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Abstract Chrysoperla carnea (Stephens) is an important biological control agent currently being

used in many integrated pest management (IPM) programs to control insect pests. The effect of

post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda

cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae

was investigated under laboratory conditions. Temperature coefficients of each insecticide tested

were evaluated. From 20 to 40 �C, toxicity of lambda cyhalothrin and spinosad decreased by

2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold,

respectively. The study demonstrates that pesticide effectiveness may vary according to environ-

mental conditions. In cropping systems where multiple insecticide products are used, attention

should be given to temperature variation as a key factor in making pest management strategies safer

for biological control agents. Insecticides with a negative temperature coefficient may play a con-

structive role to conserve C. carnea populations.
ª 2014 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

In cropping systems, the green lacewing, Chrysoperla carnea

(Stephens) (Neuroptera: Chrysopidae) is considered a key
predator (Lingren et al., 1968). C. carnea is a valuable predator
as an element of integrated pest management (IPM) activities

to control economic pests. It is commercially available and
widely used because it can adapt to different agro-ecosystems
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(Tauber et al., 2000). As a potential predator and bio-control
agent in Pakistan, C. carnea is largely dispersed where
insecticides are commonly utilized for insect pest control

(Mohyuddin et al., 1997; Sayyed et al., 2010).
Different Chrysoperla species have shown tolerance or resis-

tance against different insecticides which makes it well-suited

for various IPM systems (Pree et al., 1989). Natural enemies
of insect pests such as C. carnea may build up insecticide resis-
tance similar to their host insects. However, they become resis-

tant little by little due to arrangement of biochemical,
biological and ecological factors (Roush and Daly, 1990).
Direct contact to insecticides or feeding upon insecticide trea-
ted hosts are two general modes of resistance development

(Wu and Miyata, 2005; Wu et al., 2004). C. carnea from
Pakistan has been found resistant to many groups of insecti-
cides (Pathan et al., 2008, 2010).

In the field, temperature has a prominent effect on insec-
ticide effectiveness. It is a key factor of the environment
which acts as a controlling and lethal factor (Fry, 1947).

Temperature affects different biological traits of insects such
as fertility, fecundity, survival, adult life-span (Yang et al.,
1994; Dreyer and Baumagartner, 1996; Infante, 2000) and

sex-ratio (Zheng et al., 2008). Temperature coefficient of
any insecticide may be calculated to find the temperature-
toxicity association.

Insecticides with a positive temperature coefficient become

more toxic with the increase in temperature, whereas, those
with a negative temperature coefficient become more toxic at
lower temperatures (Glunt et al., 2013). Pyrethroid and orga-

nophosphate insecticides, for example, usually have a negative
and positive temperature coefficient, respectively (Musser and
Shelton, 2005). However, some investigations have also shown

differences in the toxicity within a given insecticide class
(Muturi et al., 2011) between temperature levels tested and
insect species (Boina et al., 2009; Muturi et al., 2011). The cur-

rent study compared the effects of post-treatment temperature
on the effectiveness of four insecticides from different insecti-
cide classes against C. carnea larvae.

2. Materials and methods

2.1. Insects and insecticides

C. carnea population was collected from cotton, Gossypium
hirsutum L., from Muzaffargarh District of Punjab, Pakistan.

C. carnea adults (200–400) were collected with the help of ven-
tilated plastic vials as mentioned previously (Pathan et al.,
2008). Adults were kept in (12 · 12 · 20 cm) plastic jars with

artificial diet including yeast, honey, and distilled water with
the ratio of 1:2:4. Adults were kept at 25 ± 2 �C, 60–65%
RH and photoperiod of 14:10 h (l:d) in plastic rearing cages

(23 · 38 · 38 cm) with ventilation holes on both sides. Black
glossy paper was hung in cages for egg laying. The eggs were
placed in Petri dishes and larvae were fed on eggs of Sitotroga
cerealella (Olivier). To expose larvae to insecticide, the eggs

were collected every second day by removing black paper from
rearing cages. One egg was placed in a vertical cell hole
(4–3 mm) of Perspex cell chamber and hatched after 2 to

3 days. Frozen eggs of S. cereallela were provided to the newly
hatched larvae of C. carnea in separate holes every 48 h until
pupation.
Insecticides used were spinosad (Tracer 24 SC, Dow Agro
Sciences), lambda cyhalothrin (Karate 2.5 EC, Syngenta Lim-
ited, Jealot Hill, United Kingdom), chlorpyrifos (Lorsban 40

EC, Dow Agro Sciences, Hitchin, United Kingdom) and ace-
tamiprid (Mospilan 20 SP, Arysta Life Sciences, Pakistan).

2.2. Bioassays

Four replications of each insecticide concentration were used
to test toxicity at 20, 28 and 40 �C. The highest temperature

level (40 �C) was selected because test population was collected
from Muzaffargarh District of Punjab, Pakistan which has an
arid climate with extremely hot summers and calm winters.

Highest temperature witnessed in this city is just about 54 �C
(Anon., 2013). At least four concentrations as serial dilutions
of each insecticide were made in distilled water and tested at
each temperature. Bioassays were conducted on 2–3 day-old

larvae of C. carnea by the Insecticide-Impregnated filter
method as approved by the insecticide resistance action com-
mittee (Sayyed et al., 2010). Filter papers (Whatman No. 41,

90 mm in diameter; Whatman, Maidstone, United Kingdom)
were dipped in test solutions and in distilled water for controls.
For one concentration, 80 larvae were used (20 larvae per rep-

lication) and 30 larvae were used for control. One larva was
kept in a single Petri dish with treated filter paper to avoid can-
nibalism. The larvae were fed on eggs of S. cereallela. Treated
larvae were immediately placed in growth chambers set at

temperature 20, 28 and 40 �C, respectively, 60–65% RH, and
photoperiod of 14:10 h (l:d).

2.3. Data analysis

Mortality data were recorded after 72 h of insecticide treatment
for new chemistry insecticides and after 48 h for conventional

insecticides. Mortality data were analyzed using probit analysis
(Finney, 1971) corrected for control mortality at each temper-
ature (Abbott, 1925) to find median lethal concentration

(LC50). Formula used to calculate the temperature coefficients
of each insecticide is the ratio of higher to the lower LC50. The
temperature coefficient was called positive when lower LC50

was at a higher temperature and negative when lower LC50 at

a lower temperature (Musser and Shelton, 2005).
3. Results

The toxicity of acetamiprid and chlorpyrifos was found to be
positively correlated with the temperature ranges tested. Based
on LC50 values, the toxicity of acetamiprid increased signifi-

cantly from 1.32 to 1.47-fold at temperatures 28 and 40 �C,
respectively, when compared with the toxicity at 20 �C
(Table 1).

Chlorpyrifos gave similar results because toxicity was
increased from 1.11 to 1.61-fold at temperatures 28 and
40 �C, respectively, when compared with the toxicity at

20 �C. Acetamiprid, and chlorpyrifos showed overall positive
temperature coefficients 2.00 and 1.79-fold, respectively, for
the temperature ranges tested (Table 1).

In contrast, the pyrethroid insecticide showed a negative

association with temperature levels tested. The toxicity of
lambda cyhalothrin decreased by 1.41 and 1.52-fold at 28



Table 1 Effect of temperature on insecticide toxicity to the larvae of C. carnea.

Population Insecticide Temperature (�C) LC50
b(95%FL) (lg/ml) Slope(±SE) v2 df P na Temperature coefficientc

8 �C 20 �C

Field (G1) Acetamiprid 20 2283.6 (1487.26–4984.16) 1.25 ± 0.29 4.12 3 0.24 350

28 1676.07 (1171.58–2867.68) 1.32 ± 0.26 1.46 3 0.68 350 1.32

40 1139.05 (855.51–1571.79) 1.57 ± 0.26 0.99 3 0.8 350 1.47 2.0

Field (G1) Lambda cyhalothrin 20 334.12 (242.03–527.42) 1.49 ± 0.28 1.60 3 0.65 350

28 472.11 (321.95–938.56) 1.40 ± 0.31 0.009 3 0.99 350 �1.41
40 720.01 (424.3–2636.66) 1.21 ± 0.32 0.006 3 0.99 350 �1.52 �2.15

Field (G1) Spinosad 20 690.16 (484.99–1121.17) 1.26 ± 0.25 1.04 3 0.79 350

28 877.29 (607.27–1547.13) 1.31 ± 0.27 0.71 3 0.87 350 �1.27
40C 1292.38 (803.01–3444.12) 1.13 ± 0.27 0.42 3 0.93 350 �1.47 �1.87

Field (G1) Chlorpyrifos 20 297.64 (227.08–442.33) 1.25 ± 0.22 1.86 3 0.60 350

28 267.64 (195.94–382.47) 1.39 ± 0.25 1.23 3 0.74 350 1.11

40 166.03 (125.46–211.52) 1.71 ± 0.25 5.45 3 0.14 350 1.61 1.79

a Number of larvae tested.
b Lethal concentration.
c Ratio of higher to lower LC50 value for 7 and 14 �C differences in temperature. A negative coefficient indicates a higher LC50 at the higher

temperature.
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and 40 �C respectively, when compared with the toxicity at
20 �C with an overall �2.15 temperature coefficient (Table 1).

For spinosad, the toxicity was also decreased by 1.27 and
1.47-fold at 28 and 40 �C respectively, when compared with
the toxicity at 20 �C, with an overall �1.87 temperature

coefficient (Table 1).
In short, toxicity of chlorpyrifos and acetamiprid indicated

a direct relationship with temperature levels investigated while

the opposite relationship between toxicity of lambda cyhaloth-
rin, spinosad, and temperature was noted.

4. Discussion

There is a broad range of pests’ invasion because of the varia-
tion in cropping patterns and temperature, which shows con-
siderable variations in insecticide applications. The persistent

and excessive use of pesticides has also caused more critical
problems by water supply pollution (Carey, 1991) and crop-
land soil degradation.

C. canrea is a popular biological control agent (Pathan
et al., 2010). In this research study, effect of three different
temperature ranges was evaluated on toxicity of four different

insecticides to this green lacewing. Mode of application, spe-
cies and development stage may change the insecticide efficacy
on this predator. Hazards to natural enemies due to insecti-

cides vary in a number of ways (Taborsky et al., 1995),
depending upon intrinsic toxicity of the chemical (Hassan,
1987), exposure (Kennedy, 1988), application coverage (Cilgi
et al., 1988), and behaviour of chemical (Leahy, 1985). Diverse

metabolic functions are highly temperature dependent in
insects’ body, causing degradation of insecticides and typical
operation of nervous system (Litchfield and Wilcoxon, 1949).

The chlorpyrifos and acetamiprid showed temperature
dependent toxicities; with chlorpyrifos being more toxic than
acetamiprid at the higher temperature range (40 �C) tested

(Table 1). Theoretically, organophosphate insecticides perform
better at high temperatures because these have an upbeat cor-
relation with adjacent temperatures (Glunt et al., 2013). On the
other hand, biotransformation is a biological process known to
reduce the toxicity of organophosphates at lower temperatures

(Harwood et al., 2009). Therefore, the above insecticides may
create drastic effects on this biological control agent under
warmer climates.

Unlike chlorpyrifos and acetamiprid, the lambda-cyhaloth-
rin and spinosad tested in this study demonstrated a negative
temperature coefficient (Table 1). At high temperatures,

pyrethroid insecticides exhibit reduced efficacy (Scott, 1995).
Temperature between 15 and 20 �C enhances neuron sensitiv-
ity which causes frequent nerve firing. At some stage in the
nerve impulse movement, the sodium ions are controlled by

pyrethroid (Salgado et al., 1989). But reverse at high tempera-
tures has been reported (Song and Narahashi, 1996). Reduced
biotransformation and increased sodium influx (Song and

Narahashi, 1996; Harwood et al., 2009) at low temperature
cause more mortality.

Spinosad is an alternative to organophosphate, carbamate

and pyrethroid insecticides for control of Lepidoptera, thrips
and selected pests from other orders (Thompson et al.,
1995). Temperature plays a critical role to control toxicity of
microbial insecticides, as spinosad is a microbial insecticide

(Weinzierl et al., 1998) which might be a possible cause for
the reduced toxicity at greater temperatures.

These results on the toxicity of lambda-cyhalothrin and

spinosad are in agreement with bioassays on Ostrinia nubilalis
(Musser and Shelton, 2005), where an opposite association
between the temperature and toxicity was witnessed.

5. Conclusion

These results may help to design valuable pest management

programs by using chemicals in cropping systems where C. car-
nea is used as a biological control agent to control various
insect pests. However, several other temperature related fac-

tors must be kept in mind when using these results to organize
eco-friendly pest management programs. Higher temperatures
reduce residual life of insecticides (Bobe et al., 1998; Arthur
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et al., 1992) but augment insect activity (Cagan, 1998) and
reduced deposition of insecticides, especially if applied aerially
(Wilkinson et al., 1999). Timely application according to

perspective temperature may reduce the non-target effects of
the above mentioned insecticide on C. carnea and other
natural enemies.
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