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Abstract

Animal responses occur according to a specific temporal structure composed of two states,

where a bout is followed by a long pause until the next bout. Such a bout-and-pause pattern

has three components: the bout length, the within-bout response rate, and the bout initiation

rate. Previous studies have investigated how these three components are affected by exper-

imental manipulations. However, it remains unknown what underlying mechanisms cause

bout-and-pause patterns. In this article, we propose two mechanisms and examine compu-

tational models developed based on reinforcement learning. The model is characterized by

two mechanisms. The first mechanism is choice—an agent makes a choice between oper-

ant and other behaviors. The second mechanism is cost—a cost is associated with the

changeover of behaviors. These two mechanisms are extracted from past experimental

findings. Simulation results suggested that both the choice and cost mechanisms are

required to generate bout-and-pause patterns and if either of them is knocked out, the

model does not generate bout-and-pause patterns. We further analyzed the proposed

model and found that it reproduced the relationships between experimental manipulations

and the three components that have been reported by previous studies. In addition, we

showed alternative models can generate bout-and-pause patterns as long as they imple-

ment the two mechanisms.

Introduction

Animals engage in various activities in their daily lives. For humans, they may be working,

studying, practicing sports, or playing video games. For rats, they may be grooming, foraging,

or escaping from a predator. Although specific activities are different between different species,

common behavioral features are often observed.

Bout-and-pause patterns are one of the behavioral features commonly observed in many

species. Activities engaged by an animal do not occur uniformly through time but often have

short periods in which a burst of engaged responses is observed. For example, in an operant

conditioning experiment, a rat presses a lever repeatedly in a short period and then it stops

lever pressing. After a moment, the rat starts lever pressing again. The rat switches between

the lever pressing behavior and the no lever pressing behavior again and again throughout the

experiment. Such a temporal structure comprising of short-period response bursts and long
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pauses is observed in various species and activities; for example, email and letter communica-

tion by humans [1], foraging by cows [2], and walking by Drosophila [3].

Shull et al. [4] showed that bout-and-pause patterns, observed under an environment

where rewards are available probabilistically at a constant rate (variable interval (VI) schedule),

can be described with a broken-stick shape in the log-survivor plot of interresponse times

(IRTs), which are characterized by a bi-exponential probability model. If IRTs follow a single

exponential distribution, then the log-survivor plot shows a straight line. If IRTs follow a mix-

ture exponential distribution called a bi-exponential model, the log-survior plot shows a bro-

ken-stick shape composed of two straight lines that have different slopes. Killeen et al. [5]

found that lever pressing by rats is well described with a bi-exponential model, suggesting

that this behavior has a bout-and-pause pattern. If IRTs follow a bi-exponential distribution,

there are two different types of responses; within-bout responses, which have short IRTs, and

between-bout responses, which have long IRTs. Each response type has its own exponential

distribution in a bi-exponential model. Killeen et al. [5] formulated the bi-exponential model

as follows:

pðIRT ¼ tÞ ¼ ð1 � qÞoe� ot þ qbe� bt; ð1Þ

where the first term describe IRTs of within-bout responses and the second term describes

IRTs of between-bout responses. This model has three free parameters: q, ω, and b, each of

which corresponds to a different component in bout-and-pause patterns. First, q denotes

the mixture ratio of the two exponential distributions in the model and it corresponds to the

mean length of a bout. The bout length is the number of responses contained in one bout. Sec-

ond, ω denotes the rate parameter for the exponential distribution of within-bout IRTs and it

corresponds to the within-bout response rate. Finally, b denotes the rate parameter for the

exponential distribution of between-bout IRTs and it corresponds to the bout initiation rate.

These three model parameters define the overall response rate. They are also called bout

components.

The bout length, the within-bout response rate, and the bout initiation rate are affected by

motivational and schedule-type manipulations [4, 6–11]. Motivational manipulations include

the reinforcement rate, the response-reinforcement contingency, and the deprivation level. An

example of schedule-type manipulations is adding a small variable ratio (VR) schedule in tan-

dem to a variable interval (VI) schedule.

Table 1 summarizes existing findings on the relationships between experimental manipula-

tions and the two bout components. The bout length was reported to be affected by manipula-

tions as follows:

• It increases or stays the same as the reinforcement rate increases [4, 6].

• It increases or stays the same as the deprivation level increases [4, 7, 8].

• It decreases or stays the same by extinction [10, 12].

• It increases by tandem VR [4, 6, 13]. When a VI schedule is followed by a small VR (tandem

VI VR), an animal stays in a bout longer and emits more responses in each bout.

The bout initiation rate was reported to be:

• It increases as the reinforcement rate increases [4, 6, 14, 15].

• It increases as the deprivation level increases [4, 7, 8].

• It decreases by extinction [10, 12, 16].
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• It decreases or stays the same by tandem VR [10]. Brackney et al. [10] showed that if we add

a small VR schedule in tandem to a VI schedule, the bout initiation rate decreased slightly.

Although the previous studies have investigated the relationships between some experimen-

tal manipulations and the bout components, we still do not know how to construct a model

that generate bout-and-pause patterns based on the experimental findings. Smith et al. [17]

showed experimentally that choice and cost play important roles in organizing responses into

bout-and-pause patterns. When pigeons were trained under a single schedule, the log-survivor

plot did not show a broken-stick shape [18, 19]. Smith et al. [17] trained pigeons under a con-

current VI VI schedule with and without a changeover delay (COD). When pigeons were

trained under the concurrent VI VI schedule without a COD, the log-survivor plot still did

not show a broken stick, resulting in the a straight line. However, under the concurrent VI VI

schedule with a COD, the log-survivor plot showed a broken stick, indicating that bout-and-

pause patterns were clearly observed. Similar observations have been made for rats, assuming

that they engage in alternative behaviors during conditioning [20]. From these experimental

observations, we extracted the following three facts. 1) When animals engage only in one

response in a given situation, bout-and-pause patterns are not observed. 2) If animals can

choose responses from two alternatives without a COD, bout-and-pause patterns are still not

observed. 3) Considering 1) and 2), we conclude that bout-and-pause patterns are organized

only when animals have two (or more) possible alternatives under a given situation (i.e., choice

is available) and there is a COD between the start of engagement and a reinforcement (i.e.,

cost is associated with a changeover). These facts are interesting but they remain to be induc-

tive and we still do not have constructive explanation that generate bout-and-pause patterns.

Existing studies on bout-and-pause patterns have investigated to describe the phenomena

rather than to provide constructive models. Although many models have been proposed

[5, 9, 21]), they are descriptive and did not answer the question of “what mechanisms shape

responses into bout-and-pause patterns?”

Kulubekova and McDowell [22] examined a computational model aimed to reproduce

bout-and-pause patterns based on the principle of selection by consequences developed by

McDowell [23] but they did not test which mechanisms are behind bout-and-pause patterns.

In other words, they showed that a computational model of selection by consequence could

reproduce bout-and-pause patterns but did not show minimal requirements to reproduce

them.

In this article, we propose a computational model based on reinforcement learning that

accounts for the constructive mechanism of bout-and-pause patterns. We assume that bout-

and-pause patterns are generated by two mechanisms: a choice between operant and other

behaviors and a cost that is required to a transition from one behavior to another. We suppose

that motivational manipulations affect only the choice mechanism and schedule-type manipu-

lations affect the cost mechanism. To incorporate those two mechanisms, we design a three-

state Markov transition model, which has an extra state in addition to the bout and pause

Table 1. Previous findings from animal experiments on the relationships between manipulations and bout components.

Motivational Schedule type

Reinforcement rate Deprivation level Extinction Tandem VR

Bout length % or!? % or!? & or!? %

Bout initiation rate % % & & or!?

The three cells marked with “?” do not have agreement within the previous reports.

https://doi.org/10.1371/journal.pone.0242201.t001
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states. We perform three simulation studies to analyze the proposed model. In Simulation 1,

we introduce our model on the basis of the two different mechanisms, choice and cost. We

show that the proposed model can reproduce bout-and-pause patterns by finding that the log-

survivor plot shows a broken-stick shape. We compare three models: a dual model, a no cost

model, and a no choice model. The dual model is composed of both the choice and cost mech-

anisms. The no cost model has only the choice mechanism and the no choice model has only

the cost mechanism. Simulation results demonstrate that the dual model can reproduce bout-

and-pause patterns but the other two models failed to reproduce them. It implies that both

choice and cost are required for animal responses to be organized into bout-and-pause pat-

terns. In Simulation 2, we analyze the dual model in depth and report its behavior under vari-

ous experimental settings to test if the dual model can reproduce the relationships between the

experimental manipulations and the bout components discovered so far. Simulation results

suggest that the dual model can reproduce them not only qualitatively but also quantitatively.

In Simulation 3, we show that a two-state model can also reproduce bout-and-pause patterns

even without the third state because it incorporates the two mechanisms. However, having the

third state is useful for separating the effects of the choice and cost mechanisms. We speculate

that real animals might have similar mechanisms that generate bout-and-pause patterns as the

dual model, which can be a useful computational tool for studying animal behavior.

1 Simulation 1

Material and method

Model. Our model is based on reinforcement learning [24]. We designed a three-state

Markov process for modeling bout-and-pause patterns (Fig 1(a)). Two of the three states are

“Operant” and “Others,” in which the agent engages in the operant behavior or performs other

behaviors, respectively. We call them Operant and Others instead of engagement or visit and

disengagement or pause, thereby we emphasize that bout-and-pause patterns are results of a

choice between the operant and other behaviors. In the third “Choice” state, the agent makes a

decision between the operant and other behaviors. By having the Choice state in our model,

we incorporate the knowledge that animals can choose their behavior from available options

(e.g. grooming, exploration, and excretion) when they move freely during an experiment. The

second knowledge is a cost required to make a transition from one behavior to another. Ani-

mals must decide whether to keep doing the same behavior or to make a transition, because a

fast switching is not optimal if a transition incurs a cost. Fig 1(b) and 1(c) shows two knockout

models, the no choice model and the no cost model, respectively. In each model, one of the

two mechanisms from the dual model is removed. In the no choice model, an agent can choose

only the operant behavior in a given situation. In the no cost model, no cost is required when a

transition is made.

Here is how the agent travels in the proposed model. In the Choice state, the agent chooses

either the operant or other behaviors. As a result of the choice, it moves from the Choice state

to one of the Operant or Others states. It makes the choice based on the preference for each

behavior, which is denoted by Qpref. We will explain how to calculate Qpref in the next para-

graph. In the Operant state, the agent engages in the operant behavior, and, after every

response, it decides whether to stay in the Operant state or to move back to the Choice state. It

decides to stay or move based on Qcost, which represents a transition cost to the Choice state,

whose mathematical definition will be given later in this Model section. The Others state is the

same as the Operant state except for that the agent performs other behaviors.

The preference Qpref is a function that compares the operant and other behaviors when the

agent makes a choice between them. The Qpref function changes over time since it is updated
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based on the presence (or absence) of a reinforcer per bout. The following equation describes

the updating rule for Qpref:

QðiÞprefðt þ 1Þ ¼
QðiÞprefðtÞ þ arftðrðiÞðtÞ � QðiÞprefðtÞÞ; if a reinforcer is presented; ð2aÞ

QðiÞprefðtÞ þ aextð0 � QðiÞprefðtÞÞ; otherwise; ð2bÞ

(

where t denotes time in session; αrft and αext denotes the learning rates of reinforcement and

extinction, respectively; r denotes the reinforcer value and we assume r> 0 when a reinforcer

is present and r = 0 when a reinforcer is absent; and i 2 {Operant, Others} denotes each option,

that is, i = Operant if the operant behavior is chosen and if i = Others if other behaviors are

chosen. We omit superscript (i) and denote Qpref when it can be any of i = Operant or Others.

In the Choice state, the agent chooses either of the Operant or Others states according to

the probability distribution calculated from the preferences for the two behaviors. The

Fig 1. Model schemes of the dual model, the no choice model and the no cost model. (a) The model scheme of the dual model. The upper node, the

bottom left node, and the bottom right node correspond to the Choice state, the Operant state, and the Others state respectively. Each arrow denotes the

transition from one state to others. (b) The model scheme of the no choice model. In this model, the Others state is omitted. (c) The model scheme of

the no cost model. In this model, self-transitions in the Operant and Others state is omitted.

https://doi.org/10.1371/journal.pone.0242201.g001
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probability of transition to option i 2 {Operant, Others} is defined as follows:

pi ¼
exp fbQðiÞprefðtÞg

P
i2fOperant;Othersg expfbQ

ðiÞ
prefðtÞg

; ð3Þ

where the softmax inverse temperature parameter β represents the degree to which a choice is

focused on the highest-value option.

The cost Qcost is a function that defines a barrier in making a transition from the performed

behavior to the Choice state. We assumed that the cost is independent from the preference and

depends only on the number of responses that are emitted to obtain a reinforcer from a bout

initiation. When a reinforcer is presented, the cost function Qcost is updated according to

QðiÞcostðt þ 1Þ ¼ QðiÞcostðtÞ þ arftð logxðiÞðtÞ � QðiÞcostðtÞÞ; ð4Þ

where x denotes the number of responses that are emitted to obtain a reinforcer in a bout.

Then, x is initialized to 1 when the agent receives a reinforcer or comes back to the Choice

state without a reinforcer. The other parameters are the same as Eqs (2a) and (2b). The same

(i)-omitting rule applies also to Qcost. In Eq (4), x is attenuated by taking its logarithm. This is

because, if we do not attenuate x, the barrier defined by Qcost becomes too high and the agent

keeps staying at the performed state. To avoid it, we employed Fechner‘s law [25] to make the

performed state less attractive.

If the agent is in either of the Operant or Others states, it makes a decision whether to stay

in the same state or to go back to the Choice state. A decision is made according to the proba-

bility of staying in the same state calculated from the cost and the preference for the state,

which is defined as follows:

pðiÞstay ¼ exp
� 1

wprefQ
ðiÞ
prefðtÞ þ wcostQ

ðiÞ
costðtÞ

( )

; ð5Þ

where wpref and wcost are positive weighting parameters for Qpref and Qcost, respectively. We

assumed wcost > wpref because schedule-type operations have stronger effects on the bout

length than motivational manipulations. When Qpref or Qcost increase, pstay increases too.

Simulation. In Simulation 1, we compared the three possible models; the dual model, the

no choice model, and the no cost model. The dual model (Fig 1(a)) includes both the choice

and cost mechanisms as we described in the Model section. The second model was the no

choice model (Fig 1(b)), which has only the cost mechanism and it can be thought of as a

model made by removing the choice mechanism from the dual model. In the no choice model,

the agent only engages in the operant behavior. In other words, this model chooses only the

operant behavior in the Choice state. The third model was the no cost model, which has only

the choice mechanism without the cost mechanism. The no cost model chooses either operant

or other behavior independent of the previous behavior; that is, according to this model, the

agent does not continue to be in the same state and comes back to the Choice state after each

response. In the no cost model, the self transition paths were removed because pstay is very low

without having Qcost in Eq (5).

Simulation conditions were as follows. The schedule for the operant behavior was VI 120 s

(0.5 reinforcer per min) without an inter-trial interval, and the schedule for the other behavior

was FR 1. The maximum number of reinforcers in the Operant state was 1,000; that is, if the

number of reinforcers reached 1,000, the simulation was terminated. The value of a reinforcer

given by taking the operant behavior was r(Operant) = 1.0 and that by taking other behaviors

was r(Others) = 0.5. The model parameters were αrft, αext, β, wpref, and wcost. We set αrft = 0.05,
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αext = 0.01, β = 12.5, wpref = 1.0 and wcost = 3.5. The response probabilities in the Operant and

the Others states were fixed at 1/3 in each time step. These parameters were designed based on

the knowledge on experimental conditions, e.g., the reinforcer for the operant behavior should

be higher than that for other behaviors, implying r(Operant) > r(Others). Before the start of the

simulation, we initialized the agent and the experimental environment. The initial values of

QðiÞpref and QðiÞcost were both 0 and we created a VI table according to Flesher and Hoffman [26].

We set the time step in the simulation to be 0.1 s.

We show pseudocode of the model and simulation in Algorithm 1, where NumResponses
means x in Eq 4 and the three Behavior() functions are defined in Algorithms 2, 3, and 4. We

implemented the algorithm in Julia 1.0 and ran simulations on a computer with a 1.80 GHz

Intel i7-8565 processor, 16 GB of RAM, and 1 TB of SSD, operating with Ubuntu 18.04 LTS.

The same configuration was used also for Simulations 2 and 3. The Julia code is available at:

https://github.com/echo0yasum1/simulating_bout_and_pause_pattern.

Algorithm 1 Pseudocode of simulation
t  0, NumRewards  0, ResponseTimes  {}, i  Choice
while NumRewards < 1000 do
t  t + 0.1
if i = Choice then
ChoiceBehavior()

end if
if i = Operant and uniform(0, 1)�1/3 then
OperantBehavior()

end if
if i = Others and uniform(0, 1)�1/3 then
OthersBehavior()

end if
end while

Algorithm 2 Definition of ChoiceBehavior()
Select a state i 2 {Operant, Others} with probability defined by Eq (3)
NumResponses  1

Algorithm 3 Definition of OperantBehavior()
Append t to ResponseTimes
NumResponses  NumResponses + 1
Select a state i 2 {Operant, Choice} with probability defined by Eq (5)
if reward is presented then
Update QðOperantÞpref ðtÞ according to Eq (2a)

Update QðOperantÞcost ðtÞ according to Eq (4)
NumRewards  NumRewards + 1
NumResponses  1

end if
if reward is absent then
if i = Choice then
Update QðOperantÞpref ðtÞ according to Eq 2b

end if
end if

Algorithm 4 Definition of OthersBehavior()
NumResponses  NumResponses + 1
Update QðOthersÞpref ðtÞ according to Eq (2a)

Update QðOthersÞcost ðtÞ according to Eq (4)
reward is presented according to FR 1
NumResponses  1
Select a state i 2 {Others, Choice} with probability defined by Eq (5)
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Results: Simulation 1

Fig 2(a) shows event records of IRTs generated by each model and Fig 3 shows the model

schemes with transition probabilities. The top panel of Fig 2(a) shows that the no choice

model generated a dense repetition of only the operant behavior at a high rate without long

pauses. From Fig 3, the probability the agent stayed in the Operant state was empirically 0.95.

In the middle panel of Fig 2(a), the response rate under the no cost model was low and each

response was separated by long pauses. From Fig 3, the probability of the agent choosing to

transit to the Operant state was empirically 0.06 and the agent returned to the Choice state

immediately after it responded. In the bottom panel of Fig 2(a), the agent with the dual model

generated a repetitive pattern of responses with a high rate in a short period followed by a long

pause. From Fig 3, the agent in the Choice state made a transition to the Operant state with a

0.12 probability and it stayed in the Operant state with a 0.71 probability.

Fig 2(b) show log-survivor plots to see whether they show a straight line or a broken stick.

We used the IRTs from after the agent obtained 500 reinforcers to the end of the simulation.

The log-survivor plots of the no choice model and the no cost model were described by one

straight line whereas that of the dual model was described with a broken-stick shape. The no

choice model has a steeper slope than the no cost model and is tangential to the curve of the

dual model at the leftmost position. The no cost model slope was slightly steeper than that of

the dual model at the right side.

1.1 Discussion: Simulation 1

Both the event records and log-survivor plots in Fig 2 imply that only the dual model generated

bout-and-pause patterns and the other two models failed to reproduce bout-and-pause pat-

terns. The event records in Fig 2(a) suggests that only the dual model exhibit bout-and-pause

patterns. The log-survivor plot of only the dual model in Fig 2(b) showed not a straight but a

Fig 2. (a) Response event records in the (top) no choice, (middle) no cost, and (bottom) dual models in the 50 s period just after 500 reinforcers were

presented (event records were stable after 500 reinforcer presentations). Each vertical line denotes one response. (b) Log-survivor plots of the three

models drawn by using all the IRTs after 500 reinforcers.

https://doi.org/10.1371/journal.pone.0242201.g002
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broken-stick shape, which is an evidence that the underlying IRTs follow a bi-exponential dis-

tribution. Thus, only the dual model reproduced bout-and-pause patterns.

We posit that both of the choice and cost mechanisms are necessary to organize responses

into bout-and-pause patterns. The no choice model failed because it lacks the choice mecha-

nism. Without the choice mechanism, the agent almost always stayed in the Operant state and

responded at a high rate without pauses. The reason behind the failure of the no cost model

was the knockout of the cost mechanism. When the cost of a changeover is zero, the agent eas-

ily return to the Choice state, resulting in sporadic operant responses followed by long pauses.

Similar behaviors were observed in pigeons under a concurrent VI VI schedule without COD

[17]. The choice and cost mechanisms contribute differently to generate bout-and-pause pat-

terns; the choice mechanism generates pauses and the cost mechanism produces response

bursts. Since the dual model has both the mechanisms, it reproduced bout-and-pause patterns.

Since we have a full control of the simulation environment and the agent in it, we can

exclude the possibility of contamination by other factors. Smith et al. [17]’s results implied that

choice and cost are behind bout-and-pause patterns but it was not clear if other factors influ-

ence the formation of bout-and-pause patterns; this is an inherent limitation of experimental

studies. It was not straightforward to draw conclusions like “these mechanisms are enough to

Fig 3. The transition probabilities between the three states that were calculated from the simulation data after the agent obtained 500 reinforcers.

https://doi.org/10.1371/journal.pone.0242201.g003
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generate bout-and-pause patterns” from the experimental findings that IRT distributions

observed in pigeons followed a bi-exponential distribution under concurrent VI VI schedules

with a COD. In contrast, our constructive approach makes it clear that the two mechanisms

are sufficient to reproduce bout-and-patterns, and this conclusion is hard to draw only from

the experimental findings from [17].

We suggest that what is important for generating bout-and-pause patterns is not the specific

architecture of our model but the choice and cost mechanisms. Our model is composed of

three states and five equations, and those equations are from one of most popular reinforce-

ment algorithms called Q-learning. Even if such model architecture and algorithm are substi-

tuted with others, the new model will still reproduce bout-and-pause patterns if it involves the

choice and cost. The specific equation forms such as the logarithm in softmax function in Eq

(3) or the logarithm in Eq (4) the can also be replaceable with other forms. We do not reject

other possible forms to implement the two mechanisms.

We also do not claim the uniqueness of our experimental settings. Although we employed

an FR 1 schedule for the other behaviors, other schedules including VI should produce similar

results.

2 Simulation 2

Having demonstrated in Simulation 1 that the dual model successfully reproduced bout-and-

pause patterns, in Simulation 2 we analyzed this model under various environments. The pre-

vious studies [4, 6–10, 27] have applied various experimental manipulations to animals to

understand bout-and-pause patterns, as summarized in Table 1. We applied manipulations to

the agent in the model by changing environmental settings.

2.1 Method: Simulation 2

Using the dual model, we performed four experiments by manipulating only one of the four

variables while keeping the other three variables the same as Simulation 1. The procedure of

simulation was also the same as Simulation 1.

The four experimental manipulations are applied independently to each of the four vari-

ables: 1) the rate of reinforcement, 2) the deprivation level, 3) the presence of extinction, and

4) the schedule type. 1) We manipulated the rate of reinforcement by varying mean intervals

of the VI schedule. Mean intervals used in this simulation were VI 30 s, 120 s, and 480 s (2.0,

0.5, and 0.125 reinforcer per min). 2) We varied reward values obtained in the Operant state

to control the deprivation level of the agent. Those values were 0.5, 1.0, and 1.5 to induce low

deprivation, baseline, and high deprivation levels, respectively. The reward value that the agent

received by taking other behaviors was the same as Simulation 1 throughout all the simula-

tions. 3) To attenuate the engagement to the operant response, we switched the schedule from

VI 120 s (0.5 reinforcer per min) to extinction after the agent obtained 1,000 reinforcers. The

extinction phase finished when 3,600 s (36,000 time steps) elapsed. 4) We manipulated the

schedule type by adding a small VR schedule in tandem to a variable time (VT) schedule. The

mean interval of the VT schedule was fixed to 120 s and VR values were 0, 4, and 8.

When we analyzed the IRTs data from the extinction simulation, we used a dynamic bi-

exponential model [10], in which the model parameters, q, ω, and b, are time-dependent and

Eq (1) is rewritten as follows:

pðIRT ¼ tÞ ¼ ð1 � qtÞote� ot þ qtbte� btt: ð6Þ
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Extinction causes exponential decay of the model parameters according to the following

equations:

1 � qt ¼ ð1 � q0Þe� gt; ð7Þ

bt ¼ b0e� dt; ð8Þ

where the parameters γ and δ denote the decay rates of q and b, respectively. Since the decay of

any of the three model parameters q, b, and ω can cause extinction, we need to identify which

of these parameters actually decayed during the extinction simulation. We excluded ω because

it was fixed to 1/3 during the simulation. To identify whether one or both of the q and/or b
parameters decayed, we compared three models, that is, the qb-decay, q-decay, and b-decay

models. We calculated WAIC (widely applicable information criterion [28]) for each model.

We use Markov chain Monte Carlo (MCMC) with Stan [29] to estimate posterior distribution

and used MCMC samples to calculate WAIC. The same configuration as Simulation 1 was

used in Simulation 2.

To examine the molar relationship between the reinforcement rate and response rate, we

fitted Herrnstein’s hyperbola [30] to the simulated data. We used its modern version [31],

R ¼
kra

ra þ rae=c
; ð9Þ

where R is the response rate, r is the reinforcement rate, re is the external reinforcement rate, k
is the total amount of behavior, and a is the exponent and bias parameters, respectively. Since

the parametrization of term rae=c is redundant, we did not fit re and c separately and estimated

only rae=c.

2.2 Results: Simulation 2

Fig 4 shows the log-survivor plots of IRTs from each of the four simulations. Fig 4(a) and 4(b)

shows that manipulating the rate of reinforcement or the deprivation level changed the slope

and intercept of the right limb. As the rate of reinforcement or the deprivation level increased,

the slope of the right limb became steeper, indicating that the bout initiation rate became

larger. The broken sticks in Fig 4(c) have different slopes and y-axis intercepts, suggesting that

both the bout initiation rate and the bout length were changed. Fig 4(d) shows that adding the

tandem VR schedule to the VT schedule affected only the y-axis intercept of the right limb

without changing its slope. As the required response increased from the baseline to VR 4 or

VR 8, the bout length became larger. However, the right limbs were not stable and we per-

formed a fitting analysis described in the next paragraph.

Table 2 shows estimated parameters of the bi-exponential model, q, ω, and b in three simu-

lations except for extinction. Parameter q increased as the reinforcement rate, the deprivation

level, and the number of required responses increased. Parameter ω did not change in all

manipulations. Parameter b increased as the rate of reinforcement and the deprivation level

increased.

In Fig 4(c), the total number of IRTs during the extinction phase was insufficient to reliably

estimate the right limb. Then, we analyzed the dynamic bi-exponential model fitted to the

IRTs during extinction. Table 3 shows the WAIC values for the three models. The smallest

WAIC was attained by the qb-decay model, but the differences from the other models are not

large and it is not conclusive which of the bout initiation rate and the bout length decayed dur-

ing extinction.
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Fig 5 shows the boxplots of Qpref and Qcost in the three simulations except for extinction,

which are to be used for assessing how the changes in the bout components are mediated. We

excluded the extinction simulation because we already knew that Qpref causes the change of the

bout components since Qcost is fixed during the extinction phase. The top panel shows that

Fig 4. The log-survivor plots of IRTs generated under the manipulation of (a) the rate of reinforcement, (b) the

deprivation level, (c) the schedule type, and (d) the presence of extinction drawn by all data after the agent

obtained 500 reinforcers.

https://doi.org/10.1371/journal.pone.0242201.g004

Table 2. Estimated parameters of the bi-exponential model in simulations.

Manipulation Condition ω b q
Rate of reinforcement VI 30 (2.0 per min) 3.08 0.23 0.17

VI 120 (0.5 per min) 3.06 0.09 0.27

VI 480 (0.125 per min) 3.19 0.03 0.31

Deprivation level High deprivation 3.04 0.24 0.17

Baseline 3.15 0.08 0.26

Low deprivation 3.17 0.03 0.31

Tandem VT 120 VR x VR 0 3.07 0.09 0.26

VR 4 3.23 0.08 0.19

VR 8 3.11 0.08 0.16

https://doi.org/10.1371/journal.pone.0242201.t002
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Qpref and Qcost increased as the rate of reinforcement increased. The middle panel indicates

that increasing the deprivation level moved Qpref and Qcost upward. From the bottom panel,

we can see that adding tandem VR schedule increased Qcost without affecting Qpref. Table 5

summarized the dependency of Qpref and Qcost to experimental manipulations. Comparing

Tables 1 and 5, Qpref and Qcost correspondent to the bout initiation rate and the bout length.

Fig 6 shows the relationship between the reinforcement rate and response rate in our

model. The response rate increased with diminished gradients, converging to k = 187.41.

The other parameters were fitted to be a = 2.25, and rae=c ¼ 2:65. The percentage of variance

accounted for (%VAF) was 99.3, and a = 2.25 implies that our model showed overmatching. In

our model, β in Eq (3) controls the absolute difference between the Operant and Others behav-

iors and we can change overmatching to strict matching by lowering the value of β.

2.3 Discussion: Simulation 2

In Simulation 2, we tested whether the dual model has the same characteristics as animals

reported by the previous studies. We analyzed the model with four experimental manipula-

tions: the rate of reinforcement, the deprivation level, the presence of extinction, and the

schedule type. The rate of reinforcement, the deprivation level, and the presence of extinction

affected the bout initiation rate and the bout length and adding the tandem VR schedule to the

VT schedule affected only the bout length.

Table 4 summarizes the relationship between the experimental manipulations and the bout

components observed in the dual model, which suggests that the behaviors of the dual model

are consistent with the existing knowledge on animal behaviors. Furthermore, we made stable

predictions to the cells with the question marks in Table 1. Our predictions are stable because

our results can be easily reproduced and tested using the same simulation code. In contrast,

experimental studies with animals could report different conclusions. Although our model

does not implement Herrnstein’s hyperbola a priori, the molar relationship between the rein-

forcement rate and response rate is well described by the modern matching theory (Fig 6).

Cheung et al. [12] and Brackney et al. [32] showed that the bout initiation rate and the bout

length decayed during extinction. Table 3 shows that parameter selection for dynamic bi-expo-

nential model with WAIC but the differences between each model are small. However, the

lowest WAIC model is consistent with previous studies. Therefore, the dual model satisfies at

least the necessary conditions to be a model to be analyzed for the generation mechanism of

bout-and-pause patterns.

Table 2 showed estimated parameters of the bi-exponential model in each simulation and

they are consistent with the parameters of previous study with real animals.

The dependency of Qpref and Qcost to experimental manipulations, showed in Table 5, can

be understood according to the categorization of motivational and schedule-type manipula-

tions proposed by Shull et al. [4]. In our simulations, manipulating any of the three motiva-

tional variables, i.e. the rate of reinforcement, the deprivation level, or extinction, changed

Table 3. Parameter selection for the dynamic bi-exponential model with WAIC.

Model WAIC

qb-decay 1.936

b-decay 1.940

q-decay 1.980

The lower WAIC, the better the model.

https://doi.org/10.1371/journal.pone.0242201.t003
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Qpref and Qcost. The change of Qcost was not a primary but a secondary effect because Qcost was

changed as a result of the increased Qpref; with a higher Qpref, the agent emits more responses.

The schedule type manipulation affected only Qcost. These changes of Qpref and Qcost are con-

sistent with what was proposed by Shull et al. [4].

Fig 5. Boxplots of Qpref and Qcost in each simulation. The top, middle, and bottom rows correspond to the

reinforcement rate, the deprivation level, and the tandem VT VR simulations, respectively, and the left and right

columns show Qpref and Qcost, respectively.

https://doi.org/10.1371/journal.pone.0242201.g005
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The dual model is limited to reproduce only some of the previous findings. Here are three

examples of limitations. First, our model is not designed for analyzing the addition of a tandem

VR schedule to a VT schedule, by which Tanno [9] and Matsui et al. [21] found the change of

the within-bout response rate, which was fixed in our model. Second, the value and the delay

between a response and a reinforcer were fixed in our model. Brackney et al. [10] and Podle-

snik et al. [8] considered a delayed reinforcement from a bout initiation causes the inverse cor-

relation between the bout initiation rate and the bout length. This result can be reproduced if

required responses by tandem VR is very high (more than 32). Third, sometimes the bout

length does not decrease during extinction [10]. Our dual model could not reproduce this

result even if we changed the model parameters.

Table 5. The dependency of Qpref and Qcost to experimental manipulations in the dual model.

Motivational Schedule type

Reinforcement rate Deprivation level Extinction Tandem VR

Qcost % % ! %

Qpref % % & !

https://doi.org/10.1371/journal.pone.0242201.t005

Fig 6. The response rate as a function of the reinforcement rate. The dots are from the simulation and the line is the

modern version of Herrnstein’s hyperbola (the generalized matching law) fitted to the data.

https://doi.org/10.1371/journal.pone.0242201.g006

Table 4. The behavior of the dual model.

Motivational Schedule type

Reinforcement rate Deprivation level Extinction Tandem VR

Bout length %� %� &† %�

Bout initiation rate %� %� &� !†

The cells marked with “�” indicates the consistency with the animal findings shown in Table 1. The cells marked with “†” were the cells with “?” in Table 1.

https://doi.org/10.1371/journal.pone.0242201.t004
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3 Simulation 3

In Simulation 3, we examined a two-state model that incorporates the choice and cost mecha-

nisms to examine the possibility of alternative models, particularly a simpler one. We built a

two-state model without the Choice state and ran simulations with it.

3.1 Method: Simulation 3

Fig 7 shows the two-state model comprising of the Operant and Others states. Although it

does not have the Choice state, the choice mechanism is implemented as the transitions

between the Operant and the Others states. The probability of staying at the same state is

defined as follows.

pðstþ1 ¼ ijst ¼ iÞ ¼
exp ðwprefQ

ðiÞ
prefðtÞ þ wcostQ

ðiÞ
costðtÞÞ

P
i exp ðwprefQ

ðiÞ
prefðtÞ þ wcostQ

ðiÞ
costðtÞÞ

; ð10Þ

where wpref and wcost are positive weights for Qpref and Qcost, respectively. Updating rules for

Qpref and Qcost are the same as Eqs (2a), (2b) and (4), respectively. The parameters of the two-

state model were sought in the ranges shown in Table 6, which includes the parameter values

used for the three-state, dual model. The following parameter settings were selected from the

range: αrft = 0.01, αext = 0.01, wpref = 4.0, wcost = 3.5, r(Operant) = 1.0, and r(Others) = 0.5.

To examine if the two-state model could generate bout-and-pause patterns and if it could

be used for simulations with experimental manipulations, we performed simulation analysis.

We varied the reinforcement rate as VI 30 s, VI 120 s, and VI 480 s, which were the same as

the values used in Simulation 2.

3.2 Results: Simulation 3

Fig 8 shows the log-survivor plots of IRTs from the simulation of the two-state model with dif-

ferent values of the reinforcement rate. It showed broken-stick shapes and the slopes and inter-

cepts of the right limbs decreased as the reinforcement rate decreased.

Fig 7. Two-state model.

https://doi.org/10.1371/journal.pone.0242201.g007

Table 6. Parameter range of the two-state model.

Parameter Min Max Step

αrft 0.01 0.2 0.01

αext 0.01 0.2 0.01

wpref 1.0 6.0 0.1

wcost 1.0 6.0 0.1

https://doi.org/10.1371/journal.pone.0242201.t006
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3.3 Discussion: Simulation 3

Since the log-survivor plots of IRTs generated by the two-state model showed broken-stick

curves, bout-and-pause patterns were reproduced. In addition, the change of the log survivor

plots of the two-state model was consistent with experimental findings. Therefore, we can con-

struct alternative models even without the explicit third state. Also, the two-state model imple-

ments the two mechanisms through Eq (10).

We consider the three-state, dual model has advantages in modeling and analyzing bout-

and-pause patterns.

In the three-state dual model, the effects of choice and cost are separated. It is clear in the

dual model shown in Fig 1(a) that the choice between the operant and other behaviors is made

at the Choice state and whether the agent continues to stay in the same state is moderated by

the cost mechanism at each of the Operant and Others states. This can be understood by Eq

(3), which describes only the choice rule, and Eq (5), which calculates the stay probability

based on the cost mechanism. However, in the two-state model, choice and stay are not well

separated; in Eq (10), choice and cost are mixed and the behavior of the agent cannot be

explained by only one of them.

Fig 8. Log-survivor plots of IRTs generated by the two-state model under VI 30 s, VI 120 s, and VI 480 s

schedules.

https://doi.org/10.1371/journal.pone.0242201.g008
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4 General discussion

In this paper, we have developed a computational model with reinforcement learning. The

model was meant to explain how bout-and-pause patterns can be generated and we examined

its validity by comparing computer simulations and experimental findings. We hypothesized

that two independent mechanisms, the choice between Operant and Others and the cost in the

changeover of behaviors, are necessary to organize responses into bout-and-pause patterns.

We demonstrated in Simulation 1 that the dual model reproduced bout-and-pause patterns

under a VI schedule. Simulation 2 found that the relationships between various experimental

manipulations and the bout components in our model were consistent. Simulation 3 found

that two-state model incorporating the two mechanisms can also reproduce the bout-and-

pause pattern. However, the third state has advantages in analyzing an agent behavior because

it separates the effects of the choice and cost mechanisms. These results support our hypothesis

that assumes that an agent transitioning between the three states driven by the choice and cost

mechanisms organizes its responses into bout-and-pause patterns. This is our answer to “why

bout-and-pause patterns are organized?”

Our constructive model reproduced the descriptive results reported by [4, 6, 7, 27].

Although our dual model does not explicitly include the bi-exponential model in Eq (1), IRTs

generated by the dual model followed the bi-exponential model.

The fundamental difference between our model based on reinforcement learning and Kulu-

bekova and McDowell [22]’s model based on selection by consequences is that our model

explicitly has the choice and cost mechanisms but Kulubekova and McDowell [22]’s model

is unclear about them. Their model did not generate a clear distinction between a burst of

responses in a short period and long pauses that separate bursts, resulting in a dull bend of the

log-survivor plot. Kulubekova and McDowell [22] discussed that this divergence from live ani-

mals might be due to the lack of CODs in their model. Our model reproduced clear distinction

between bursts and pauses (Fig 2), and this was because our model can change CODs through

the cost mechanism. Another advantage of us over Kulubekova and McDowell [22] is that they

did not compare with alternative models but we tested our hypothesises of the choice and cost

mechanisms by the knockout analysis Simulation 1.

Our model has at least two shortcomings, which are the range of parameters and the redun-

dancy of the model. The parameters αrft, αext, β, ωpref, and ωcost in our model have not been

optimized to fit to behavioral data from real animals. The evidence that supports our parame-

ter selection is that our model quantitatively reproduced bout-and-pause patterns. Second,

although our model has five parameters, fewer parameters may suffice to reproduce bout-and-

pause patterns. To verify our model for these two points, it would be useful to compare empiri-

cal data from real animals and our computational model.

Standing on our model proposed in this paper, we can extend our research to many direc-

tions to explain more various aspects of bout-and-pause patterns. Here we discuss four of

them. The following four paragraphs are devoted to this topic.

First, our results were retrospective to data from previous behavioral experiments and the

proposed model was not tested by its prediction ability to unseen data. Our model can suggest

a new experiment that could add new knowledge about how manipulating CODs affect ani-

mals’ behavior under a concurrent VI VI schedule. Smith et al. [17] pointed out that employ-

ing asymmetrical CODs in a concurrent VI VI schedule could produce behaviors under a

single response schedule. Our modeling is consistent to what Smith et al. [17] pointed out but

approaches from a different direction. We consider that, even if an animal is under the single

schedule, it makes choices between the operant behavior and other behaviors; this is imple-

mented to our simulation as concurrent VI FR 1. We used an FR 1 schedule for other
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behaviors in our simulations, but we can change it from FR 1 to a VI schedule so that the

whole schedule becomes a concurrent VI VI schedule. In our model, the cost for the operant

behavior, defined by QðOperantÞcost , affects actions of the agent only in the Operant state, without

affecting those in the Others state; similarly, the cost for other behaviors influences the agent

to its actions only in the Others state. Therefore, according to our model, it is expected that, in

a concurrent VI VI schedule, if the experimenter varies CODs for one schedule, the behavior

of the animal changes only for the varied schedule without affecting the behavior for the other

schedule. It will be interesting to conduct such experiments with real animals to reveal actual

effects of CODs on the behavior under concurrent VI VI schedules. In such a way, our model

can bridge between animal behaviors observed in concurrent schedules and single schedules

by offering a unified framework.

The second approach is verification based on neuroscientific knowledge. Even if the

model can correctly predict unseen data from behavioral experiments, it is not guaranteed

that animals employ the same the model. To explore real mechanisms that animals imple-

ment, it would be effective to compare the internal variables of the model with neural activi-

ties measured from real animals during behavioral experiments. Possible experiments are to

perform knock out experiments by inducing lesions at specific areas of the brain that should

be active during the experiments, or to activate or deactivate specific neurons during the

experiment.

Third, we can assess the plausibility of our model in more detail by conducting simulation

under new experimental manipulations including disruptors or analyzing measures that we

did not analyze. For example, recent studies showed that the distribution of bout lengths is

sensitive to experimental manipulations [13, 33, 34]. Sanabria et al. [35] have proposed a

computational formulation of behavior systems [36] and their descriptive model well

described bout-and-pause patterns including the distribution of bout lengths.

Fourth, we can design models that are not Markov transition models. The bout-and-

pause response patterns shown in Fig 2 can be generated by a Markov transition model

whose transition matrix is given a priori without reinforcement learning. We argue that the

statistical description of the Markov model (i.e., the transition matrix defined by the transi-

tion probabilities shown in Fig 3) is not the source of the reproducibility of bout-and-pause

patterns. There may be other models that are not formulated by Markov transition, such as

the model proposed by McDowell [23]. We can introduce the choice and cost mechanisms

to such models.

Reinforcement learning can be employed to model and explain animal behaviors other

than bout-and-pause patterns, since it is a general framework where an agent learns optimal

behaviors in a given environment through trial-and-error [24]. Such a reinforcement learning

framework agrees well with the three-term contingency in behavior analysis. There are three

essential elements in reinforcement learning; a state, an action, and a reward. The state is what

agent observe and is information about the environment. The action is a behavior that the

agent takes in a given state. The reward is what the agent obtains as the result of the action.

These three elements are similar to a discriminative stimulus, a response, and an outcome.

This similarity would allow behavior analysts to employ reinforcement learning in their

research. For example, Sakai and Fukai [37] employed actor-critic reinforcement learning to

modeling the matching law. We hope more computational studies will be performed to expand

methods of behavioral science.
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