PM
significantly increased gene expression of inflammatory markers
such as IL-1B and oxidative stress markers such as heme
oxygenase 1 (170) further highlight the need to study the
effects of PM on human placental macrophages.

Studies on the effects of other pollutants on reproductive tract
macrophages are emerging. Diethylhexyl phthalate (DEHP) is a
pollutant that can be found in dust and can be inhaled. DEHP is
commonly used in the production of polyvinyl chloride (PVC)
products such as pipes, medical devices and automotive parts. If
DEHP is not covalently bonded to the PVC it can be released into
the environment. The active metabolite of DEHP is mono-2-
ethylhexyl phthalate (MEHP) and exposure to this metabolite
during the prenatal period is associated with increased risk of
preterm birth (171). MEHP has been found in maternal serum,
placental tissue, fetal cord serum and amniotic fluid indicating
that the metabolites of DEHP are transferable to the fetus from
maternal blood (172). Exposure of placental macrophages to
MEHP resulted in significantly increased prostaglandin E2
(PGE2; a labor inducer) levels perhaps providing a link
between DEHP exposure, placental macrophages and preterm
birth (173).

Environmental pollutants can additionally be transferred from
mother to infant postnatally through the breast milk (174). One
example of these toxic compounds is the metal barium which is
present in natural sources such as rocks and contaminate drinking
water or can be released into the environment through industry
(175). Barium chloride nanoparticles have toxic effects on breast
milk phagocytes including reduced cell viability and intracellular
calcium release which is important in promoting cell activity (175).
Exposure to barium chloride also increased apoptosis in breast milk
phagocytes suggesting that reduced numbers might reach the
infant and therefore negatively affect their immune development.

While data on the effects of air and other pollutants, other
than environmental tobacco smoke, on different reproduction-
associated macrophages is nascent there is clearly a need to
investigate these interactions given the long-term health
detriments for the fetus of exposures during pregnancy.
DISCUSSION

Macrophages are significant contributors to immune function
and homeostasis at the maternal-fetal interface. Compelling
evidence suggests that these cells are involved in various stages
of reproduction including implantation, placentation, pregnancy
maintenance, parturition and in the development of the neonatal
immune system through breastfeeding. The ability of
macrophages to perform this plethora of functions is due to
their high plasticity, with their phenotype governed by the local
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tissue microenvironmental milieu. Precise regulation of
macrophage polarization is necessary for successful pregnancy.
Alterations in macrophage polarization due to environmental
influences are proposed in pregnancy complications however the
mechanisms involved have not been elucidated fully.

Macrophage plasticity along with their significant role in
directing pregnancy outcomes offers potential therapeutic targets
in pregnancy complications. Modulating macrophage phenotypes
through immunotherapy could prevent adverse pregnancy
outcomes. The modulation of macrophage phenotype using
epigenetic modifiers has been carried out with success in
inflammatory disease models such as acute lung injury in mice
(176). Epigenetic modulators could have therapeutic potential in
ameliorating adverse obstetric outcomes, but one has to question
what affect these epigenetic alterations might have on the baby.
Recent data has provided insight into the contribution of cellular
metabolic pathways such as glycolysis and oxidative
phosphorylation to macrophage phenotype plasticity (23).
Therefore, there is scope to therapeutically target these events too
as already postulated for autoimmune diseases and cancer (177–
179). For example, dimethyl fumarate (DMF), a cell permeable
derivative of fumarate, targets and inactivates the glycolytic
enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
downregulating glycolysis and preventing activation of
macrophages leading to a balance of inflammatory and regulatory
cells (178). DMF is used to treat relapsing multiple sclerosis by
inhibiting pro-inflammatory pathways and offers potential for
treating the pro-inflammatory profile of many adverse pregnancy
outcomes. However, again application in the reproductive setting
might be challenging and we lack fundamental information about
the relative contribution of different cellular metabolic processes to
macrophage function at different sites and at different stages of
pregnancy as well as in breast milk postnatally. Effort needs to be
made to elucidate the signaling pathways and specific mechanisms
controlling macrophage polarization in reproductive tissues for
fundamental insight and translation for the development of
Frontiers in Immunology | www.frontiersin.org 11
therapeutics to counter adverse obstetric and longer-term
health outcomes.

A potentially less hazardous approach to modifying
reproductive macrophage behavior might be through
lifestyle modification and nutraceutical approaches to achieve
local microenvironmental changes that translate as change to
macrophage function. Perhaps therefore the most effective way
to avoid adverse obstetric outcomes due to environmental
influences would be to educate women as to the effects of
these factors and highlight the importance of a healthy
lifestyle to minimize obesity, exposure to infection and
environmental pollutants prior to conception and during
pregnancy and breastfeeding.
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137. Oróstica L, Astorga I, Plaza-Parrochia F, Vera C, Garcıá V, Carvajal R, et al.
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Macrophage metabolism controls tumor blood vessel morphogenesis and
metastasis. Cell Metab (2016) 24:701–15. doi: 10.1016/j.cmet.2016.09.008

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Chambers, Rees, Cronin, Nair, Jones and Thornton. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
January 2021 | Volume 11 | Article 607328

https://doi.org/10.1136/bmjopen-2012-001955
https://doi.org/10.1016/j.prrv.2016.08.008
https://doi.org/10.1016/j.prrv.2016.08.008
https://doi.org/10.1038/s41467-019-11654-3
https://doi.org/10.1183/13993003.congress-2018.pa360
https://doi.org/10.1371/journal.pone.0218799
https://doi.org/10.1016/j.etap.2016.06.022
https://doi.org/10.1001/jamapediatrics.2013.3699
https://doi.org/10.1001/jamapediatrics.2013.3699
https://doi.org/10.1016/j.reprotox.2006.08.006
https://doi.org/10.1016/j.reprotox.2006.08.006
https://doi.org/10.1186/s12958-015-0046-8
https://doi.org/10.1016/j.jmwh.2005.09.006
https://doi.org/10.2147/IJN.S90382
https://doi.org/10.1242/jcs.170258
https://doi.org/10.1186/s12974-018-1095-7
https://doi.org/10.1126/science.aan4665
https://doi.org/10.1016/j.cmet.2016.09.008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Macrophage Plasticity in Reproduction and Environmental Influences on Their Function
	Introduction
	Macrophage Polarization and Plasticity
	Uterine Macrophages
	Decidual Macrophages
	Placental Macrophages
	Breast Milk Macrophages
	Environmental Factors Implicated in Adverse Obstetric Outcomes
	Infection
	Obesity
	Air Pollution


	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


