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Pharmaceutics

viz., HSV type 1 and type 2. HSV type 1 is the herpes virus 
that is usually responsible for cold sores of  the mouth, the 
so‑called fever blisters. HSV type 2 is the one that most 
commonly causes genital herpes.[1] The infection causes 
painful sores on the genitals in both men and women. 
In addition, herpes sores provide a way for HIV to get 
past the body’s immune defenses and make it easier to 
get HIV infection. A recent study found that people with 
HSV had three times the risk of  becoming infected with 
HIV as compared to people without HSV.[2] Currently, the 
treatments available for herpes simplex are conventional 
tablets and topical gel for application on outbreaks. The 

INTRODUCTION

Herpes simplex virus (HSV) is a member of  the family of  
herpes viridae, a DNA virus. There are two types of  HSV, 

Formulation and Optimization of Mucoadhesive Nanodrug 
Delivery System of Acyclovir

Bhosale UV, Kusum Devi V, Jain N

Department of Pharmaceutics, Al‑Ameen College of Pharmacy, Near Lalbagh Main Gate, Hosur Road, 
Bangalore ‑ 560 027, India

Address for correspondence: Mr. Uday Bhosale; E‑mail: udaybhosale25@gmail.com

ABSTRACT

Acyclovir is an antiviral drug used for the treatment of herpes simplex virus infections, with an oral bioavailability of 
only 10–20% [limiting absorption in gastrointestinal tract to duodenum and jejunum] and half‑life of about 3 h, and 
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designed and optimized using 23 full factorial design. Poly (lactic‑co‑glycolic acid) (PLGA) (50:50) was used as the 
polymer along with polycarbophil (Noveon AA‑1) as the mucoadhesive polymer and pluronic F68 as the stabilizer. 
From the preliminary trials, the constraints for independent variables X1 (amount of PLGA), X2 (amount of pluronic 
F68) and X3 (amount of polycarbophil) have been fixed. The dependent variables that were selected for study were 
particle size (Y1), % drug entrapment (Y2) and % drug release in 12 h (Y3). The derived polynomial equations were 
verified by check point formulation. The application of factorial design gave a statistically systematic approach for 
the formulation and optimization of nanoparticles with the desired particle size, % drug release and high entrapment 
efficiency. Drug: Polymer ratio and concentration of stabilizer were found to influence the particle size and entrapment 
efficiency of acyclovir‑loaded PLGA nanoparticles. The release was found to follow Fickian as well as non‑Fickian 
diffusion mechanism with zero‑order drug release for all batches. In vitro intestinal mucoadhesion of nanoparticles 
increased with increasing concentration of polycarbophil. These preliminary results indicate that acyclovir‑loaded 
mucoadhesive PLGA nanoparticles could be effective in sustaining drug release for a prolonged period. 
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drugs that are commonly used for herpes simplex are 
acyclovir, valaclovir and famciclovir.

Acyclovir, the first agent to be licensed for the treatment of  
HSV infections, is the most widely used drug for infections 
such as cutaneous herpes, genital herpes, chicken pox, 
and varicella zoster. Acyclovir is currently marketed as 
capsules (200 mg), tablets (200 mg, 400 mg and 800 mg) 
and topical ointment.[1] Oral acyclovir is mostly used as 
200 mg tablets, five times a day. In addition, long‑term 
administration of  acyclovir (6 months or longer) is required 
in immunocompromised patients with relapsing herpes 
simplex infection.[2] The presently available conventional 
therapy is associated with a number of  drawbacks such as 
highly variable absorption and low bioavailability (10–20%) 
after oral administration.[3] Furthermore, with increase in 
dose, there is decrease in bioavailability. Moreover, because 
the mean plasma half‑life of  the drug is 2.5 h, five times 
a day administration is required. In order to make oral 
therapy of  acyclovir more patient compliant, there is a 
need of  using different approaches like matrix tablets, 
nanoparticles[4] and polymeric films.[5] 

The main problem with the therapeutic effectiveness of  
acyclovir is its absorption which is highly variable and dose 
dependent, thus reducing the bioavailability to 10–20%.[6] 
Acyclovir is soluble in acidic pH and is predominantly 
absorbed from upper gastrointestinal tract (GIT).[7] There 
are indications of  its active absorption from the duodenum 
and jejunum regions of  GIT.[8] 

The inherent shortcomings of  conventional drug delivery 
and the potential of  nanoparticles as drug delivery systems 
have offered tremendous scope for researchers in this 
field and there is a fast movement from concept to reality. 
Nanoparticles may be used for oral administration of  
gut‑labile drugs or those with low aqueous solubility.[9] 
These colloidal carriers have the ability to cross the 
mucosal barrier as such. In addition, they have the 
potential for enhancing drug bioavailability via particle 
uptake mechanisms. It was therefore decided to prepare 
nanoparticles of  acyclovir so as to optimize its delivery and 
overcome its inherent drawbacks.

The concept of  mucosal adhesives or mucoadhesives 
was introduced into the controlled drug delivery arena in 
the early 1980s.[10] Mucoadhesives are synthetic or natural 
polymers which interact with the mucus layer covering the 
mucosal epithelial surface and mucin molecules constituting 
a major part of  the mucus. They localize the formulation 
at a particular region of  the body, thereby improving 
bioavailability of  the drugs with low bioavailability. The 

increased contact time and localization of  the drug 
due to applying nanoparticles of  acyclovir which are 
made mucoadhesive thus enhances its delivery. Possible 
added advantage of  this approach would be increase 
in bioavailability as well as reduction in frequency of  
administration.

For the present investigation, mucoadhesive polymeric 
nanodrug delivery systems of  acyclovir have been 
designed and optimized using 23 full factorial design. Poly 
(lactic‑co‑glycolic acid) (PLGA) (50:50) was used as the 
polymer along with polycarbophil (Noveon AA‑1) used 
as the mucoadhesive polymer and pluronic F68 was used 
as the stabilizer.

MATERIALS AND METHODS

Acyclovir was a gift sample from Ajanta Pharmaceutical 
Limited (Mumbai India); poly (D, L lactide‑co‑glycolide) 
(PLGA 50:50 and PLGA 85:15) were obtained as gift 
samples from Indena Ltd. (Rome, Italy); pluronic F68 and 
polycarbophil (Noveon AA‑1) were procured from Strides 
Arcolab, (Bangalore, India) as a gift; acetone and cellophane 
membrane were purchased from S. D. Fine Chem. Ltd. 
(Mumbai, India). All other reagents and chemicals used in 
this study were of  analytical grade.

Methods

Mucoadhesive PLGA nanoparticles
Mucoadhesive PLGA nanoparticles were prepared by 
the solvent deposition method. Acyclovir was dissolved 
at 35–40°C in neutral water containing a hydrophilic 
surfactant at various concentrations. A mucoadhesive 
polymer, polycarbophil, was dispersed in this aqueous 
phase. Organic phase was prepared by solubilizing PLGA 
in acetone at various concentrations. The organic phase 
was poured into the aqueous solution drop wise, under 
stirring (RPM 5000) for 2 h, thus forming a milky colloidal 
suspension. The organic solvent was then evaporated by 
using a Rota evaporator. The resultant dispersion was dried 
using a freeze drying method.[11,12] 

Experimental design

The formulations were fabricated according to a 23 full 
factorial design, allowing the simultaneous evaluation 
of  three formulation variables and their interaction. The 
experimental designs with corresponding formulations 
are outlined in Table 1. The dependent variables that 
were selected for study were: Particle size (Y1), % drug 
entrapment (Y2) and % drug release in 12 h (Y3).
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In vitro characterization of  PLGA nanoparticles

Determination of  particle size
The particle size and size distribution of  the acyclovir‑loaded 
mucoahesive PLGA (50:50) nanoparticles were 
characterized by laser light scattering using Particle size 
Analyzer (Malvern Mastersizer Hydro‑2000 SM, UK). The 
obscuration level was set between 7 and 11%, and distilled 
water was used as the medium.

Determination of  encapsulation efficiency

The free drug was estimated by taking said quantity of  
formulation in a dialysis bag (cellophane membrane, 
molecular weight cutoff  10,000–12,000 Da; Hi‑Media, 
Mumbai, India) which was tied and placed into 100 ml 
water (pH=7) maintained at 37 ± 5°C on magnetic stirrer. 
At predetermined time intervals, 5 ml of  the sample was 
withdrawn by means of  a syringe. The volume withdrawn at 
each interval was replaced with the same quantity of  fresh 
water (pH=7) maintained at 37 ± 5ºC. The samples were 
analyzed for free drug by measuring the absorbance at 252 nm 
using UV/Vis spectrophotometer (ShimadzuUV‑1700) 
after suitable dilution. The above‑described process of  
withdrawing sample and analysis was continued till a 
constant absorbance was obtained.[13] 

Encapsulated drug was estimated by taking residue 
formulation remaining behind in the dialysis membrane 
after the estimation of  free drug content, as described above. 
Formulation in dialysis bag was added to acetone (10 ml) to 
dissolve PLGA and filtered. The residue remaining on filter 
paper was dissolved in 100 ml of  water (pH=7) maintained 
at 37 ± 5ºC, and after removing the supernatant, the sample 
was analyzed for drug content by measuring the absorbance 
at 252 nm using UV/Vis spectrophotometer (Shimadzu 
UV‑1700) after suitable dilution. The percentage of  drug 

entrapped and the percentage of  free drug were calculated 
using the following equations:[14]

Amount of  free drug present in  
100 mg of  formulation

% Free drug = ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ × 100 (1)
Total amount of  drug present  

in 100 mg of  formulation

Amount of  encapsulated  
drug  present in 100 mg  

of  formulation% Drug entrapment = ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ × 100 (2)
Total amount of  drug  

present in 100 mg  
of  formulation 

Statistical analysis

The results from factorial design were evaluated using Sigma 
plot software (Systat Software Inc., Version 3.0, Richmond, 
CA software). Step‑wise backward linear regression analysis 
was used to develop polynomial equations for dependent 
variables[15,16] such as particle size (Y1) % drug entrapment 
(Y2) and % drug release in 12 h (Y3): 

Y = B0 + B1X1 + B2X2 + B3X3 + B11X1
2 + B22X2

2 + 
B33X3

2 + B12X1X2 + B13X1X3 + B23X2X3 + B123X1X2X3 
 (3),

where Y is a dependent variable, B0 the arithmetic mean 
response of  eight batches, and B1, B2, and B3 are estimated 
coefficients for factors X1, X2 and X3, respectively. The 
main effects (X1, X2 and X3) represent average result of  
changing one factor at a time from its low and high values. 
The interaction terms (X1X2), (X1X3), (X2X3) show how the 
response changes when three factors are simultaneously 
changed. The polynomial term (X1X2X3) is included to 
investigate non‑linearity. The validity of  the developed 
polynomial equations was verified by preparing check point 
formulation (C).

Drug release study

A quantity of  selected factorial formulations equivalent to 
25 mg of  the drug was taken in the dialysis bag (cellophane 
membrane, molecular weight cutoff  10,000–12,000 Da; 
Hi‑Media). The dialysis bag was then suspended in a flask 
containing 100 ml of  0.1 N HCl on a magnetic stirrer at 
37 ± 0.5ºC at 100 rpm. Required quantity (5 ml) of  the 
medium was withdrawn at specific time periods (1, 2, 3, 4, 
6, 8, 10, 12, 24, 32 h) and the same volume of  dissolution 

Table 1: Experimental design and parameters for 23 full 
factorial design batches
Batch 
code

Variable level in 
coded form

Particle 
size 

(nm)

% Drug 
entrapment

% Drug 
release 
in 12 h

Average % 
intestinal 
retentionX3

§ X1* X2
#

MF1
MF2
MF3
MF4
MF5
MF6
MF7
MF8
C

+1
−1
+1
−1
+1
−1
+1
−1
−0.5

+1
+1−1
−1
+1
+1
−1
−1
−0.5

+1
+1
+1
+1
−1
−1
−1
−1
−0.5

1580
1210
1630
1420
870
740
914
810
1107

93.7
89.9
94.1
88.12
84.12
80.16
86.26
80.09
80.59

54.04
59.52
53.32
57.35
65.33
71.14
63.72
67.02
64.43

49.3
62.1
45.7
55.6
56.2
67.3
52.5
59.7

‑
*For PLGA (50:50) (X1) transformed levels in polymer weight are: −1 = 175 mg; 
+1 = 250 mg; −0.5 = 193.75 mg. #For surfactant (pluronic F68) (X2) transformed 
levels in % are: −1 = 0.20%; +1 = 0.30%; −0.5 = 22.5%. §For mucoadhesive 
polymer (polycarbophil) (X3) transformed levels in % are: −1 = 0.10%; +1 = 0.15%; 
−0.5 = 11.25%
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medium was replaced in the flask to maintain a constant 
volume. The withdrawn samples were filtered and then 5 ml 
filtrate was made up to volume with 100 ml of  0.1 N HCl. 
The samples were analyzed for drug release by measuring the 
absorbance at 252 nm using UV/Vis spectrophotometer.[16]

In vitro evaluation of  intestinal mucoadhesion of  
nanoparticles

The Institutional Animals Ethical Committee (IAEC) of  
Al‑Ameen College of  Pharmacy, Bangalore, approved 
the protocol for the study. Male Sprague Dawley rats 
weighing 200–250 g were fasted overnight before the 
experiments, but allowed free access to water. A part of  
intestine (duodenum and jejunum) was excised under 
anesthesia and perfused with physiological saline to 
remove the contents of  stomach. The cleaned portion 
was used immediately after preparation. A 50 mg 
quantity of  mucoadhesive nanoparticle sample that 
was suspended in phosphate buffer (pH 6.8) was filled 
into the cleaned intestine, ligated and then incubated 
in physiological saline at 37°C for 30 min. The liquid 
content of  separated portion of  intestine was then 
removed by injecting the air and the same was perfused 
with phosphate (pH 6.8) for 2 h, at a flow rate of  1 ml/
min. The intestine was cut open and the nanoparticles 
that remained in it were recovered with phosphate 
buffer (pH 6.8). The final volume of  washing solution 
was mixed with 10 ml of  acetone solution and kept 
for 2 h for complete digestion of  nanoparticles. After 
filtration through a 0.45‑mm filter paper, absorbance 
was determined spectrophotometrically at 252 nm 
(acyclovir) and gastric mucoadhesion was determined 
as the % of  nanoparticles remaining in intestine after 
perfusion.[17]

Drug–polymer interaction studies

Differential scanning calorimetry (DSC) is one of  the 
most powerful analytical techniques, which offers the 
possibility of  detecting chemical interaction. Acyclovir 
(pure drug), PLGA, and physical mixtures of  drug and 
polymer at different ratios (1:1, 1:1.5, 1:2, 1:2.5) were kept at 
40 ± 2°C/75 ± 5% relative humidity (RH). Samples at 0.1, 
2, 3 and 6 months were withdrawn and sent for DSC analysis. 
Also, drug–polymer interaction for selected formulation of  
coated and uncoated nanoparticles was evaluated by DSC 
(Perkin‑Elmer DSC 7, USA). Thermograms of  acyclovir, 
polymer (PLGA), and mucoadhesive nanoparticles were 
obtained with 5°C/min of  heating rate at a temperature 
between 50°C and 280°C.

SEM photomicrographs

The morphology of  coated and uncoated nanoparticles 
was examined by scanning electron microscopy (SEM, 
JSM‑5310LV scanning microscope Tokyo, Japan). 
The nanoparticles were mounted on metal stubs using 
double‑sided tape and coated with a 150 Å layer of  gold 
under vacuum. Stubs were visualized under scanning 
electron microscope.

RESULTS AND DISCUSSION

Mucoadhesive drug delivery system prolongs the residence 
time of  the dosage form at the site of  application or 
absorption and facilitates an intimate contact of  the 
dosage form with the underlying absorption surface, and 
thus contributes to improved and/or better therapeutic 
performance of  the drug. Acyclovir is predominantly 
absorbed from upper GIT and specifically there are 
indications for its active absorption from the duodenum 
and jejunum regions of  GIT. In commercially available 
dosage forms, the amount of  drug absorbed is very low 
(10–20%) due to short residence time of  the dosage 
forms at the absorption site. As a result, most of  the drug 
is excreted in the feces (50–60%) in unabsorbed form.[18] 
Hence, it can be envisaged that increasing the residence 
time at the absorption site can enhance the absorption 
and bioavailability of  acyclovir. Therefore, it was decided 
to formulate and develop mucoadhesive nanoparticles of  
acyclovir and investigate its potential of  optimizing delivery 
of  the drug as compared to the presently used dosage 
forms which suffer from several drawbacks as mentioned.

Appropriate selection of  the polymeric matrix is 
necessary in order to develop a successful nanoparticulate 
delivery system. Biodegradable polymers have received 
much attention in recent years.[19] PLGA has been most 
extensively used because of  its biocompatibility and 
biodegradability, with the degradation products formed 
at a slow rate, thus not affecting the normal cell function. 
PLGA degrades in vivo to lactic and glycolic acids, which are 
subsequently eliminated as carbon dioxide and water via the 
Krebs cycle.[20] The release of  drug from the nanoparticles 
depends on polymer degradation, which is governed by 
the nature of  copolymer composition and its molecular 
weight. For this study, we used PLGA 50:50, which is 
known to hydrolyze at a faster rate than those containing 
a higher proportion of  polylactic acid.[21] Noveon AA‑1 
polycarbophil, USP is a high molecular weight acrylic 
acid polymer cross‑linked with divinyl glycol. It provides 
excellent bioadhesive properties and has been used 
extensively to enhance the delivery of  active ingredients 
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to various mucus membranes. Acetone is used as a solvent 
for the preparation of  PLGA nanoparticles due to its water 
miscible and comparatively non‑toxic nature.[20]

All microsphere formulations were spherical in shape 
and possessed smooth surface as visualized under SEM 
[Figure 1]. Out of  all mucoadhesive formulations developed 
according to the factorial design and the above‑described 
method, MF2, MF5, MF6 and MF8 were found to be free 
flowing, i.e. non‑sticky, but formulations MF1, MF3, MF4 
and MF7 were found to be sticky. All formulations were 
white and powdery in appearance.

The particle size affects the biopharmaceutical, 
physicochemical and drug release properties of  the 
nanoparticles. A graphical representation of  the particle size 
of  mucoadhesive nanoparticles obtained is given in Figure 1. 
Particle size is an important parameter because it has a direct 
relevance to the stability of  the formulation. Larger particles 
tend to aggregate to a greater extent compared to smaller 
particles, thereby resulting in sedimentation.[16] The amount 
of  stabilizer used also has an effect on the properties of  
nanoparticles. If  the concentration of  stabilizer is too low, 
aggregation of  the polymer will take place, whereas if  too 
much stabilizer is used, drug incorporation could be reduced 
as a result of  the interaction between the drug and stabilizer.[1]

The effect of  the concentration of  the polymers tested 
is negative or positive. A positive effect would imply 
that increasing the concentration causes the emulsion to 
have larger droplets, thereby leading to larger particles. 
A negative effect means that increasing the concentration 
causes the emulsion to be more stable, thereby leading to 
smaller particles.[17]

From Figures 2 and 3 and Table 1, it is seen that as drug: 
polymer (acyclovir: PLGA or acyclovir: polycarbophil) 
ratios increase from 1:0.875 to 1:1.25 (for PLGA) and from 
1:0.6 to 1:0.9 (for polycarbophil), particle size and drug 
entrapment efficiency increase significantly. It also reveals 
that concentration of  the stabilizer has a significant effect 
on particle size, but it has insignificant or negligible effect 
on drug entrapment efficiency of  nanoparticles.

This can be explained by observing particle size and % drug 
entrapment of  mucoadhesive factorial formulations MF1 
and MF2, and MF7 and MF8, where the drug: Polymer 
(PLGA) ratio increased from 1:0.875 to 1:1.25, with a 
constant concentration of  stabilizer (pluronic F68), i.e. 
0.3% for MF1 and MF2 and 0.2% for MF7 and MF8. The 
drug entrapment efficiency increased from 89.9 to 93.7% 

Figure 2: Comparison of particle size of mucoadhesive factorial 
formulations and check point formulation 

Figure 3: Comparison of % drug entrapment and % drug release in 
12 h of factorial and check point formulationsFigure 1: SEM of PLGA nanoparticles

a

b
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and from 80.09 to 86.26%, respectively; also, the particle 
size increased from 1210 to 1580 nm and from 810 to 
914 nm, respectively.

In the same way, it can be explained with respect to 
mucoadhesive factorial formulations MF1 and MF5, and 
MF4 and MF8, where the drug: polymer ratio increased 
from 1:0.6 to 1:0.9, with a constant concentration of  the 
stabilizer (pluronic F68), i.e. 0.3% for MF1 and MF5 and 
0.2% for MF4 and MF8. The drug entrapment efficiency 
increased from 84.12 to 93.7% and from 80.09 to 88.12%, 
respectively; also, the particle size increased from 870 to 
1580 nm and from 810 to 1420 nm, respectively.

But it has been observed for mucoadhesive factorial 
formulations MF1 and MF3, and MF6 and MF8, where 
the stabilizer concentration increased from 0.2 to 0.3%, 
with a constant drug: polymer ratio, i.e. 1:1.25 for MF1 and 
MF3 and 1:0.875 for MF6 and MF8, that the particle size 
decreased from 163 to 1580 nm and from 810 to740 nm, 
respectively; but at the same time, there was an insignificant 
or a negligible change in the drug entrapment efficiency as 
it changed from 94.1 to 93.7% and from 80.09 to 80.16%, 
respectively. Thus, it can be concluded that polymer and 
surfactant concentration has a significant effect on the 
particle size. However, there is insignificant or negligible 
effect of  surfactant concentration on drug entrapment 
efficiency.

Drug release from nanoparticles and subsequent 
biodegradation are important for developing successful 
formulations. The release rate of  nanoparticles depends 
upon i) desorption of  the surface‑bound/adsorbed drug; 
ii) diffusion through the nanoparticle matrix; iii) diffusion 
(in case of  nanocapsules) through the polymer wall; 
iv) nanoparticle matrix erosion; and v) a combined erosion/
diffusion process. Thus, diffusion and biodegradation 
govern the process of  drug release.[22]

It is generally anticipated for a bulk eroding polymer such 
as 50:50 PLGA to give an initial burst release followed 
by a controlled release, in contrast to the release pattern 
observed in other controlled release systems, for example, 
sustain release tablets, pellets and beads. In cases where 
there is an initial burst effect, the high initial release may 
be attributed to the presence of  crystals of  free and weakly 
bound drug on the surface of  the particulate carriers.[23]

The mechanism of  drug release from nanoparticles is 
determined by different physical–chemical phenomena. 
The exponent n has been proposed as indicative of  the 
release mechanism. In this context, n=0.43 indicates 

Fickian release, n=0.85 indicates a purely relaxation (case II) 
and >0.85 indicates super case II controlled delivery. 
Intermediate values 0.43<n<0.85 indicate an anomalous 
behavior (non‑Fickian kinetics) corresponding to coupled 
diffusion/polymer relaxation.[24] 

The average percentage release was fitted into different 
release models: Zero‑order, first‑order and Higuchi’s square 
root plot. The models giving a correlation coefficient close 
to unity were taken as the order of  release. In vitro drug 
release data of  all factorial formulations were subjected to 
goodness of  fit test by linear regression analysis according 
to zero‑order and first‑order kinetic equations, Higuchi’s 
and Korsmeyer–Peppas models to ascertain the mechanism 
of  drug release. From the various parameters determined 
for drug release from nanoparticles based on Peppas model, 
Higuchi model and diffusion profile, it is evident that values 
of  “r2” for Higuchi plots of  all mucoadhesive factorial 
formulations are close to unity, i.e. linear (drug release 
by diffusion). Diffusion exponent values “n” of  Peppas 
equation for MF1, MF2 and MF3 are 0.6446, 0.5074 and 
0.6435, respectively, and show non‑Fickian diffusion, and 
for MF4, MF5, MF6, MF7 and MF8 are 0.4286, 0.3858, 
0.3225, 0.3942 and 0.3311, respectively, showing Fickian 
diffusion. Table 2 and Figure 4, shows almost zero‑order 
drug release for all factorial formulations as correlation 
coefficient of  zero order drug release is close unity than 
first order drug release correlation coefficient. It can be 
concluded that the different drug release rates may be 
attributed to different sizes of  the nanoparticles. It is 
expected that as the particle size of  PLGA nanoparticle is 
smaller, its surface area will be more and the drug release 
is faster.[17]

From the data of  experimental design and parameters 
[Table 1] for mucoadhesive factorial formulations F1–
F8, polynomial equations for three dependent variables 
(particle size, % drug entrapment and % drug release in 
12 h) have been derived using Sigma plot software (Systat 
Software Inc., Version 3.0, Richmond, CA software.)

Table 2: Various pharmacokinetic parameters 
determined for drug release
Formulation Correlation 

coefficient 
(zero order)

Correlation 
coefficient 

(first order)

Kinetic/
diffusion 

exponent“n”

Correlation 
coefficient 

(Higuchi model)
MF1
MF2
MF3
MF4
MF5
MF6
MF7
MF8

0.989
0.983
0.975
0.973
0.961
0.936
0.956
0.937

0.0091
0.0040
0.0150
0.0110
0.0020
0.0040
0.0060
0.0010

0.6446
0.5074
0.6435
0.4286
0.3858
0.3225
0.3942
0.3311

0.9897
0.9832
0.9759
0.973
0.9618
0.936
0.956
0.937
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The equation derived for particle size is:

Y1= 1136.7+11.75 X1–36.75 X2 +303.25 X3  
+13.25 X1 X2‑8.25X 2X3+53.25X 1X3  (4)

The equation derived for % drug entrapment is:

Y2= 87.0563+2.4887 X1–0.0862 X2  
+4.3987X3 ‑0.5487X1X2+0.4313X 2X3‑0.0438X 1X3 (5)

The equation derived for % drug release in 12 h is:

Y 3=  6 3 . 0 7 ‑ 2 . 2 1 7 5  X 1+ 1 . 1 7 2 5  X 2‑ 5 . 2 7 5 0 X 3 
‑0.45X1X2‑0.2925X 2X3‑0.0075X 1X3  (6)

In Equation (4), negative sign for coefficient of  X2 indicates 
that the particle size of  nanoparticles increases when the 
concentration of  pluronic F 68 is decreased and positive 
sign for coefficients of  X1 and X3 indicates positive effect 
of  polymer concentrations (PLGA and polycarbophil) on 
the particle size.

In Equation (5), positive sign for coefficients of  X1 and 
X3 indicates that the % drug entrapment increases when 
the concentrations of  PLGA and polycarbophil increase 
and negative sign for coefficient of  X2 indicates that % 
drug entrapment of  nanoparticles increases when the 
concentration of  pluronic F68 decreases. Also, the value of  
coefficient for X2 (−0.0862) shows insignificant or negligible 
effect of  an independent variable on a dependent variable.

In Equation (6), negative sign for coefficient of  X1 and X3 
indicates that the % drug release in 12 h increases when the 
concentrations of  PLGA and polycarbophil decrease and 
positive sign for coefficient of  X2 indicates positive effect 
of  pluronic F68 concentration on % drug release in 12 h.

Validity of  the above equations was verified by designing 
check point formulation (C). The particle size, % drug 
entrapment and % drug release in 12 h from the equations 
derived and those observed from experimental results are 
summarized in Table 3. The closeness of  predicted and 
observed values for particle size and % drug entrapment 
indicates validity of  derived equations for dependent 
variables.

Graphical presentation of  the data can help to show 
the relationship between response and independent 
variables. Graphs gave information similar to that of  the 
mathematical equations obtained from statistical analysis. 
The response surface graphs of  particle size and % drug 
entrapment, % drug release in 12 h are presented in 
Figures 5‑7 respectively.

The response surface plots and contour plots illustrate 
that as the concentration of  polymers (PLGA and 
polycarbophil) increases, the value of  dependent variable, 
i.e. particle size, increases; also, as the concentration of  
stabilizer (pluronic F68) increases, the value of  dependent 
variable, i.e. particle size, decreases.

Similarly, the response surface plots and contour 
plots for % drug entrapment shows positive effects 
of  independent variable, i.e. polymer concentrations 
(PLGA and polycarbophil) and negative effect of  other 
independent variable, i.e. concentration of  stabilizer 
(pluronic F68).

But in contrast to this illustration, the response surface 
plot and contour plot for % drug release in 12 h shows 
negative effect of  independent variable, i.e. polymer 
concentrations (PLGA and polycarbophil) and positive 
effect of  independent variable, i.e. concentration of  
stabilizer (pluronic F68) on % drug release in 12 h. 

Mucoadhesion involves different kinds of  interaction 
forces between mucoadhesive materials and mucus surface, 
such as electrostatic attraction, hydrogen bonding, Van 
der Waals forces and mechanical interpenetration and 
entanglement.[19]

Spectrophotometric method (λmax 252 nm) used to measure 
in vitro mucoadhesive capacity of  developed formulations 
shows the % intestinal retention of  mucoadhesive 
nanoparticles in the rat intestinal mucosa. The adhesion 
properties of  nanoparticles increased with increasing 
concentration of  mucoadhesive polymer (polycarbophil); 

Table 3: Parameters of check point formulation
Formulation Predicted values Observed values

Particle 
size 

(nm)

% Drug 
entrapment

% 
Drug 

release 
in 12 h

Particle 
size 

(nm)

% Drug 
entrapment

% 
Drug 

release 
in 12 h

C 1012 83.61 66.03 1107 80.59 64.43

Figure 4: Average % drug release of mucoadhesive factorial formulations
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Figure 7: Response surface plots of effects of factorial variables on 
% drug release in 12 h Figure 8: DSC thermograms

among the various concentrations of  polycarbophil, better 
mucoadhesion was observed for MF2 and MF6 formulations 
as 67.3% and 62.1%, respectively [Table 1].

DSC gives information regarding the physical properties 
like crystalline or amorphous nature of  the samples. The 
DSC thermogram of  acyclovir [Figure 8a] shows an 
exothermic peak at 267.03 corresponding to its melting 
temperature, which was not detected in the thermograms for 
acyclovir‑loaded coated and uncoated nanoparticles of  PLGA 
50:50 [Figures 8b and c]. It has been shown by a couple of  
authors that when the drug does not show its exothermic 
peak in the formed nanoparticles, it is said to be in the 
amorphous state.[25] Hence, it could be concluded that in both 
the prepared PLGA nanoparticles (coated and uncoated), the 
drug was present in the amorphous phase and may have been 
homogeneously dispersed in the PLGA matrix.

CONCLUSION

PLGA nanoparticles were prepared by the solvent 
deposit ion method and were character ized as 
“mucoadhesive” by coating with mucoadhesive polymer, 
polyacrylic acid (polycarbophil). The application of  
factorial design gave a statistically systematic approach 
for the formulation of  nanoparticles with the desired 
particle size, high entrapment efficiency and sustained 
drug release. Drug: polymer ratio and concentration 
of  surfactant were found to influence the particle 
size and % drug release of  acyclovir‑loaded PLGA 
mucoadhesive nanoparticles. In vitro drug release study of  
all formulations (MF1–MF8) showed 57.71–78.31% drug 
release in 32 h. The release was found to follow Fickian 
as well as non‑Fickian diffusion mechanism with almost 
zero‑order drug release for all batches. In vitro intestinal 
mucoadhesion of  nanoparticles showed that the adhesion 
properties of  nanoparticles increased with increasing 
concentration of  mucoadhesive polymer (polycarbophil). 
These preliminary results indicate that acyclovir‑loaded 
mucoadhesive PLGA nanoparticles could be effective in 
sustaining drug release for a prolonged period. Further 
studies are needed to confirm its performance in vivo.

Thus, the above investigation involves extensive and 
in‑depth holistic studies of  mucoadhesive and site‑specific 

Figure 5: Response surface plots of effects of factorial variables on 
% drug entrapment

Figure 6: Response surface plots of effects of factorial variables on 
particle size
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nanoparticles tailored to achieve controlled release of  
predetermined quantities of  the drug, resulting in not 
only optimizing drug delivery but also development of  
a platform technology which has extensive patenting 
potential and can be useful for so many other such drugs.

REFERENCES

1. Tran T, Druce JD, Catton MC, Kelly H, Birch CJ. Changing epidemiology 
of  genital herpes simplex virus infection in Melbourne, Australia, between 
1980 and 2003. Sex Transm Infect 2004;80:277‑9.

2. Emmert DH. Treatment of  common cutaneous Herpes Simplex Virus 
infections. Am Fam Physician 2000;61:1697‑704. 

3. Wagstaff  AG, Faulds D, Goa KL. Aciclovir: A reappraisal of  its antiviral 
activity, pharmacokinetic properties and therapeutic efficacy. Drugs 
1994;47:153‑205.

4. Ruhnese M, Sandstorm F, Andersson B. Treatment of  recurrent genital 
herpes simplex infection with acyclovir. J Antimicrob Chemother 
1985;16:621‑8.

5. Fuertes I, Miranda A, Millan M, Caraballo I. Estimation of  the percolation 
thersholds in acyclovir hydrophilic matrix tablets. Eur J Pharm Biopharm 
2006;64:336‑42.

6. Jalon De EG, Blanco‑Prieto MJ, Ygartua P, Santoyo S. Increased efficacy 
of  acyclovir‑loaded microparticles against herpes simplex virus type 1 in 
cell culture. Eur J Pharm Biopharm 2003;56:183‑7.

7. Rossi S, Sandri G, Ferrari F, Bonferoni MC, Caramella C. Buccal delivery 
of  acyclovir from lms based on chitosan and polyacrylic acid. Pharm Dev 
Technol 2003;8:199‑208.

8. O’Brien JJ, Campoli‑Richards DM. Acyclovir: An updated review of  its 
antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 
1989;37:233‑309.

9. Allemann E, Leroux JC, Gurny R. Polymeric nano‑ and microparticles for 
the oral delivery of  peptides and peptidomimetics. Adv Drug Deliv Rev 
1998;34:171‑89.

10. Smart, JD, KellawayIW, Worthington HEC. J Pharm Pharmacol 1984;36:295.
11. Kamath KR, Park K. In Encyclopedia of  Pharmaceutical Technology. 

Vol. 10. New York: Marcel Dekker; vol.10, 1988. p. 133‑64.
12. Phutane P, Shidhaye S, Lotlikar V, Ghule A, Sutar S, Kadam V. In vitro evaluation 

of  novel sustained release microspheres of  glipizide prepared by the emulsion 
solvent diffusion‑evaporation method. J Young Pharma 2010;2:35‑41.

13. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsules 
deposition by interfacial polymer deposition following solvent deplacement. 
Int J Pharm 1989;55:R1‑4.

14. Freitas MN, Marchetti JM. Nimesulide PL. A microspheres as a potential 
sustained release system for the treatment of  inflammatory diseases. Int 
J Pharma 2005;13:201‑11.

15. Gohel M, Patel M, Amin A, Agarwal A, Dave R, Bariya N. Formulation 
design and optimization of  mouth dissolve tablets of  nimesulide using 
vacuum drying technique. AAPS Pharm Sci Tech 2004;5:36.

16. Jain S, Srinath MS, Narendra C, Reddy SN, Sindhu A. Development of  a 
floating dosage form of  ranitidine hydrochloride by statistical optimization 
technique. J Young Pharma 2010;2:342‑9.

17. Ramteke S, Umamaheshwari RB, Jain NK. Clarithromycin based oral 
sustained release nanoparticulate system. Indian J Pharm Sci 2006;68:479‑84.

18. Park GB, Shao Z, Mitra AK. Acyclovir permeation enhancement across 
intestinal and nasal mucosae by bile salt‑acylcarnitine mixed micelles. Pharm 
Res 1992;9:1262‑7.

19. Feng SS, Mu L, Win KY, Huang G. Nanoparticles of  biodegradable polymers 
for clinical administration of  paclitaxel. Curr Med Chem 2004;11:413‑24.

20. Murakami H, Kawashima Y, Niwa T, Hino T, Takeuchi H. Influence of  the 
degrees of  hydrolyzation and polymerization of  poly(vinylalcohol) on the 
preparation and properties of  poly(‑lactide‑co‑glycolide) nanoparticles. Int 
J Pharm 1997;149:43‑9.

21. Jain RA. The manufacturing techniques of  various drug loaded biodegradable 
poly(lactide‑co‑glycolide) (PLGA) devices. Biomaterials 2000;21:2475‑90. 

22. Ashish K, Mehta P, Yadav KS, Krutika KS. Nimodipine Loaded 
PLGA Nanoparticles: Formulation optimization using factorial design, 
characterization and in vitro evaluation. Curr Drug Deliv 2007;4:185‑93

23. Nixon JR. Release characterization of  microcapsules. In: Lim F, editor. 
Biomedical applications of  microcapsulation. Boca Raton, FL: CRC Press; 
1983.

24. Costa P, Lobo JM. Modeling and comparison of  dissolution profiles. Eur 
J Pharm Sci 2001;13:123‑33.

25. Ritger PL, Peppas NA. A simple equation for description of  solute release: 
Fickian and non‑Fickian release from nonswellable devices in the form of  
slabs, spheres, cylinders or discs. J Control Release 1992;5:23‑36.

Staying in touch with the journal

1) Table of Contents (TOC) email alert 
 Receive an email alert containing the TOC when a new complete issue of the journal is made available online. To register for TOC alerts go to 

http://www.jyoungpharm.in/signup.asp.

2) RSS feeds 
 Really Simple Syndication (RSS) helps you to get alerts on new publication right on your desktop without going to the journal’s website. 

You need a software (e.g. RSSReader, Feed Demon, FeedReader, My Yahoo!, NewsGator and NewzCrawler) to get advantage of this tool. 
RSS feeds can also be read through FireFox or Microsoft Outlook 2007. Once any of these small (and mostly free) software is installed, add  
http://www.jyoungpharm.in/rssfeed.asp as one of the feeds.

How to cite this article: Bhosale UV, Devi VK, Jain N. Formulation and 
optimization of mucoadhesive nanodrug delivery system of acyclovir. J Young 
Pharmacists 2011;3:275‑83.

Source of Support: Nil, Conflict of Interest: None declared.


