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Robust MFC anti‑windup scheme 
for LTI systems with norm‑bounded 
uncertainty
Xiao‑Qin Mo1*, Mi Zhou1, Yuan Wang1 & Shang‑Jia Guo2

On the basic of the fact that all signals in the practical system are always bounded, this paper 
proposes a 4-degree-of-freedom (DoF) anti-windup scheme for saturated systems with parametric 
uncertainty. A fairly straightforward tuning rule is introduced to the robust stability analysis for the 
proposed anti-windup structure under the framework of IQC (Integral Quadratic Constraint). And the 
sufficient stability conditions are derived to check the reasonable definiteness of the related transfer 
function. Moreover, the control design for disturbance response and set-point tracking response are 
two separate part in this proposed scheme. Numerical example demonstrates the effectiveness and 
the considerable performance improvement of the anti-windup compensator that is designed by the 
proposed technique.

Model uncertainty and actuator saturation are two problems that control engineers often encounter. Especially 
in the case of model uncertainties, the problem of ensuring robustness has occupied the control field for many 
years. Many researchers spend a lot of time studying actuator saturation1,2. However, the uncertainty of the model 
is usually subjected to neglect in the study of actuator saturation system. This has been the case particularly 
with the anti-windup community, where the assumed conditions seem to make the anti-windup compensated 
constrained system obtain robustness from its unconstrained counterpart3–6 . This makes some intuitive sense, 
although it is reasonable to hypothesise the importance of nominal linear robustness, but not sufficient condition 
for the robustness of the overall anti-windup compensated nonlinear system7. For example, the static anti-windup 
compensation method in8, the full-order anti-windup compensation method in9 and the high-gain anti-windup 
compensation method in10 can all yield a better performance without considering uncertainty, but a worse 
robustness or even more drive the system unstable when considering uncertainty7,8.

Perhaps the most comprehensive explication is given in11, which contains a collection of papers that how to 
deal with the uncertain in a systematic way. However, most of these papers choice the one-step solutions where 
the uncertainty will be considered at the beginning of the design, but not the two-step anti-windup approach. 
And a particular type of uncertainty is often used, likes normally parametric or state-space uncertainty, but it is 
quite limited in scope in practice and not effect on capturing unmodeled dynamics7. In7,12, the authors consider 
the robustness of the Weston and Postlethwaite anti-windup scheme13 to additive norm-bounded uncertainty 
(which has shown itself close to the uncertainty that often used in practice). In particular, a sufficient robust 
stability condition of the Internal Model Control (IMC) is derived in7 when there is no saturation restriction in 
the control system. And it shows that the IMC is optimally robust to preserve the robustness of the unsaturated 
loop. In14, more general uncertainty structure is considered and the authors also investigate the stability robust-
ness of the Weston and Postlethwaite anti-windup scheme. Based on the Integral Quadratic Constraint (IQC) 
theory, a sufficient robustness condition is derived and it is proven to be less conservative than existing results 
in the literature for additive uncertainty. Actually, IQC framework of15 is a perfect solution to the robustness 
problem of anti-windup systems with norm-bounded uncertainty and a relevant research is discussed in16. In17, 
a general formula of the uncertainty is presented in control systems based on the Keldysh-Green’s function 
formalism in the gauge-covariant Wigner space. And the more information can be found in18–22.The robustness 
analysis results of our work are also constructed under the IQC framework, the main results are provided in 
“Preliminaries” section.

From another perspective, actuator saturation can be regarded as a particular type of uncertainty of the 
unconstrained system, and hence anti-windup compensation can be treated as stability robustness problem of the 
corresponding unconstrained system. Among various control techniques in literature, model following control 
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(MFC) structure is commended due to its simplicity and high robustness23,24 although it attracts little attention by 
researchers except in field of position servo systems with electrical machines23–25. Taking advantage of the merit 
of MFC structure, it is expectable to develop MFC-based anti-windup scheme so as to improve performance of 
anti-windup systems and to counteract the aforementioned disadvantages of modern anti-windup techniques.

This paper is structured as follows. Some preliminaries regarding IQC and structure of MFC are presented in 
“Preliminaries” section. In “Proposed anti-windup scheme based on MFC” section, the proposed anti-windup 
scheme is developed and some attractive properties of the proposed anti-windup scheme are discussed; robust-
ness analysis of the resulting system is presented and sufficient condition is derived on the basis of IQC frame-
work in “Robustness analysis” section, and hence the tuning rule for robust stability is obtained. In “Conclusions” 
section, numerical example illustrates the remarkable robustness improvement of the proposed anti-windup 
scheme with the comparison of three existing anti-windup techniques.

Preliminaries
Consider linear-time-invariant (LTI) n× n plant

or

for SISO system, where Aij(s) and Bij(s) or A(s) and B(s) are real coprime polynomials. In many cases8,13, it is 
presented by state space realization

where xp ∈ R
np is the plant state, u ∈ R

n is the control input, d ∈ R
nd is the exogenous disturbance input, y ∈ R

n 
is the plant output available for measurement, and Ap , Bp , Cp , Dp , Bpd and Dpd are real constant (or matrices with 
suitable dimensions)26. The control input ui is constrained such that

and that is represented by saturation function sat(ui) , i = 1, . . . , n:

where uimax ( uimin ) is the maximum (minimum) value of control input.
Assuming the plant as represented in Fig. 1, the input–output map from u to y of the plant G(s) to be con-

trolled can be modelled as

where G22(s) is the nominal plant, G12(s) , G21(s) and G11(s) are known transfer function matrices that are used 
to describe the plant uncertainty in the frequency domain and the uncertainty is described by the element �(s) , 
which satisfies the following norm inequality

(1)G(s) =

{

Bij(s)

Aij(s)

}

, i, j = 1, . . . , n

(2)G(s) =
B(s)

A(s)

(3)G(s) ∼

{

ẋp = Apxp + Bpu+ Bpdd
y = Cpxp + Dpu+ Dpdd

(4)uimin ≤ ui ≤ uimax, i = 1, . . . , n.

(5)sat(ui) =







uimax if ui > uimax

ui if uimin ≤ ui ≤ uimax

uimin if ui < uimin

(6)
[

p�
y

]

=

[

G11(s) G12(s)
G21(s) G22(s)

][

q�
u

]

(7)q� = �(s)p�

(8)
∥

∥�(s)p�
∥

∥

2

Ŵ
≤

∥

∥p�
∥

∥

2

Ŵ

/

γ 2
�, for all p� ∈ Ln2 [0,∞)

Figure 1.   Plant model with structured norm-bounded uncertainty.
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Here, Ŵ belongs to some specified class of positive definite symmetric matrix and γ� is some positive scalar27.

Integral quadratic constraint notation and results.  Under the IQC framework, the bounded opera-
tor �(·) : Ln2 → Ln2 is said to satisfy the IQC defined by a bounded and self-adjoint operator �(s) or simply 
�(·) ∈ IQC(�) if the following inequality holds

where �(s) : L2n2 → L2n2  is an operator satisfying

and �·, ·� denotes the L2 inner product15, i.e.

here f (s) and g(s) denote the Fourier transforms of 
⌢

f (t) and ⌢g (t)26.
Consider the interconnection in Fig. 2,

where �(·) is norm-bounded operator that encapsulates any nonlinearity or uncertainty in the loop satisfying 
(9). On the basis of IQC framework, reference15,28 presents the sufficient condition of stability for the intercon-
nection in Fig. 2, namely.

Lemma  (IQC Sufficient Stability Condition)
Assume that the upper left and lower right corner of �(jω) are positive and negative semi-definite, respectively. 

In addition, assume the loop in question is well-posed, then stability of the interconnection in Fig. 2 is guaranteed 
in the input–output sense provided that26

Structure of model following control.  As for SISO system, MFC structure is depicted in Fig.  323,24, 
where symbols G(s) , Ĝ(s) , r(s) and d(s) denote the plant, the reference model, the reference signal and the distur-
bance respectively. R(s) and Rm(s) are the correcting controller and the model controller.

Output y(s) can be written as

where ym(s) = RmĜ(s)

1+Rm(s)Ĝ(s)
r(s).

When there is some perturbations �(s) in the plant, viz. G(s) = Ĝ(s)[1+�(s)] , (10) can be rewritten as

From (15), it is easy to get the relationship that is denoted by

It is observed that the follow-up error y(s)− ym(s) does not depend on perturbations �(s) and the effect of 
disturbance can be eliminated by an appropriate adjusting of the correcting controller R(s) ( R(s) is tuned to make 
∣

∣

∣
R(s)Ĝ(s)

∣

∣

∣
 large enough). And it shows that the MFC structure is very robust against both parameter variations 

and load disturbance of the actual plant23,24.

(9)
〈[

p
q

]

,�

[

p
q

]〉

≥ 0, ∀q = �(p), p ∈ Ln2

(10)�(jω) = �∗(jω), ∀ω

(11)
〈

f , g
〉

=
1

2π

∫ ∞

−∞

f ∗(jω) · g(jω) · dω =

∫ ∞

0

⌢

f
∗

(t)
⌢
g (t)dt

(12)q = �(p), p = F · q,

(13)
[

F(jω)
In×n

]∗

�(jω)

[

F(jω)
In×n

]

< 0 for allω.

(14)y(s) =
G(s)[1+ R(s)Ĝ(s)]

Ĝ(s)[1+ R(s)G(s)]
· ym(s)+

1

1+ R(s)G(s)
· d(s)

(15)y(s) =

{

1+
�(s)

1+ R(s)Ĝ(s)[1+�(s)]

}

· ym(s)+
1

1+ R(s)Ĝ(s)[1+�(s)]
· d(s)

(16)y(s) ≈ ym(s)+
1

1+ R(s)Ĝ(s)[1+�(s)]
· d(s)

Figure 2.   IQC set-up.
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Proposed anti‑windup scheme based on MFC

The structure diagram of the proposed MFC-based anti-windup scheme is shown in Fig. 4, where K1(s) and K2(s) 
are static or dynamic compensators; N (·) denotes saturation nonlinearity, namely

The proposed structure consists of two closed-loops, one is reference tracking loop and the other is feedback 
compensating loop. It should be noted that R(s) , Rm(s) , K1(s) and K2(s) can all be viewed as DoF’s (degree-of-
freedom) for compensator synthesis. Thus, there are four DoF’s available for anti-windup compensation of the 
saturated system and hence noticeable performance improvement is expected.

In the real physical systems, the control input signal u is always limited, thus it is reasonable to reformulate 
the saturation N (·) for xi ∈ R as:

or

where Ni(xi) is some nonlinear function of variable xi . For some constant δ and every i ( i = 1, . . . , n ), it is veri-
fied that

Hence, for some constant δ and every i = 1, . . . , n , the inverse of diagonal matrix N(x) = diag{Ni(xi)} always 
exists:

The system’s output y(s) in Fig. 4 can be rewritten as

(17)N (·) = diag{sat(ui)}, i = 1, . . . , n.

(18)sat(xi) = Ni(xi) · xi , i = 1, . . . , n

N (·) = N(x) · x, N(x) = diag{Ni(xi)};

(19)0 < δ ≤ Ni(xi) ≤ 1, ∀|xi| < ∞

(20)Ni(xi) = 1 if uimin ≤ xi(t) ≤ uimax.

(21)1 ≤ N−1
i (xi) =

1

Ni(xi)
≤ δ =

1

δ
< ∞, for any |xi| < ∞

(22)N−1
i (xi) = 1, uimin ≤ xi(t) ≤ uimax

Figure 3.   MFC structure.

Figure 4.   The proposed anti-windup scheme.
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where set-point transfer function Hr(s) is

or

for SISO systems, and load disturbance transfer function Hd(s) is

or

for SISO systems.
When K1(s)K2(s) is chosen to be approached to In×n (or 1 for SISO systems), namely

it follows (21), (22) that

This means that effect of saturation nonlinearity N (·) is almost eliminated; and hence Hr(s) and Hd(s) are 
approximately reformulated as

or

for SISO systems. Therefore, according to (23) with (24), (25) or (26), (27), some attractive properties of the 
proposed anti-windup scheme are observed below:

Property‑1  K1(s) is almost decoupled from the behavior of the closed-loop system including set-point tracking 
and load-disturbance response when (28) is satisfied.

Property‑2  When (28) is valid, the set-point response and the disturbance response of the resulting anti-windup 
system are decoupled from each other. And besides, the disturbance response Hd(s) is independent of K1(s) , 
Rm(s) and Ĝ(s).

Remark‑1  On the basis of Property-1 and Property-2, there are some rules followed by compensator design:

(1) K1(s) is used to tune to satisfy (28);
(2) The correcting controller R(s) is used to tune the performance of disturbance rejection while the model 

controller Rm(s) is used to design the set-point response of the closed-loop system. ◊

Remark‑2  In the proposed anti-windup scheme, the nominal model Ĝ(s) can be regarded as a reference model, 
which means that Ĝ(s) is not necessarily identical to the real process G(s) . Therefore, Ĝ(s) can be chosen to exclude 
the unexpected characteristics of G(s) . ◊

Supposed that controller R(s) and Rm(s) are chosen as forms of PID controller: 

(23)y(s) = Hr(s) · r(s)+Hd(s) · d(s)

(24)Hr(s) = G · [(In×n − K1K2)N
−1 + K1K2 + K1RG]

−1 · K1[In×n + RĜ][In×n + ĜRm]
−1Rm

(25)Hr(s) =
K1(s)Rm(s)G(s) · [1+ R(s)Ĝ(s)]

[1+ Rm(s)Ĝ(s)] · [
In×n−K1(s)K2(s)

N + K1(s)K2(s)+ K1(s)R(s)G(s)]

(26)Hd(s) = {In×n + G · [(In×n − K1K2)N
−1 + K1K2]

−1 · K1R}
−1.

(27)Hd(s) =
K1(s)K2(s)+ [1− K1(s)K2(s)]

/

N

K1(s)K2(s)+ K1(s)R(s)G(s)+ [1− K1(s)K2(s)]
/

N

(28)K1(s)K2(s) → In×n, orK1(s)K2(s) → 1 (SISO),

(29)[In×n − K1(s)K2(s)] · N
−1 → 0n×n or

1− K1(s)K2(s)

N
→ 0 (SISO),

(30)Hr(s) = G · [K2 + RG]−1 · [In×n + RĜ][In×n + ĜRm]
−1Rm

(31)Hd(s) = [In×n + G · K−1
2 · R]−1

(32)Hr(s) =
Rm(s)G(s) · [1+ R(s)Ĝ(s)]

[1+ Rm(s)Ĝ(s)] · [K2(s)+ R(s)G(s)]

(33)Hd(s) =
1

1+ R(s)G(s)
/

K2(s)



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1970  | https://doi.org/10.1038/s41598-021-81036-7

www.nature.com/scientificreports/

where (K j, T
j
i , T

j
d) and (K j

m, T
j
i,m, T

j
d,m) are parameters of jth PID controller. When reference signal r(s) and 

load disturbance d(s) are considered as step signal:

where α and β are constant vectors. Then, in a steady state, we have the following static relationship of the result-
ing closed-loop system

if the following condition is satisfied:

where ui is steady value of ui(t) ; matrices G , K1 and Ĝ are the static gain matrix of transfer function G(s) , K1(s) 
and Ĝ(s) respectively. Furthermore, according to (24), (25) or (26), (27), we have

Property‑3  When R(s) and Rm(s) are taken as PID controller like (34), (35), then the resulting anti-windup 
system can track the step reference signal without offset and reject the step load disturbance completely, namely

provide that

where

The above property can be easy to extend to the case of SISO systems.
When Ĝ(s) is viewed as reference model, output y(s) in Fig. 4 can be reformulated by the reference output 

ym(s) and load disturbance d(s) as follows

where Hd(s) is given in (26) (or SISO (27)), or (31) (or SISO (33)) approximately; the set-point transfer function 
H̃r(s) is

(34)R(s) = K +
Ti

s
+ Tds,K = diag{K j},Ti = diag{T

j
i },Td = diag{T

j
d}, j = 1, . . . , n

(35)R(s) = K +
Ti

s
+ Tds,Km = diag{K j

m},Ti,m = diag{T
j
i,m},Td,m = diag{T

j
d,m}, j = 1, . . . , n

(36)r(s) =
1

s
α, α = [α1 α2 . . . αn]

T

(37)d(s) =
1

s
β, β = [β1 β2 . . . βn]

T

(38)u = −(In×n + K1KG)
−1K1K · β for r(s) = 0

(39)u = (In×n + K1KG)
−1K1(I + KĜ) · [In×n + ĜKm]

−1Km · α for d(s) = 0

(40)uimin ≤ ui ≤ uimax, i = 1, . . . , n;

(41)lim
s→0

Hr(s) = In×n

(42)lim
s→0

Hd(s) = 0n×n

(43)lim
s→0

s · Hr(s)
1

s
α = α

(44)lim
s→0

s · Hd(s)
1

s
β = 0

(45)β ∈ �β for r(s) = 0

(46)α ∈ �α for d(s) = 0

(47)�β =
{

x|x ∈ −KK1(In×n + K1KG) · z , zi ∈ [uimin, u
i
max]

}

(48)�β =
{

x|x ∈ K−1
m [In×n + ĜKm] · (I + KĜ)−1 · K

−1
1 (In×n + K1KG) · z , zi ∈ [uimin, u

i
max]

}

(49)y(s) = H̃r(s) · ym(s)+Hd(s) · d(s),

(50)ym(s) = [1+ Ĝ(s)Rm(s)]
−1Ĝ(s)Rm · r(s),

(51)H̃r(s) =
{

R + [(K−1
1 − K2)N

−1 + K2] · G
−1

}−1
· (Ĝ−1 + R)
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or, for SISO systems,

When (28) is valid, (51) or (52) can be rewritten as

According to (53), (54) and (31), (33), it is verified that:

Therefore, the following property of the proposed anti-windup system is obtained,

Property‑4  In mode of reference control (49), (50), both K1(s) are K2(s) are almost decoupled from the refer-
ence output signal ym(s) in (50). When (28) is satisfied, the load-disturbance response is independent of K1(s) , 
Rm(s) and Ĝ(s) , and the tracking response is independent of K2(s) and Rm(s) . Furthermore, Property -3 is still 
valid when (45), (46) is satisfied.

Robustness analysis
IQC-based (Integral Quadratic Constraints) approach receives many attentions in robust control, many classical 
robust control tools and concepts such as Small Gain, Circle Criterion, Popov Criterion and the Zames-Falb mul-
tiplier can be conveniently expressed by IQCs. The IQC theory also provides a framework (Fig. 2) for combining 
plant uncertainties and nonlinearities for both robust analysis and synthesis1,15,28. Based on the IQC sufficient 
stability condition, this section provides a robustness guarantee (Theorem) for the MFC-based anti-windup 
scheme against norm-bounded uncertainty expressed in the more general Linear Fractional Transformation 
form (Fig. 3).

Recalling the IQC notation and results, as pointed out by1, when the bounded operator �(·) is considered as 
dead-zone nonlinearity, namely

then �(·) = dz(·) ∈ IQC(�1) is valid , in which �1(s) is formulated by a class of admissible function W(s):

where dzi(·) represents the dead-zone function.
When the bounded operator �(·) is considered as norm-bounded uncertainty, namely

then �(·) = �(·) ∈ IQC(�2) is valid, in which �2(s) is formulated by some specified class of positive definite 
symmetric matrix Ŵ(s) and some positive scalar γ�:

According to (57), (60), we have �(·) =

[

dz(·)
�(·)

]

∈ IQC(�) with

It is easy to verify that

(52)H̃r(s) =
RG + G

/

Ĝ

K2 + RG + (K−1
1 − K2)

/

N

(53)H̃r(s) = [R + K−1
1 G−1]−1 · (Ĝ−1 + R)

(54)H̃r(s) =
RG + G

/

Ĝ

K−1
1 + RG

(SISO)

(55)�(pdz) = dz(pdz),

(56)dz(·) = [dz1(·) dz2(·) . . . dzn(·)]
T,

(57)�1 =

[

0 W∗(s)
W(s) −W(s)−W∗(s)

]

,

(58)�(p�) = �(p�),

(59)�(·) = [�1(·)�2(·) · · ·�n(·)]
T,

(60)�2 =

[

Ŵ(s) 0
0 −γ 2

�Ŵ(s)

]

,

(61)� =







0 0 W∗(s) 0
0 Ŵ(s) 0 0

W(s) 0 −W(s)−W∗(s) 0
0 0 0 −γ 2

�Ŵ(s)







(62)dz(x) = x − sat(x).
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Therefore, ignoring the reference signal r(s) and the exogenous disturbance d(s) , the compensating loop in 
Fig. 4 can be transformed into the feedback interconnection in Fig. 5. It can be taken as special case of (9) in 
Fig. 2, where

By straight application of Lemma, we have the following robustness criterion for the resulting system of the 
proposed MFC/PID-based anti-windup scheme.

Theorem  The closed-loop system of the proposed MFC/PID-based anti-windup scheme in Fig. 4 is stable 
provided that.

(1) Model controller Rm(s) makes the reference tracking loop stable;
(2) K1(s) , K2(s) , R(s) and W(s) are chosen such that LS(jω) < 0 for all ω where

and

and

Numerical example
To demonstrate the implications of our results we use the academic example introduced in29. Numerical simula-
tions for tracking (amplitude of the pulse reference input signal is 1.2) are conducted by robustness comparison 
among four different anti-windup schemes, viz. IMC-based scheme8, static anti-windup compensation8 high-gain 
anti-windup compensation10 and dynamic compensation by Weston & Postlethwaite13. It shows that IMC-based 
scheme can achieve better robustness than the three ones in the case that the following plant G(s) (which has a 
large resonant peak) with controller C(s) is considered as follows

and its state-space realization

(63)p =

[

pdz
p�

]

, q =

[

qdz
q�

]

,�(·) =

[

dz(·)
�(·)

]

,

(64)F =

[

K1(s)K2(s)−H(s)G22(s) · [In×n − K1(s)K2(s)] −H(s)G21(s)
[G12(s)H(s)G22(s)+ G12(s)] · [In×n − K1(s)K2(s)] G11(s)+ G12(s)H(s)G21(s)

]

,

(65)H(s) = −[In×n + K1(s)R(s)G22(s)]
−1 · K1(s)R(s),

(66)LS =

[

L11 L∗21
L21 L22

]

(67)

L11 = �∗
1(s)G

∗
12(s)Ŵ(s)G12(s)�1(s)−�∗

1(s)W
∗(s)−W(s)�1(s)

L21 = −G∗
21(s)H

∗(s)W∗(s)+�∗
2(s)Ŵ(s)G12(s)�1(s)

L22 = �∗
2(s)Ŵ(s)�2(s)− γ 2

�Ŵ(s)

(68)
�1(s) = [In×n +H(s)G22(s)] · [In×n − K1(s)K2(s)]

�2(s) = G11(s)+ G12(s)H(s)G21(s)

(69)G(s) =
10

s2 + 0.01s + 10
, umax = 1, umin = −1

(70)

Figure 5.   Equivalent interconnection of the compensating loop in the proposed scheme.
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Therefore, simulation is to take a comparison of robustness between the proposed scheme and four other 
schemes viz. IMC-based, static, high-gain and Weston & Postlethwaite’s compensation scheme. It should be 
emphasized that controller C(s) of the later four schemes is identical and given as follows

viz.

Compensators designed by8 for static, high-gain, IMC-based and Weston & Postlethwaite’s compensation 
scheme are recalled below,

(I) Static anti-windup compensation.
The diagram is displayed in Fig. 6, where the static anti-windup compensator is computed as

(II) High-gain anti-windup compensation.
In terms of Fig. 6, the high-gain anti-windup compensator is chosen as

(III) Weston and Postlethwaite’s scheme of anti-windup compensation.
The diagram is displayed in Fig. 7, M(s) is chosen as

(IV) IMC anti-windup scheme.
IMC anti-windup scheme can be viewed as a special case of Weston & Postlethwaite’s compensation scheme, 

where M(s) = I.
(V) The proposed anti-windup scheme.
Therefore, according to the sufficient conditions in Theorem, k1 , k2 , R(s) and Rm(s) in the proposed scheme 

are chosen as follows

(71)

(72)C1(s) =
337.5s2 + 3375s + 8437.5

s3 + 82.5s2 + 200s
,C2(s) = −

135s3 + 1687.5s2 + 6750s + 8437.5

s3 + 82.5s2 + 200s

(73)� =

[

−0.1909
0.1402

]

.

(74)� =

[

0
14

]

.

(75)

(76)k1 = 0.21, k1 = 4.5, Ĝ(s) = G(s);

(77)R(s) ∼ K = 18.1,Ti = 0.13,Td = 4.06;

(78)Rm(s) ∼ Km = 1.8,Ti,m = 2.0,Ti,d = 0;

Figure 6.   Structure of static antiwindup scheme.
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In this section, simulation is conducted to compare robustness of the proposed scheme with that of four 
schemes above. Figures 8, 9, 10, 11 and 12 show the response of perturbed system with static, high-gain, IMC, 
Weston & Postlethwaite’s anti-windup scheme and the proposed MFC/PID robust anti-windup scheme respec-
tively. As we can see, robustness of the proposed scheme is obviously superior to that of others.

Figure 7.   Anti-windup scheme proposed by Weston & Postlethwaite.

Figure 8.   Response of perturbed system with static anti-windup.

Figure 9.   Response of perturbed system with high-gain anti-windup.
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Figure 10.   Response of perturbed system with Weston & Postlethwaite’s anti-windup.

Figure 11.   Figure 9 Response of perturbed system IMC anti-windup.

Figure 12.   Figure 9 Response of perturbed system with MFC/PID robust anti-windup.
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Conclusions
This paper proposes a 4-degree-of-freedom (DoF) anti-windup scheme for the control system with actuator 
saturation and parametric uncertainty, which provides a more practical method by considering the plant with 
norm bounded uncertainty. Especially, due to four DoFs of the proposed scheme, set-point tracking response 
and load disturbance response can be designed separately in the resulting closed-loop system which can be speci-
fied arbitrarily in some sense. By using the IQC framework and its related lemma, a sufficient robust stability 
condition of the proposed anti-windup scheme is derived with considering the norm-bounded uncertainties 
of the plant. As a result, a fairly straightforward stability tuning rule to design the anti-windup compensators is 
obtained accordingly in the frequency domain. The effectiveness and the remarkable superior performance on 
set-point tracking and load-disturbance rejection of the proposed methods are demonstrated by carrying out 
the comparison of other anti-windup schemes like Static, High-Gain, IMC-based and Weston & Postlethwaite’s 
compensation scheme.
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