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a b s t r a c t

The application of Convolutional Neural Network (CNN) on the detection of COVID-19 infection has
yielded favorable results. However, with excessive model parameters, the CNN detection of COVID-
19 is low in recall, highly complex in computation. In this paper, a novel lightweight CNN model,
CodnNet is proposed for quick detection of COVID-19 infection. CodnNet builds a more effective dense
connections based on DenseNet network to make features highly reusable and enhances interactivity of
local and global features. It also uses depthwise separable convolution with large convolution kernels
instead of traditional convolution to improve the range of receptive field and enhances classification
performance while reducing model complexity. The 5-Fold cross validation results on Kaggle’s COVID-
19 Dataset showed that CodnNet has an average precision of 97.9%, recall of 97.4%, F1score of 97.7%,
accuracy of 98.5%, mAP of 99.3%, and mAUC of 99.7%. Compared to the typical CNNs, CodnNet with
fewer parameters and lower computational complexity has achieved better classification accuracy
and generalization performance. Therefore, the CodnNet model provides a good reference for quick
detection of COVID-19 infection.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The COVID-19 has become a most devastating pandemic
orldwide. Artificial Intelligence is used to accomplish automatic
lassification of COVID-19 infections on chest X-ray (CXR) images,
mproves the traditional medical prediction of COVID-19. How-
ver, the COVID-19 focal area is characterized by shared space,
igh variation of infection, and the difference among cases, which
rings challenges to the accurate classification of COVID-19.
In 2012, AlexNet won the ImageNet 2012 image recognition

hallenge [1], showing that CNN had greater advantages in image
lassification [2]. Subsequently, CNNs developed rapidly and a
eries of new network structures emerged. Representative net-
orks: VGGNet [3], ResNet [4], DenseNet [5], MobileNet [6],
nd EffectionNet [7], focus on different aspects: accuracy, effi-
iency, and scalability etc. Multiple reusable and efficient design
rinciples were also proposed. CNN has achieved good results
n the medical field in addition to its amazing performance in
he ImageNet 2012 competition. Using various radiology medical
atasets, CNN can efficiently implement tasks such as disease
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classification and lesion tissue segmentation, reducing the work
pressure of professional radiologists and improving the efficiency
of lesion detection.

DenseNet, as a representative CNN network, uses dense con-
nections to enable shallow features to be passed to deep con-
volutional layers, making features highly reusable, and thus is
widely used in medical fields. X. Luo et al. [8] constructed a
new DenseNet structure named UC-DenseNet. It uses DenseNet
to extract colonoscopy features of image, which are input to the
recurrent neural network and the efficient attention mechanism
network (EAM-Net), combining the channel attention module and
the spatial attention module, respectively for automatic classifi-
cation. It enjoys an accuracy improvement of 0.5% to 2% compared
to the DenseNet201 model. However, DenseNet201 has multiple
model parameters and its classification of large-scale medical
images is time-consuming. In contrast, MobileNet is a lightweight
CNN structure that uses depthwise separable convolution in-
stead of traditional convolution, significantly reducing the num-
ber of model parameters and complexity. C. Wang et al. [9]
improved MobileNet by extracting image features using corre-
lation (amplification factor and binary classification probability),
ensuring good prediction performance while greatly reducing the
model parameters and computational effort. Experiments on the
BreakHis dataset show that this network has high recognition
performance and computational utilization.

https://doi.org/10.1016/j.asoc.2022.109656
http://www.elsevier.com/locate/asoc
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mailto:hanman111@126.com
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In this paper, a novel CNN model, CodnNet is proposed.
CodnNet adopts the dense connections of DenseNet to extract
multi-scale in-depth features, and the depthwise separable con-
volution of MobileNet to replace the traditional convolution,
which reduces the model complexity and accomplishes auto-
matic COVID-19 detection. Compared with several typical CNN
models, the CodnNet model, with fewer parameters and lower
complexity, has achieved better classification performance. The
contributions of this paper are as follows.

(1) Adding Focus layer and modifying the pooling layer to
make sure that the initial image and all feature maps can be
transformed to all convolutional layers via dense connections to
improve feature utilization.

(2) An efficient depthwise separable convolution of a large
convolution kernel is used instead of the traditional convolution
to increase the receptive field range and improve the classifica-
tion performance while reducing the model complexity and the
number of parameters.

(3) With lower algorithm complexity and fewer parameters,
the proposed model can significantly save bandwidth and reduce
costs of storage for large datasets.

2. Related works

To combat the global COVID-19 pandemic, a growing number
of researchers worldwide are using CNN models to detect COVID-
19. Various state-of-the-art CNN models applied to COVID-19
detection are listed in Table 1. C. Ouchicha et al. [10] constructed
a CvdNet model based on ResNet. It extracted COVID-19 early fea-
tures with different receptive fields and enjoyed good classifica-
tion performance. However, the use of larger convolution kernels
increased the model complexity and the number of parameters.
M. Nour et al. [11] used machine learning instead of fully con-
nected layers to improve COVID-19 classification accuracy, firstly
using CNN to extract features, K-Nearest Neighbor (KNN), support
vector machine (SVM) and decision tree model to classify, and
finally using Bayesian algorithm to optimize parameters. Exper-
iments showed that SVM classification performance is the best.
However, multi-stage prediction introduces a large error rate.
N. Chowdhury et al. [12] proposed a PDCOVIDNet model using
dilated convolution instead of traditional convolution and con-
structed a parallel feature transform channel with traditional con-
volution, which effectively improved the COVID-19 classification
accuracy, but the superposition property of dilated convolution
led to some detailed features loss. T. Mahmud et al. [13] proposed
the CovXNET model, which used different expansion rates to ex-
tract in-depth features of COVID-19 CXR images and constructed
an integrated model with multi-network overlay to improve clas-
sification performance. The model has good results for small size
samples, but the running time increases exponentially when the
size of samples increases.

M. Heidari et al. [14] used two image preprocessing methods
(noise filtering and contrast normalization), followed by the clas-
sification of CNN model. The model led to an improvement in
classification accuracy, but the preprocessing methods resulted in
the loss of some important features. H. Panwar et al. [15] used the
transfer learning framework VGG-19 and obtained pre-training
weights on the ImageNet dataset and validated it against a small
number of COVID-19 samples and achieved better classification
results, but required a longer pre-training time.

R. Karthik et al. [16] constructed a CNN model with feature
filtering learning that used a quadratic loss function as a con-
volutional filter for each label-specific category, which better
improves the classification performance. However, the model has
a high algorithm complexity and the trade-off between classi-
fication performance and time cost needs to be considered. K.
2

Shibly et al. [17] used a combined VGG16 and Faster R-CNNmodel
to predict COVID-19 with better classification performance com-
pared to the traditional ResNet-50 model, which first extracted
multiple object frames using the Faster R-CNN model and then
classified the features in the object frames. However, the model
has a high algorithm complexity. V. Arora et al. [18] tested against
COVID-CT Scan and SARS-COV-2 CT-Scan sample sets using pre-
training models such as XceptionNet, MobileNet, InceptionV3,
DenseNet, ResNet50 and VGG 16. The experimental results show
that MobileNet has the best performance. However, the model is
not suitable for all types of lesion prediction.L. Wang et al. [19]
proposed a new model, COVID-NET, which used reinforcement
learning to construct a lightweight structure, PEPX, to reduce
the algorithm complexity, and the model worked well for spe-
cific COVID-19 detection. However, the classification performance
was likely to degrade when the sample distribution changed. A.
Khan et al. [20] constructed a CoroNet model based on Xception
frame, which used depthwise separable convolution instead of
traditional convolution to reduce the algorithm complexity and
number of parameters. However, the classification performance
decreased.

G. Jia et al. [21] proposed an improved MobileNet model
applied to CXR images for a 5-classification study of COVID-19,
tuberculosis, viral pneumonia, bacterial pneumonia, and normal
controls, and an improved ResNet model applied to CT images
for a 3-classification study of COVID-19, non-COVID-19 infections,
and normal controls. There is still room for improvement in the
complexity of the proposed lightweight model.

It can be seen that with respect to the classification of COVID-
19, the less complex model can also show good performance
compared to the multi-stage models and the more complex CNNs.

3. Materials and methods

3.1. Dataset description

The COVID-19 data is publicly available on Kaggle’s web-
site [22–24] and it is collected from different databases: chest
X-ray images with COVID-19 are taken from the Italian Soci-
ety of Medical and Interventional Radiology COVID-19 Database
(SIRM) [25] and from Novel Corona Virus 2019 Dataset which is
developed by Cohen et al. in Github [26], as well as from different
recently published articles. Viral pneumonia and normal images
are collected from Kaggle’s Chest X-ray pneumonia dataset [27].
The data distribution is shown in Table 1, where 10611 images
are used as the training set, 3028 images as the validation set,
and 1514 images as the test set. Fig. 1 shows some images of this
dataset (see Table 2).

3.2. Evaluation index and data augmentation

The evaluation indexes include Accuracy, Precision [28], Re-
call [29], F1score [30], area under P–R curve (AP) [31], and area
under ROC curve (AUC) [32,33]. TP, FP, TN and FN were true
positive, false positive, true negative, and false negative, respec-
tively [34]. The formulas are as follows.

Accuracy = (TP + TN)/(TN + FN + TP + FP) (1)

Precision = TP/(TP + FP) (2)

ecall = TP/(TP + FN) (3)

1score = (2 × Pre × Rec)/(Pre + Rec) (4)

ccuracy can determine the total correct rate, but in the case of
nbalanced samples, it is not the optimal indicator to measure
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Table 1
Representative works for CXR images based on the detection of COVID-19 Infection.
Author Method Dataset Result

C. Ouchicha et al. [10] CvdNet Kaggle’s COVID-19 Radiography Database
(219 COVID-19 positive, 1341 normal and
1345 viral pneumonia chest × -ray images)

Average accuracy of 97.20% for detecting
COVID-19 and an average accuracy of
96.69% for three-class classification

M. Nour et al. [11] A Novel Medical
Diagnosis model based
on Deep Features and
Bayesian Optimization

Kaggle’s COVID-19 Radiography Database Accuracy of 98.97%, recall of 89.39%,
specificity of 99.75%, and F-score of 96.72%

N. Chowdhury et al. [12] A Parallel-Dilated
Convolutional Neural
Network Architecture

Kaggle’s COVID-19 Radiography Database Accuracy, precision, recall, and F1 scores
reach 96.58%, 96.58%, 96.59% and 96.58%

T. Mahmud et al. [13] CovxNet 1583normal X-rays, 1493 non-COVID viral
pneumonia X-rays and 2780 bacterial
pneumonia X-rays

Accuracy of 97.4% for COVID/Normal, 96.9%
for COVID/Viral pneumonia, 94.7% for
COVID/Bacterial pneumonia, and 90.2% for
multiclass COVID/normal/Viral/Bacterial
pneumonias

M. Heidari et al. [14] Chest X-ray images with
preprocessing algorithms

415 images depict with the confirmed
COVID-19 disease, 5179 with other
community-acquired non-COVID-19
infected pneumonia, and 2880 normal
(non-pneumonia) cases

Accuracy of 94.5% (2404/2544) with a 95%
confidence interval of [0.93,0.96] in
classifying 3 classes 98.4% recall (124/126)
and 98.0% specificity (2371/2418) in
classifying cases with and without
COVID-19 infection

H. Panwar et al. [15] VGG 673 radiology images of 342 unique
patients

Recall and specificity of the proposed
model is 76.19%, and 97.22%

R. Karthik et al. [16] Channel-shuffled
dual-branched CNN

558 COVID-19 Chest X-rays F1score of 97.20% and an accuracy of
99.80% on the COVID-19 X-ray set

K. Shibly et al. [17] COVID faster R-CNN COVID chest X-ray dataset curated by Dr.
Joseph Cohen

Accuracy of 97.36%, recall of 97.65%, and a
precision of 99.28%

V. Arora et al. [18] MobileNet The COVID-CT-Dataset contained 349
COVID-19 CT images, and 463
non-COVID-19 CTs. In SARS-COV-2 CT, of
the total 2482 images, the non-COVID-19
subjects accounted for 1230 CT scans.

The recall of 96.11% and 100% respectively;
precision of 96.11% and 100% respectively;
F-1 scores of 96.11% and 100% respectively;
and accuracy of 94.12% and 100%
respectively.

L. Wang et al. [19] COVID-NET 358 CXR images Accuracy of 93.3%, recall of 91.0%

A. Khan et al. [20] CoroNet 290 COVID-19 chest Radiography images,
1203 normal, 660 bacterial Pneumonia and
931 viral Pneumonia cases

Accuracy of 89.6% and precision and recall
rate for COVID-19 cases are 93% and 98.2%

G. Jia et al. [21] MobileNet, ResNet 1170 COVID-19 CXR images, COVIDx-CT
dataset which consists of 143,778 training
images

Accuracy of 99.6% on the five-category CXR
image dataset and accuracy of 99.3% on the
CT image dataset
Fig. 1. Kaggle’s COVID-19 radiography database.
3
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Fig. 2. Data augmentation where (a)(d) refers to original image of COVID-19, (g) is original image of Normal, (j) is original image of Viral Pneumonia, (b)(e)(h)(k)
refers to randomly horizontal flip, and (c)(f )(i)(l) refers to randomly rotation in range of (−10◦ , +10◦) respectively.
l
t

Table 2
The distribution of Kaggle’s COVID-19 radiography database.
Class # of samples Train Valid Test

COVID-19 3616 2533 361 722
NORMAL 10192 7135 1019 2038
Viral Pneumonia 1345 943 134 268
Total 15 153 10611 1514 3028

the results; precision represents the accuracy of prediction in
positive samples; recall means the probability of predicted as
positive in the actual positive samples; F1score can represent a
balance of precision and recall; AUC reflects the generalization
performance of the model; AP represents the precision of the
detection, which shows the classification performance in uneven
multi-class samples.

Since the sample size of COVID-19 is small in the dataset, data
nhancement [35] is needed to improve model performance. The
XR images in the dataset have high pixel and will not produce
oo many noisy points. Therefore, only a simple transform is made
or this dataset to keep the original features as much as possible.
s shown in Fig. 2, we reduce the resolution of the CXR image
o 256 × 256 pixels, apply random horizontal flips and random
horizontal rotations in the interval of (−10◦, +10◦), and perform
normalization operations, so that the normalized RGB mean and
standard deviation are 0.485, 0.456, 0.406 and 0.229, 0.224, 0.225,
respectively.

3.3. The CodnNet model

In COVID-19 CXR images, the early features of frosted glass
turbidity can be found, which have different sizes and positions.
Therefore, more efficient feature delivery methods are needed
to enable features under different receptive fields to fuse with
each other. Therefore, we propose a lightweight DenseNet model,
CodnNet, which is characteristic of lower complexity and higher
propagation efficiency based on the idea of dense connection and
depthwise separable convolution.

We use the Focus layer [36] in the initial feature extraction
layer of the model to resize the original image. As shown in Fig. 3,
a 1 × 4 × 4 image through the Focus layer will become a 4 × 2
× 2 image. That is, the number of channels is multiplied by 4
and the width and height are reduced by half. The Focus layer
converts the information in the w-h plane to the channel di-
mension and then extracts different features via the convolution
layer, and this approach can effectively reduce the information
4

Fig. 3. Focus layer.

oss due to downsampling. As shown in Fig. 4, in the DenseNet,
he input image passes through a 7 × 7 convolutional layer with a
stride of 2. The number of channels becomes I, and the width and
height are reduced by half. Then a 3 × 3 maxpooling layer with
a stride of 2 is used to reduce the width and height by half, but
the original image features cannot pass to the feature extractor
afterwards because no connection is used.

Therefore, we add a dense connection to pass the feature
map. The original image will pass through a 3 × 3 convolutional
layer with a stride of 2, with the channel number becoming I.
After a Focus layer, the channel number is 12, and after the
concatenation operation, the feature map with channel number
I+12 is finally generated. Then a 3 × 3 depthwise separable
convolutional layer with a stride of 2 is used to adjust the fea-
ture map size, and a maximum pooling layer is added to the
dense connection. The final output is a feature map with 2I+24
channels. In the initial feature extraction layer, we use a small
convolutional kernel instead of a large convolutional kernel to
reduce the complexity of the model, and add an additional layer
of depthwise separable convolution to maintain the same recep-
tive field. In the initial feature map, all pixel points of the initial
image can be passed to the feature extractor and even to the final
classifier due to the addition of skip connections in the Focus
layer combined with DenseNet dense connections.

As shown in Fig. 5, we improve the convolution layer in
DenseBlock by using depthwise separable convolution instead
of the traditional convolution layer, which includes depthwise
convolution and pointwise convolution. In the DenseBlock, the
number of channels of feature map is generated to n × growth
rate using 1 × 1 convolution layer, and then the number of
channels is changed to growth rate using 3 × 3 convolution
layer. We keep the first layer of 1 × 1 convolution layer, replace
the original 3 × 3 convolution layer with 7 × 7 depthwise
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Fig. 4. Improvement of initial feature extraction layer.

Fig. 5. Improvement of DenseBlock convolutional layer.

convolution layer and 1 × 1 convolution layer, and finally use
a set of learnable weights to multiply with the feature map to
make the feature map focus on more useful channels. Meanwhile,
we use HardSwish nonlinear transformation [37] instead of ReLU
in the convolutional layer. These improvements can improve
the classification performance of the original model effectively
and significantly reduce the number of operations and model
parameters.

As shown in Fig. 6, we modify the transition layer in DenseNet
so that it can be incorporated into DenseBlock. The original tran-
sition layer is structured as follows. The output of DenseBlock
passes through a 1 × 1 convolutional layer with the number of
feature map channels halved, then it passes an average pooling
layer with the feature map size halved. This transition layer
follows the DenseBlock and is intended to reduce feature map
size and number of channels. However, when the number of
channels is small, the 1 × 1 convolution layer cannot effectively
reduce the number of parameters, but instead degrades the model
performance. Therefore, we eliminate the 1 × 1 convolutional
layer and add a depthwise separable convolutional layer with
a stride of 2 to the DenseBlock, and add an average pooling
layer to the dense connection, which can effectively prevent the
information loss caused by utilizing the maximum pooling layer
alone.

By modifying the convolutional and transition layers, the
CodnBlock structure is shown in Fig. 7. Assuming a CodnBlock
with l layers, the depthwise convolutional layer of the first l-1
layers has a stride of 1, and the depthwise convolutional layer of
the last layer has a stride of 2 to act as a transition layer, and the
feature map size is reduced by half. If the input image is C × 2H
× 2W, the output of feature map is (C+l*growth rate) × H × W.
5

Fig. 6. Improvement of transition layer.

Fig. 7. The diagram of the CodnBlock architecture.

The output of CodnBlock can be expressed as follows.

xl = [AVG (H ([x1, x2, . . . , xl−2])) ,H (xl−1)] (5)

where xl is the output of layer l, [x1, x2, . . . , xl−2] refers to the
concatenation of the lth layer to (l-2)th layer output, H is a
compound function of three continuous operations, including BN
layer, HardSwish layer, and convolutional layer, and AVG is the
average pooling layer.

As shown in Fig. 8, the input size of 256 × 256 image is
changed to 4 copies of 128 × 128 by the Focus layer of the
initial feature extraction layer, then the image size is changed to
64 × 64 by the maxpooling layer, and finally pass to the final
classifier by the average pooling layer in several CodnBlock layers.
With the improved dense connection, both the input image and
each feature map layer can pass the original feature information
to all subsequent convolutional layers, and the feature map can
be efficiently utilized compared to the original DenseNet.

The CodnNet model consists of 4 CodnBlocks as shown in
Fig. 9. The size of input image is 3 × 256 × 256, the initial
number of feature channels is 16. Then after the initial feature
extraction, the feature map becomes 56 × 64 × 64. The channel
multiplier in CodnBlock is 4, and the growth rate is 32. The first 3
layers of CodnBlock fuse the transition layer. After the first layer
of CodnBlock, the feature map becomes 88 × 32 × 32; after the
second layer of CodnBlock, the feature map becomes 120 × 16 ×

16; after the third layer of CodnBlock, the feature map becomes
152 × 8 × 8; after the fourth layer of CodnBlock, the feature
map becomes 184 × 8 × 8. After the feature extraction, the
feature map is flattened by global avgpool so that the model can
accept input images of different sizes. The classifier is two fully
connected layers. Because the number of feature extraction layers
is small, the classifier input includes only 152 parameters, and
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Fig. 8. The change of input image.

o increase the classification performance, the classifier parame-
ers are expanded to 512 and then mapped to the classification
umber. The detailed structure of the model is as follows.
(A) Convolutional layer: Convolution is a basic operation of the

onvolutional neural network, which can automatically extract
eatures. Convolution is a mathematical operation, which uses a
eries of filters to generate a new set of feature maps through a
liding window in inputs. CodnBlock uses a traditional convolu-
ion layer with a convolution kernel of 1 × 1 to fuse features,
and a depthwise convolution with a larger convolution kernel
to extract features, reducing the number of model parameters
and complexity. The equations of traditional convolution and
depthwise convolution are as follows.

Z (l) (c, i, j) =

∑
d

∑
m

∑
n

x(l−1) (d, i + m, j + n) k(l) (m, n) (6)

Z (l)∗ (c, i, j) =

∑
m

∑
n

x(l−1) (c, i + m, j + n) k(l) (m, n) (7)

where Z (l) is the traditional convolutional layer output of the lth
layer, Z (l)∗ is the depthwise convolutional layer output of the lth
layer, c is the number of channels of the output feature map, x(l−1)

is the input of the lth layer, k(l) is the lth filter of size m × n.
(B) Activation function: after the convolution, the nonlinear

transformation of the feature graph is required to complete the
activation operation. ReLU [38] is adopted in initial feature ex-
traction layer. Compared with other activation functions, when
the input of ReLU is greater than 0, the gradient will not disappear
and the calculation speed is faster. But when the input is less than
0, the gradient disappears. The formula of ReLU is as follows.

ReLU (x) =

{
x, x > 0
0, x ≤ 0

(8)

where x is the input of ReLU, g (x) is the output of ReLU.
HardSwish activation function is used in the later layers.

Compared with ReLU, HardSwish can significantly improve the
network classification accuracy although delay may increase.
Compared with other activation functions, HardSwish can not
only reduce the error of shallow layers in quantization mode, but
also effectively extract in-depth features. Therefore, we only use
it in CodnBlock and the classifier. The formula of HardSwish is as
follows.

ReLU6(x) =

⎧⎨⎩
6, x ≥ 6
x, x > 0
0, x ≤ 0

(9)

HardSwish (x) = x ∗
ReLU6 (x + 3)

(10)

6

6

where x is the input, ReLU6(x) is the output of ReLU6, HardSwish
(x) is the output of HardSwish.

(C) Pooling layer: after the convolutional layer, the size of the
feature map is still large. The addition of a pooling layer can
reduce the size of the feature map, thus reducing the number of
fully connected layer parameters. It can prevent overfitting and
enable the feature graph to have invariance of translation and
rotation. To reduce the useless information in the feature map,
the max pooling layer is used in the extraction of shallow features
in this paper. After CodnBlock, the average pooling layer is used
to retain the feature information as much as possible.

(D) Batch normalization layer: it is a technique used to op-
timize models during training [39]. It calculates the mean and
variance of each mini-batch data and then normalizes it. The
batch normalization layer can effectively reduce gradient vanish-
ing/explosion phenomenon and accelerate model training speed.
The formula of the batch normalization operation is as follows.

µB =
1
n

n∑
i=1

xi (11)

σ 2
B =

1
n

n∑
i=1

(xi − µB)
2 (12)

x′

i =
xi − µB√
σ 2
B + ε

(13)

i = γi · x′

i + βi (14)

where xi is the input, n is the total number of features in the input
feature map, yi is the output, µB, σ 2

B is the mean and variance of
x, x′

i refers to the normalization of x, γi, βi are model learnable
parameters.

(E) Fully connected layer: its essence is a linear transformation
from one feature space to another. Map the ‘‘distributed feature
representation’’ which is learned in the previous layer to the
sample space. It plays the role of ‘‘classifier’’ in CNN. In this paper,
after the last fully connected layer, the softmax [40] activation
function is used to convert the input into probability. The formula
of the softmax activation function is as follows.

softmax
(
zj
)

=
e z j∑N
k=1 ezk

; j = 1, . . . ,N (15)

where z = [z1, . . . , zN ] is the input, N is the input dimension and
softmax

(
zj
)

∈ (0, 1) ,
∑N

j=1 softmax
(
zj
)

= 1
(F) Dropout layer: in the neural network training, a part of

neurons is randomly discarded at a certain probability to simplify
the network, which can effectively reduce the high correlation
among features and prevent network overfitting. In the testing,
the Dropout layer [41] did not work, so a fully connected network
was used.

Since COVID-19 CXR images have some typical pathological
features, the output feature map of the convolutional layer can be
reused to maximize the recall of each convolutional layer to the
characteristics of the infected region, and then accurately classify
COVID-19.

3.4. The implementation details of the CodnNet model

In this paper, we conduct triple classification automatic de-
tection experiments for Kaggle COVID-19 CXR images. We first
divide each class of dataset into 10 equal parts for 5-fold cross-
validation [42]. The samples of each fold are processed as follows:
70% of samples are used for the training set, 10% for the validation

set, 20% for the test set.
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Fig. 9. The architecture of CodnNet model.
Table 3
The implementation details of the CodnNet model.
0
P

A cross-entropy loss function is used in the training to cal-
ulate the loss between the output of Softmax and the actual
robability. The optimizer adopts SGD, and the learning rate is
e-3. The iteration step is 100 epoch, and the batch is 32. The
etailed implementation process is shown in Table 3.

. Results

.1. Ablation study

The factors that affect the complexity of the model mainly
nclude the depth and width of the model. The width factors
hat affect the complexity of DenseNet are the growth rate and
he number of initial feature channels. Therefore, we set the
rowth rate as 32,16,8, and the number of initial feature channels
s 64,32,16 for CodnNet and DenseNet13 respectively, and the
esults are shown in Table 4.

The analysis shows that the growth rate has the greatest im-
act on the classification performance in CodnNet and
7

DenseNet13, while the number of initial feature channels has less
impact on the classification performance. This is because both
CodnNet and DenseNet13 use dense connections to make feature
maps highly reusable, and employ the initial feature channels
for extraction of shallow features, which have less impact on
classification performance. However, the growth rate extracts
in-depth features, which have more impact on classification.
According to the experimental results, we set the growth rate
as 32 and the initial feature channel as 16, which is the best
comprehensive classification performance.

In this paper, based on the DenseNet13 (g = 32, I = 16,
MACs = 0.2, Params = 0.17), the depthwise separable convolu-
tion parameters are investigated to test the impact of different
scale convolution kernels on classification performance, as shown
in Fig. 10. We also test the impact of different size depthwise
separable convolution, such as 3 × 3(MACs = 0.07, Params =

.04), 5 × 5(MACs = 0.08, Params = 0.05), 7 × 7(MACs = 0.09,
arams = 0.06), and 9 × 9 (MACs = 0.1, Params = 0.08) on
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Table 4
Impact of model width on CodnNet and DenseNet13.
Growth rate (g) Initial feature channels (I)

CodnNet DenseNet13

I = 64 I = 32 I = 16 I = 64 I = 32 I = 16

g = 32

Precision 0.977 0.980 0.977 0.975 0.977 0.973
Recall 0.973 0.969 0.974 0.972 0.964 0.963
F1score 0.975 0.974 0.975 0.974 0.970 0.968
Accuracy 0.985 0.984 0.984 0.981 0.979 0.978

g = 16

Precision 0.977 0.976 0.970 0.978 0.965 0.961
Recall 0.971 0.978 0.967 0.971 0.956 0.953
F1score 0.974 0.977 0.968 0.975 0.960 0.957
Accuracy 0.983 0.983 0.980 0.981 0.972 0.970

g = 8

Precision 0.969 0.973 0.943 0.965 0.961 0.953
Recall 0.973 0.962 0.972 0.962 0.953 0.958
F1score 0.972 0.967 0.957 0.963 0.957 0.955
Accuracy 0.979 0.978 0.970 0.972 0.970 0.967
Table 5
Average evaluation metrics of various models for 3-class CXR images.
Models Precision Recall F1score Accuracy mAP mAUC

DenseNet201 0.982 ± 0.003 0.975 ± 0.003 0.978 ± 0.002 0.985 ± 0.002 0.994 ± 0.001 0.997 ± 0.001
DenseNet121 0.979 ± 0.004 0.972 ± 0.005 0.975 ± 0.004 0.983 ± 0.003 0.993 ± 0.001 0.997 ± 0.001
DenseNet13 0.976 ± 0.003 0.970 ± 0.004 0.973 ± 0.003 0.981 ± 0.003 0.992 ± 0.001 0.997 ± 0.001
MobileNetV2 0.976 ± 0.003 0.971 ± 0.003 0.974 ± 0.002 0.982 ± 0.001 0.993 ± 0.001 0.997 ± 0.001
MobileNetV3L 0.978 ± 0.002 0.972 ± 0.005 0.975 ± 0.003 0.983 ± 0.002 0.995 ± 0.001 0.998 ± 0.001
MobileNetV3S 0.976 ± 0.002 0.970 ± 0.005 0.973 ± 0.003 0.981 ± 0.003 0.993 ± 0.001 0.997 ± 0.001
CodnNet 0.979 ± 0.004 0.974 ± 0.003 0.977 ± 0.003 0.985 ± 0.002 0.993 ± 0.001 0.997 ± 0.001
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Fig. 10. Impact of different depthwise separable convolution kernels.

classification performance. The analysis shows that the classifi-
cation performance is gradually rising as the scale of depthwise
separable convolutional kernel increases, and the model per-
formance reaches the highest when the convolutional kernel is
7 × 7, and decreases when the scale of convolutional kernel is
increased again. Therefore, we choose 7 × 7 depthwise separable
onvolution as the CodnNet convolutional layer.
In this paper, based on DenseNet13 (g = 32, I = 16), the

ain modules (initial feature extraction layer, transition layer,
ardSwish) are ablated experimentally, as shown in Fig. 11.
dding the initial feature extraction layers and HardSwish sep-
rately improve the DenseNet13 accuracy by 0.3%. While adding
he initial feature extraction layers and HardSwish together in-
rease the accuracy by 0.5%. Improving the transition layer alone
chieves less performance improvement because the reduction
f the 1 × 1 convolutional layer in the original transition layer

makes the model less complex. Regarding experimental results,

we choose adding the combination of the initial feature extraction s

8

Fig. 11. Impact of each major module.

ayer (Focus), HardSwish and the transition layer (Transition),
hich has best classification performance with low algorithm
omplexity.
Fig. 12 gives the visualization of attention features on COVID-

9 infection for five comparative models, including DenseNet13
g = 32, I = 16) model, and three improved models based
n DenseNet13, adding 7 × 7 depthwise separable convolution
DSC), initial feature extraction layer, HardSwish and CodnNet,
espectively. The DenseNet13 model uses traditional 3 × 3 con-
olution layers due to the limited number of layers. The receptive
ield is small and can only focus on local detailed features. With
he addition of 7 × 7 depthwise separable convolution, the recep-
ive field of DenseNet13 is increased. With the addition of initial
eature extraction layer, the shallow features of the original image
re extracted and a larger range of features with many noise
oints are also included. HardSwish nonlinear transformation
ocus on more accurate local features. CodnNet takes into account
ll advantages of modules, and pays attention to in-depth and
hallow features on both sides of lung lesions.
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Fig. 12. Visualization of the attention of different module features.
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Fig. 13. F1score results for different models.

Fig. 14. Accuracy results of different models.

.2. Evaluation of classification for 3-class COVID-19 datasets

As shown in Table 5, we first conduct 5-fold cross validation
est using DenseNet201 (g = 32, I = 64) and DenseNet121 (g =

2, I = 64), with an average accuracy of 98.5% and 98.3%, respec-
ively, and the average accuracy of DenseNet121 is reduced by
.2% compared to DenseNet201. It can be seen that as the model
epth decreases, the detection accuracy of DenseNet framework
oes not decrease significantly. We continue to reduce the depth
f DenseNet so that the number of 3 × 3 convolutional layers of
enseBlock is 1 (DenseNet13(g = 32, I = 64)) with an accuracy of
8.1%. The analysis shows that the DenseNet network can achieve
etter classification performance with fewer convolutional layers
ue to its dense connections, which plays a key role in reducing
he complexity of the model.
9

Table 6
Performance of CodnNet after 5-fold Cross-validation for 3-class CXR images.
FOLD Precision Recall F1score Accuracy mAP mAUC

FOLD 1 0.977 0.974 0.975 0.984 0.992 0.997
FOLD 2 0.984 0.973 0.978 0.988 0.994 0.998
FOLD 3 0.980 0.976 0.978 0.984 0.994 0.997
FOLD 4 0.983 0.980 0.982 0.989 0.995 0.999
FOLD 5 0.972 0.969 0.970 0.980 0.989 0.996

Therefore, we construct a lightweight model, CodnNet (g = 32,
I = 16) based on DenseNet13(g = 32, I = 16). CodnNet achieves
an Accuracy of 98.5% for 3-class classification, which is 0.4% better
than DenseNet13(g = 32, I = 64), 0.2% better than DenseNet121,
nd the same as DenseNet201. The comparison of classification
erformance is shown in Table 5. The analysis shows that, com-
ared with MobileNetV2 [43], V3L, and V3S, CodnNet achieves a
recision increased by 0.3%, 0.1%, and 0.3%, a recall increased by
.3%, 0.2%, and 0.4%, a F1score increased by 0.3%, 0.2%, and 0.4%,
nd an accuracy increased by 0.3%, 0.2%, and 0.4%, respectively.
t can be seen that the CodnNet model has a higher precision
nd recall and better classification accuracy and generalization
erformance.
In clinical medical image classification, F1score and accuracy

re two typical evaluation indexes of models. We compare and
nalyze the F1score, accuracy of various models. As shown in
ig. 13, the F1score of CodnNet is slightly lower than that of
enseNet201, but higher than that of DenseNet121, DenseNet13,
obileNetV2, V3L, V3S models. As shown in Fig. 14, the accu-

acy of CodnNet is the same as that of DenseNet201 model, but
igher than that of DenseNet121, DenseNet13, MobileNetV2, V3L,
3S. Considering the trade-off between algorithm complexity
nd classification accuracy, CodnNet has better comprehensive
lassification performance.
Table 6 shows the evaluation indexes of CodnNet model for 3-

lass classification after 5-fold cross-validation, with the average
7.9% precision, 97.4% recall, and 97.7% F1score, respectively. It
an be seen that the CodnNet model has high recall and good
eneralization performance.
To show the comprehensive performance of each model for

OVID-19 detection, we use the P–R curves to demonstrate the
lassification ability for class imbalance samples. As shown in
ig. 15, because the number of normal images in the dataset
s greater than that of the COVID-19, and the number of the
OVID-19 images is greater than that of the viral pneumonia,
he P–R curve of normal class in each fold is the best, followed
y COVID-19 and finally viral pneumonia, which is in line with
he classification law, where the mean AP of the least 3 folds
s greater than 99%, which shows that the CodnNet model has
etter classification performance for class imbalance. In addition,
he proposed model analyzes 5-fold ROC curves for the samples
f 3-class, and the ROC curve measures the predictive ability of
ositive samples, and the AUC value effectively reflects the prob-
bility of randomly selecting true positives over false positives.
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Fig. 15. Performance of CodnNet for 3-class CXR Images, where (a)(c)(e)(g)(i) refers to P–R curve, and (b)(d)(f )(h)(j) is ROC Curve Respectively.
he mean AUC value for the viral pneumonia class is the largest at
9.9%, followed by 99.7% for the normal and 99.6% for the COVID-
9. Thus, the CodnNet model has a good rate of true positive
OVID-19 detection.
Since COVID-19 is highly infectious, recall is highly important

or COVID-19 detection. As shown in Table 7, the prediction
esults of different models on COVID-19 are given. In this paper,
10
CodnNet achieves 97.6% recall on COVID-19, which is the best
performance among all comparative models, and F1score reaches
97.8% and is the same as DenseNet201, which is better than
other models. This shows that the CodnNet model has a higher
recall on COVID-19, and has better classification accuracy and
generalization performance compared with other models.
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Table 7
Performance of the various models on each fold for COVID-19 detection.
Models Precision Recall F1score AP AUC

DenseNet201 0.983 0.973 0.978 0.992 0.997
DenseNet121 0.980 0.973 0.977 0.991 0.997
DenseNet13 0.977 0.968 0.973 0.990 0.996
MobileNetV2 0.977 0.969 0.973 0.992 0.996
MobileNetV3L 0.982 0.971 0.977 0.994 0.997
MobileNetV3S 0.975 0.966 0.970 0.991 0.996
CodnNet 0.982 0.976 0.978 0.992 0.997

Table 8
The parameters and computational complexity of various models.
Model Input resolution MACs (G) Params (M)

DenseNet201 256 × 256 4.37 18.10
DenseNet121 256 × 256 2.88 6.96
DenseNet13 256 × 256 0.33 0.19
MobileNetV2 256 × 256 0.32 2.23
MobileNetV3L 256 × 256 0.23 4.21
MobileNetV3S 256 × 256 0.06 1.52
CodnNet 256 × 256 0.06 0.26

5. Discussion

5.1. Computing complexity

Model complexity has the key impact on prediction error. Too
ow complexity leads to underfitting and too high complexity
eads to overfitting. Model complexity includes time complexity
nd space complexity [44]. Time complexity, namely the number
f model operations, can be measured by MAC (Memory Access
ost), which indicates the time required for model training or
rediction. The spatial complexity includes the number of total
odel parameters. The more parameters of the model, the more
emory space is required.
The comparison of algorithm complexity and number of pa-

ameters for each model is given in Table 8. The analysis shows
hat compared with DenseNet201, DenseNet121, DenseNet13,
he MACs of CodnNet model are reduced by 7183%, 4700% and
50%. Compared with MobileNetV2, V3L, the MACs are reduced
y 433% and 283%, It is the same as that of MobileNetV3S,
ut the number of parameters of CodnNet is reduced by 484%
ompared to MobileNetV3S. The main module of CodnNet model
s the dense layers, and each dense layer increases the number
f channels. Therefore, Codnblock layer reduces the number of
utput channels and width of the module via reduction of the
umber of convolutional layers in the dense layer, which in turn
educes the model complexity and parameters.

Too low model complexity also leads to degradation of clas-
ification performance. Therefore, model complexity and classi-
ication performance need to be considered as a whole. Fig. 16
hows the scatter plot of each model between accuracy and
ACs, the CodnNet model is closest to the upper left position,

ndicating the best comprehensive performance. The compari-
on of different models consisting of accuracy and Params is
hown in Fig. 17. Compared with the DenseNet201, DenseNet121,
enseNet13 models, the CodnNet model has the fewest number
f model parameters, the highest classification accuracy, and
odnNet also has the highest classification accuracy and sim-
lar model complexity compared with MobileNetV2, V3L, and
3S. Therefore, CodnNet has a better trade-off between model
omplexity and classification performance.
11
Fig. 16. Scatter plot of MACs and accuracy.

Fig. 17. Scatter plot of params and accuracy.

5.2. The attention features of various models for 3-class COVID-19
datasets

To visualize the infected region of COVID-19 accurately and
rapidly, we use a visualization technique (Grad-CAM) to ob-
serve two-dimensional heatmap of lung CXR images. Grade-CAM
presents ‘‘visual explanations’’ for decisions from a large class
of CNN-based models [45]. The mapping of the gradient of the
last convolutional layer to the original image can produce a
coarse localization of important region in the image, which can
effectively visualize the important attention features of image.

As shown in Fig. 18, the two-dimensional heatmap of the
last layer of depthwise separable convolutional layer of CodnNet,
the last layer of conventional convolutional layer of DenseNet13,
DenseNet121 and DenseNet201 are given in the 3-class CXR im-
ages such as COVID-19, normal and viral pneumonia, respectively,
and all the above models highly reuse the extracted features
of each layer. For the COVID-19, CodnNet focuses more on the
location of COVID-19 lesion features, while DenseNet focuses
more on both sides of the lung features as the network depth
increases. For the normal, CodnNet focuses on both sides of the
lung features, which are also influenced by noises generated such
as bones, and DenseNet focuses more on the intrapulmonary
features as the network depth increases. For the viral pneumonia,
CodnNet focuses on the focal features, while DenseNet gradually
focuses on from all features of both sides of the lungs to the
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Fig. 18. The attention feature of various models for 3-class classification based on GRAD-CAM.
eavy focal features as the network depth increases. Therefore, it
s clear that CodnNet can extract the focal features more quickly
nd accurately, and can obtain higher classification performance
ith lower complexity.

. Conclusion

In this paper, we propose a lightweight CNN model, CodnNet,
hich uses depthwise separable convolution with large convo-

utional kernel to reduce model complexity, and increase the
ransform efficiency of in-depth or shallow features so as to
nable more efficient reuse of feature maps for 3-class clas-
ification COVID-19 CXR images. Experimental results on the
aggle COVID-19 dataset show that the average precision, recall,
1score and accuracy of CodnNet after 5-fold cross-validation
re 97.9%, 97.4%, 97.7% and 98.5%, respectively. Compared with
ome typical lightweight CNN-based models, CodnNet has fewer
odel parameters and lower algorithm complexity, and the best
eneralization performance. Due to reduction of layers, CodnNet
acks global correlation and CXR image noise degrades the clas-
ification performance to some extent. Therefore, in the future,
e will optimize the CodnNet model by adding a global attention
echanism to extract specific features, so that the model can pay
ore attention to the lung features of both sides and improve
lassification accuracy.
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