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Abstract: In prion diseases, the spread of infectious prions (PrPSc) is thought to occur within
nerves and across synapses of the central nervous system (CNS). However, the mechanisms by
which PrPSc moves within axons and across nerve synapses remain undetermined. Molecular
motors, including kinesins and dyneins, transport many types of intracellular cargo. Kinesin-1C
(KIF5C) has been shown to transport vesicles carrying the normal prion protein (PrPC) within axons,
but whether KIF5C is involved in PrPSc axonal transport is unknown. The current study tested
whether stereotactic inoculation in the striatum of KIF5C knock-out mice (Kif5c−/−) with 0.5 µL
volumes of mouse-adapted scrapie strains 22 L or ME7 would result in an altered rate of prion
spreading and/or disease timing. Groups of mice injected with each strain were euthanized at either
pre-clinical time points or following the development of prion disease. Immunohistochemistry for
PrP was performed on brain sections and PrPSc distribution and tempo of spread were compared
between mouse strains. In these experiments, no differences in PrPSc spread, distribution or survival
times were observed between C57BL/6 and Kif5c−/− mice.
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1. Introduction

Prion diseases are a group of progressive neurodegenerative diseases that occur in
humans and animals [1]. Essential to the progression of prion diseases is the conversion of
the normal cellular prion protein (PrPC) into a mis-folded, disease-associated conformation
known as PrPSc that is usually partially protease-resistant [2]. Accumulation of PrPSc in
the central nervous system (CNS) is often observed concurrently with neurode generation,
and severe gliosis in the brain [2]. Previous studies have demonstrated that PrPSc can
infect neurons, and spread throughout neuronal axons, dendrites and across neuronal
synapses [3–12]. However, the mechanisms by which PrPSc spreads within axons and
across synapses remain unclear, and this knowledge is critical for a more complete under-
standing of prion disease pathogenesis and may provide additional targets for therapies
directed against prion diseases.

Transport of PrPC is better understood. Anterograde transport of PrPC by kinesin
motors and retrograde transport of PrPC by dynein motors have been reported by several
groups in both peripheral nerves and nerves of the CNS [13–16]. Moreover, using genetics
as well as live imaging high-resolution light microscopy approaches, Encalada et al. tracked
the transport of individual PrPC vesicles in axons of cultured mouse hippocampal neurons,
and identified the kinesin-1C (KIF5C) and dynein heavy chain 1 (DHC1) as the microtubule-
based molecular motors drive anterograde and retrograde movement of PrPC vesicles,
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respectively [17]. In a more recent paper, Heisler et al. identified muskelin as a core
component that regulates directionality of the PrPC transport associated with dynein and
KIF5C [18]. In the absence of muskelin, PrPC degradation by lysosomes was reduced and
PrPC transport to the plasma membrane in exosomes was increased. Although PrPC and
PrPSc differ in conformation, it seems plausible to postulate that vesicles carrying PrPSc
may also utilize microtubule-based transport mechanisms.

In the current study we tested the role of KIF5C in the tempo of prion disease patho-
genesis. Knock-out mice depleted of KIF5C (Kif5c−/−) and C57BL/6 (B6) genetic controls
were inoculated stereotactically with a small volume (0.5 µL) of either 22 L or ME7, two dif-
ferent mouse-adapted scrapie strains with different cellular tropisms [19]. Stereotactic
delivery of a small volume of inoculum provided a reproducible method to create a consis-
tent initiation point of infection, without artificial spread due to volume overload at the
point of injection. Following inoculation, we euthanized groups of B6 and Kif5c−/− mice
at several pre-clinical time points for immunohistochemical (IHC) analysis or following
development of advanced prion disease for a survival curve analysis. Early, pre-clinical
times were chosen to be able to track new PrPSc spread from the point of infection to
distant locations. IHC directed against PrP was used to detect PrPSc in formalin-fixed brain
tissue. Multiple matched regions from each brain were examined and PrPSc distribution
and spreading kinetics were compared between strains. No differences in PrPSc spreading
kinetics, distribution of PrPSc or survival times were observed between C57BL/6 and
Kif5c−/− mice suggesting PrPSc does not spread anterogradely in the CNS using the KIF5C
kinesin isoform.

2. Materials and Methods
2.1. Mice

All mice were housed at the Rocky Mountain Laboratory (RML) in an AAALAC
accredited facility in compliance with guidelines provided by the Guide for the Care and
Use of Laboratory Animals (Institute for Laboratory Animal Research Council). Experimen-
tation followed RML Animal Care and Use Committee approved protocol # 2015-060-E.
The generation of KIF5C knock-out mice (referred to as Kif5c−/− in this manuscript) has
been described previously [17]. Deletion of the Kif5c gene from the mice used in this study
was confirmed using routine PCR methodology. C57BL/6J (#000664) (B6 in this manuscript)
controls were obtained from The Jackson Laboratory.

2.2. Stereotactic Surgery and Microinjection of 22 L and ME7 Prions

Targeted microinjection of the striatum was performed on all the mice used in both
the kinetic experiments and survival curve study. Age-matched, young adult mice were
anesthetized with isoflurane and prepared for surgery by shaving the hair from the dorsal
surface of the skull and applying chlorhexidine-based surgical scrub (BD Biosciences) to
the area. Mice were then positioned on a stereotaxic frame (David-Kopf Instruments) and
maintained on isoflurane anesthesia. Using an aseptic technique, a 1 cm midline incision
was made in the skin over the dorsal surface of the skull, and the skull was exposed to allow
positioning of the drill over the bregma point of reference. From bregma, the coordinates
used were +1 mm anteroposterior, +1.7 mm lateral, and −3 mm ventral to the skull surface.
These coordinates were selected to target the center of the left striatum and avoid midline
vasculature and passing through any ventricles. A small hole was drilled in the surface of
the skull prior to placement of the 33-gauge delivery needle and Nanofil syringe (World
Precision Instruments, Sarasota, FL, USA). Ten percent prion-infected brain homogenate
stocks were injected into the striatum at a rate of 0.25 µL/min with a total of 0.5 µL per
mouse (UltraMicroPump III with a Micro4 pump controller; World Precision Instruments).
Mice infected with strain 22 L received 1.0 × 105 LD50s and mice infected with strain ME7
received 8.3 × 103 LD50s. The needle was kept in place for 2 min following injection to
minimize reflux. The skin incision was closed with 5-0 absorbable PDS II suture. Mice were
recovered in heated cages after surgery and received a single subcutaneous injection of
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0.2 mg/kg buprenorphine for postoperative pain management. Patency of the needles was
verified prior to and after all injections.

2.3. Kinetic Experiments

Following inoculation, groups of 22 L-infected mice were euthanized at pre-clinical
time points of 7, 25, 40 and 60 days post-inoculation (dpi) for histopathologic analysis. ME7-
infected mice were all euthanized at 40 dpi. Following euthanasia, brains were removed
and immediately placed in formalin and prepared for histology. Group sizes for each time
point are provided in Table 1.

Table 1. Early spread of infectious prions (PrPSc) in brains of C57BL/6 and Kif5c−/− mice following stereotactic inoculation.

Scrapie
Strain

Mouse
Strain

Time
Point
(dpi 2)

Brain Region

Striatum (0) 1 Thalamus (3.2) 1 Midbrain (5) 1 Rostral Pons (7) 1

PrPSc
Present 3

PrPSc
Score 4

PrPSc
Present 3

PrPSc
Score 4

PrPSc
Present 3

PrPSc
Score 4

p-
Value 5

PrPSc
Present 3

PrPSc
Score 4

p-
Value 5

22 L

B6 7 2/2 1 0/2 0 0/2 0 0/2 0
Kif5c−/− 7 2/2 1 0/2 0 0/2 0 0/2 0

B6 25 5/5 2 5/5 1 3/5 0–1 0.46 4/5 0–1 >0.99
Kif5c−/− 25 3/3 2 3/3 1 3/3 1 2/3 0–1

B6 40 4/4 3 4/4 2 4/4 2 4/4 1 >0.99
Kif5c−/− 40 4/4 3 4/4 2 4/4 2 3/4 1

B6 60 3/3 2–3 3/3 3 3/3 1–2 3/3 1–2
Kif5c−/− 60 3/3 3 3/3 3 3/3 2 3/3 1–2

ME7 B6 40 Not tested 4/4 1 0/4 0 0.17 2/4 0–1 >0.99
Kif5c−/− 40 Not tested 5/5 1 3/5 0–1 3/5 0–1

1 The approximate distance (mm) from the needle track is provided in parenthesis; 2 dpi: days post-inoculation; 3 Following stereotactic
inoculation of scrapie into the striatum, mice were euthanized at different time points and brains were collected and analyzed for PrPSc
deposition using immunohistochemical (IHC) methods. For each mouse, four different brain regions were analyzed for PrPSc deposition.
The numerator shows the number of mice positive for the specific brain region, the denominator shows the number of mice tested; 4 PrPSc
deposition intensity was given a subjective score from 0–4 with 0 being negative and 4 being a strong positive (see methods for additional
detail); 5 p-values were calculated using Fisher’s exact test when the ratio of positive and negative mice differed between mouse strains at a
specific time point and brain region. No significant differences were observed between B6 and Kif5c−/− mice.

2.4. Survival Curve

To compare survival times between Kif5c−/− and B6 mice, we used stereotactic equip-
ment to intracerebrally inoculate 12 female mice per mouse strain with 22 L scrapie (inoc-
ulation described above). Mice were observed 3–5 times per week by personnel blinded
to mouse genotype for the onset of clinical signs. Once signs were apparent, mice were
observed 5–7 times per week and euthanized when advanced signs of disease were present
including marked weight loss, ataxia, kyphosis, unkempt appearance, and severe som-
nolence. A conscious effort was made to euthanize all the mice at an equivalent stage
of disease. Statistical analysis of the survival times was performed using GraphPad
PRISM software.

2.5. Hematoxylin and Eosin (H&E) and Immunohistochemical (IHC) Staining

For each experimental group, 2–5 half-brains were removed and placed in 10% neu-
tral buffered formalin for 3 to 5 days. Tissues were then processed by dehydration and
embedding in paraffin. Sections were cut using a standard Leica microtome, placed on
positively charged glass slides, and air-dried overnight at room temperature. The following
day, slides were heated in an oven at 60 ◦C for 20–30 min.

For all the 22 L and ME7-infected mice euthanized for pre-clinical time-points, brains
were collected and embedded as coronal sections into two different blocks, A and B. Block A
contained the rostral part of the brain, including the striatum and needle track. Serial
5 micron sections were cut through block A and every 9th section was stained with a
standard protocol of hematoxylin and eosin (H&E) to facilitate localization of the needle
track and for observation of the overall pathology. Sections adjacent to the H&E slides
containing needle tracks were identified and used for anti-PrP IHC (see below). Block B
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contained the remainder of the brain and was cut into three pieces that were embedded
together. Efforts were made to confirm that the three sections of brain were as uniform as
possible regarding location in the coronal plane to fairly score the thalamus, midbrain and
rostral pons for PrPSc deposition in the preclinical time point experiments. For all 22 L
infected mice, two sections from each coronal face were viewed. For the ME7 infected mice,
four sections from each coronal face were viewed from each mouse.

For the survival curve experiment, histology was performed on five mice per strain.
Brains were removed, bisected at the sagittal midline and right hemispheres were formalin
fixed and embedded for sagittal sectioning. Two sections were viewed from each mouse,
for each staining technique (see below).

For all IHC, de-paraffinization, antigen retrieval and staining were performed using
the Discovery XT Staining Module. For anti-PrP staining we used monoclonal antibody
D13 produced at RML at a dilution of 1:100 [20,21]. Antigen retrieval was achieved using
extended cell conditioning with CC1 buffer (Ventana) containing tris-borate-EDTA, pH 8.0
for 100 min at 95 ◦C as previously described [22]. D13 was diluted in antibody dilution
buffer (Ventana) and applied for 2 h at 37 ◦C. The secondary antibody, biotinylated goat
anti-human IgG (Jackson ImmunoResearch, West Grove, PA, USA) was diluted 1:250 in
Ventana antibody dilution buffer and applied for 32 min at 37 ◦C.

For detection of microglia and astroglia, the Discovery XT staining system (Ventana
Medical Systems) was also used. To stain microglia, anti-Iba1 antiserum was generated
by immunization of rabbits with a 14 amino acid peptide from the C-terminus of the
Iba1 protein as previously described [23] and was a generous gift from Dr. John Portis.
For detection of astroglia, a polyclonal rabbit anti-GFAP antibody (DAKO Cytomation)
was used. For Iba1, antigen retrieval was undertaken using the standard CC1 protocol (cell
conditioning buffer containing tris-borate-EDTA, pH 8.0, ~ 44 min at 100 ◦C). Anti-Iba1
was used at a 1:2000 dilution and applied for 40 min at 37 ◦C. The secondary antibody was
biotinylated goat anti-rabbit IgG (Biogenex Ready-to-use Super Sensitive Rabbit Link) and
was applied for 40 min @ 37 ◦C. For GFAP staining antigen, retrieval was done using the
mild CC1 protocol (cell conditioning buffer containing tris-borate-EDTA, pH 8.0, ~12 min
at 100 ◦C). The anti-GFAP antibody was used at a dilution of 1:3500 in antibody dilution
buffer, applied for 16 min at 37 ◦C. The secondary antibody was the biotinylated goat
anti-rabbit IgG described above and was applied for 16 min at 37 ◦C. Detection for both
GFAP and Iba1 used a RedMap detection kit and hematoxylin counterstain. Slides for
all H&E- and IHC-stained tissues were scanned and photographed using Aperio eSlide
Manager and Imagescope software (Leica).

2.6. Prion IHC Scoring and Statistical Analysis

Coronal brain sections from the early time point experiments were analyzed for the
presence and intensity of PrPSc staining. Four regions of the brain were analyzed; the
striatum that included the needle track (nt) and point of inoculation, the thalamus at
a location approximately 3.2 mm caudal to the nt, the midbrain section containing the
substantia nigra at approximately 5 mm from the nt, and the rostral pons containing
the locus coeruleus about 7 mm caudal to the nt. The following intensity scores were
given: 0, no PrPSc; 1, weak positive, subtle deposition, only 1–10 focal deposits per
section; 2, positive > 10 deposits; 3, moderate positivity, patchy confluent distribution;
4, strong positive, nearly confluent PrPSc within the specific brain region. Any brain region
scoring ≥1 was considered positive for PrPSc. When the ratio of positive and negative
mice differed between mouse strains at a specific time point and brain region, p-values
were calculated using Fisher’s exact test and are provided in Table 1.

3. Results

3.1. The 22 L PrPSc Spreading Kinetics in B6 and Kif5c−/− Mice

To determine whether absence of the KIF5C motor would alter PrPSc spread in the
mouse brain, we compared spreading rates between Kif5c−/− and B6 mice. Mice were
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inoculated stereotactically in the striatum with a 0.5 µL volume of 22 L prion infected brain
homogenate. Following inoculation, mice were euthanized at 7, 25, 40 and 60 dpi to detect
new PrPSc deposition and monitor their spread. The time points selected cover early stages
of the disease when PrPSc deposition and spread was minimal but increasing steadily,
providing optimal times to observe differences between the experimental mice.

We first looked for differences in spread at 7 dpi to determine if initial clearance
and spread from the point of inoculation differed between B6 and Kif5c−/− mice. Brains
were stained with H&E to facilitate location of the needle track and point of inoculation.
Once relevant needle track sections were identified, we performed IHC using monoclonal
anti-PrP antibody D13. In both B6 and Kif5c−/− mice, PrPSc was detected primarily in
areas immediately adjacent to the needle track (nt) (Figure 1). Newly formed PrPSc was
observed up to 300 µm from the nt in both B6 and Kif5c−/− mice. Concluding these PrPSc
deposits were new was based on experience with historical studies using numerous con-
trols, including normal brain homogenate inoculation and PrP null mice [24]. Pericellular
and perivascular PrPSc accumulation was also similar between the two strains of mice at
the interface between the corpus callosum and striatum and in focal areas of the striatum
near the nt tip (Figure 1). Three other coronal sections at locations distant from the striatum
were also analyzed. These three regions, at increasing distances from the nt, included
coronal sections to capture the thalamus, midbrain including the substantia nigra and
rostral pons, which are regions known for early PrPSc deposition (Figure 2). At 7 dpi,
PrPSc accumulation was not observed at any of these locations in either B6 or in Kif5c−/−

mice (Table 1). This finding was not surprising based on previous work following early
prion spread [24]. This suggested that screening these more distal areas at later times could
indicate differences in spreading kinetics between Kif5c−/− and B6 mice.
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Figure 1. PrPSc staining of 22 L scrapie 7 days post-inoculation. IHC using anti-PrP antibody D13 was performed on 
coronal sections containing the needle track (nt) from B6 mice (left) and Kif5c−/− mice (middle) and PrP null mice (right). 
(A,D) Overviews of the cerebral cortex (cx), corpus callosum (cc) and dorsal aspect of the striatum (st). The nt is shown 

Figure 1. PrPSc staining of 22 L scrapie 7 days post-inoculation. IHC using anti-PrP antibody D13 was performed on
coronal sections containing the needle track (nt) from B6 mice (left) and Kif5c−/− mice (middle) and PrP null mice (right).
(A,D) Overviews of the cerebral cortex (cx), corpus callosum (cc) and dorsal aspect of the striatum (st). The nt is shown with
a dashed line, red blood cells (rbc) can be seen in A from hemorrhage post inoculation. (B,C,E,F) Higher magnification of
the cx, cc and st showing PrPSc closely associated with the nt (blue arrowheads). Similar staining was observed in B6 and
Kif5c−/− mice. (G) No cellular prion protein (PrPC) staining is present with D13 IHC on PrP null mouse brain tissue, 7 days
post-inoculation. The scale bar in A is 100 µm and applies to panels A,D and G, the bar in C is 50 µm and applies to panels
B, C, E and F.
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Figure 2. Schematic of the sagittal brain depicting inoculation and coronal section locations. The ap-
proximate location of the nt in the striatum (dotted line) and the levels of the three coronal sections
(solid lines) analyzed for PrP deposition are shown. The midbrain sections included the substantia
nigra and the rostral pons sections included the locus coeruleus.

We completed similar analysis of 22 L PrPSc deposition in four coronal brain sections,
including the regions described above, from 3–5 prion-infected mice per mouse strain at
25, 40 and 60 dpi (Table 1). At 25 dpi, infection around the nt was clearly evident, but there
was no evidence of PrPSc spread to the contralateral side of the brain at the same level in
either B6 or Kif5c−/− mice (Figure 3A,B). However, subtle PrPSc deposits were observed
at the level of the thalamus, substantia nigra and locus coeruleus region of the pons in at
least some mice from each experimental group (Table 1 and Figure 3). At 25 dpi, all the
Kif5c−/− mice had detectable PrPSc in the midbrain section containing the substantia nigra,
but only 3 of 5 B6 mice were positive. In the brainstem, the majority of mice from both
strains were positive for PrPSc deposition (Table 1). In some instances, mice were positive
in the locus coeruleus but not in the substantia nigra. We believe this is likely due to the
limited sensitivity of our IHC assay, and that the midbrain in these mice contains PrPSc but
at a level below detection. When the ratio of positive and negative mice differed between
mouse strains for a specific brain region and time point, we tested the significance using
Fisher’s exact test. No significant differences in the spread of PrPSc were observed between
B6 and Kif5c−/− mice at 25 dpi (Table 1). The extent of infection at each brain region also
appeared equivalent between B6 and Kif5c−/− mice based on subjective scoring of PrPSc
levels present (Table 1 and Figure 3). At 40 dpi (Table 1 and Figure 4), and 60 dpi (Table 1),
the levels of PrPSc deposition had increased substantially in all the sections examined
in both B6 and Kif5c−/− mice. PrPSc staining was also first detected in the contralateral
cerebral cortex of both B6 and Kif5c−/− mice at 40 dpi (Figure 4A,B).
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Figure 3. PrPSc staining of mouse brains 25 days post 22 L scrapie inoculation. IHC using anti-PrP
antibody D13 was performed on coronal sections from four areas. A representative B6 mouse is shown
on the left side, and a Kif5c−/− mouse on the right. (A,B) Coronal sections including the striatum.
The nt is depicted with a blue box. The insets show higher magnification of the cerebral cortex with
normal PrPC staining. (C,D) Coronal sections through the thalamus. The black oval depicts the
approximate borders of the thalamus and the high magnification insets show focal PrPSc staining
(blue arrowheads). (E,F) Midbrain sections including the substantia nigra (black ovals). Insets show
higher magnification and PrPSc present in the substantia nigra. (G,H) Rostral pons sections and
higher magnification insets showing subtle PrPSc. The scale bar in A is 1 mm and applies to all the
large panels. The scale bar in the inset within panel A is 50 µm and applies to all the insets.
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Figure 4. PrPSc staining of mouse brains 40 days post 22 L scrapie inoculation. IHC using anti-PrP antibody D13 was performed
on coronal sections from four areas. A representative B6 mouse is shown on the left side, and a Kif5c−/− mouse on the right.
(A,B) Coronal sections including the striatum. The nt is depicted with a blue box. The insets show higher magnification of the
cerebral cortex with subtle PrPSc staining (blue arrowheads). (C,D) Coronal sections through the thalamus. The black oval
depicts the approximate borders of the thalamus and the high magnification insets show focal PrPSc staining. (E,F) Midbrain
sections including the substantia nigra (black ovals). Insets show higher magnification and PrPSc present in the substantia
nigra. (G,H) Rostral pons sections and higher magnification insets showing PrPSc. The scale bar in B is 1 mm and applies to all
the large panels. The scale bar in the inset within panel B is 50 µm and applies to all the insets.

3.2. Stereotactic Kinetics of ME7 Scrapie at 40 Days Post-Inoculation (dpi)

Next, we tested whether the findings with 22 L would be mirrored by ME7, a strain
of mouse adapted scrapie that is more closely associated with neurons than 22 L [19].
Previously, we have reported that the early disease tempo of ME7 was much slower than
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22 L and ME7 PrPSc was barely detectable in thalamus at 40 dpi [19]. Since comparisons
of spreading tempo would be most accurate when PrPSc is near the limit of detection,
we compared stereotactically inoculated Kif5c−/− and B6 mice at 40 dpi. Mice were eutha-
nized and coronal sections through the thalamus, substantia nigra and pons were analyzed
by IHC for PrPSc using anti-PrP antibody D13. At the level of the thalamus, subtle PrPSc
deposits were present in both Kif5c−/− and B6 mice (Figure 5A,B). The coronal sections
that included the substantia nigra were negative in four B6 mice whereas three of five
Kif5c−/− mice had detectable PrPSc in the substantia nigra, however the differences were
not statistically significant (p = 0.17; Table 1). More caudally in the brain, perineuronal
PrPSc deposition was observed in the rostral pons of about half of all the mice tested from
both groups (Figure 5E,F and Table 1). Collectively the ME7 infection data suggested no
difference in early spreading kinetics between Kif5c−/− and B6 mice.
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Figure 5. PrPSc staining of mouse brains 40 days post ME7 scrapie inoculation. IHC using anti-PrP antibody D13 was
performed on coronal sections from three areas. A representative B6 mouse is shown on the left side, and a Kif5c−/− mouse
on the right. (A,B) Coronal sections through the thalamus. The black oval depicts the approximate borders of the thalamus
and the high magnification insets show very subtle, focal PrPSc staining (blue arrowheads). (C,D) Midbrain sections
including the substantia nigra (black ovals). Insets show higher magnification, no PrPSc was observed in the mice shown.
(E,F) Rostral pons sections and higher magnification insets showing perineuronal PrPSc. The scale bar in B is 1 mm and
applies to all the large panels. The scale bar in the inset within panel B is 50 µm and applies to all the insets.
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3.3. 22 L Scrapie-Infected Kif5c−/− and B6 Mouse Survival Curve and Neuropathology

We infected Kif5c−/− and B6 mice with 22 L scrapie and allowed them to reach
terminal disease to determine whether absence of the KIF5C motor could alter survival
times, neuropathology or the distribution of PrPSc in brain at the end stage of disease.
Mice were infected using the same targeted inoculation method into the striatum with
a small volume of concentrated 22 L to minimize artificial spread or inconsistency in
inoculation location. Following inoculation, mice were observed by personnel blinded
to the mouse genotype for onset of clinical signs and mice were euthanized when they
developed consistent, advanced clinical signs. No differences were observed in survival
times of B6 or Kif5c−/− mice (Figure 6). IHC for PrPSc distribution (anti-PrP antibody
D13), microgliosis (anti-Iba1), astrogliosis (anti-GFAP) and neuropathology (H&E) was
performed on five brains per experimental group. No differences in PrPSc amount or
distribution were found (Figure 7A–D), nor was the level of gliosis altered between terminal
groups (Figure 7E,F,H,I). Spongiform degeneration severity and distribution also appeared
consistent between Kif5c−/− and B6 mice (Figure 7G,J).
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Figure 6. Survival curve of B6 and Kif5c−/− mice following 22 L scrapie infection. Twelve mice
of each strain were inoculated stereotactically in the striatum with 0.5 µL of 10% 22 L scrapie
brain homogenate. Mice were euthanized when advanced signs of terminal disease were present.
Black squares indicate Kif5c−/− mice, black circles indicate B6 mice. The mean ± standard deviation
(SD) for each strain are shown adjacent to the legend. Statistical analysis of the survival curve using
the Log-rank (Mantel–Cox) test indicated no difference (p = 0.3152).
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Figure 7. PrPSc deposition and neuropathology in brain collected from terminally sick 22 L-infected B6 and Kif5c−/− mice
at 129 dpi. A representative B6 mouse is shown on the left side, and a Kif5c−/− mouse on the right. (A,B) IHC using
anti-PrP antibody D13 (brown) performed on sagittal brain sections. PrPSc is widely distributed in both strains of mice.
The black rectangle indicates the approximate area of thalamus shown at higher magnification in panels C–J. (C,D) High
magnification D13 IHC. (E,H) Anti-Iba1 IHC showing activated microglia in thalamus. (F,I) Anti-GFAP IHC showing
astrocytosis. (G,J) Hematoxylin and eosin (H&E) staining demonstrating spongiform lesions. No differences were observed
in the distribution or amount of PrPSc, gliosis or spongiform degeneration between the two mouse strains. The scale bar in
A is 1 mm and applies to panels A and B. The scale bar in J is 50 µm and applies to panels C–J.

4. Discussion

Scrapie prions are known to follow neuronal pathways from sites of injection or
ingestion to various target areas in the nervous system [25]. In our experiments we tested
whether deletion of the molecular motor, KIF5C, would alter the tempo of scrapie spread
and pathogenesis. KIF5C was selected for our study since it had been previously identified
as one of the primary anterograde motors involved in the transport of PrPC vesicles in
axons of hippocampal neurons [17]. Our targeted, stereotactic inoculation method provided
a consistent and reproducible infection model to closely follow prion spread at early time
points post-inoculation and allowed for relevant survival time comparisons. Our results
showed that the absence of KIF5C in Kif5c−/− mice did not result in delayed long-distance
spread of PrPSc in either 22 L or ME7 mouse adapted scrapie infections. While our data do
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not show that the tempo of PrPSc infection is altered in B6 versus Kif5c−/− mice within our
experimental paradigm, some caveats to our design are important to note.

First, the distribution of KIF5C in brain is not uniform, as this motor has been shown to
be differentially expressed throughout the nervous system in subsets of neurons [26] and the
Allen Mouse Brain Atlas 2004 (http://mouse.brain-map.org/experiment/show/74511818
(accessed on 19 May 2021)). Thus, it is possible that differences in axonal transport via
KIF5C might be revealed in localized areas of the brain and more focused inoculation
experiments would be necessary to address this possibility. Second, it is possible that
kinesin motors other than KIF5C are involved in PrP transport. These could include
kinesin-1B (KIF5B), which has also been implicated in PrPC vesicle movement [17]. Thus,
this kinesin-1 motor redundancy could mask differences in PrPSc spread. Third, the PrPSc
might spread via interstitial brain fluid (ISF), CSF, blood or lymph. These types of spread
are usually slower than the spread seen in typical prion diseases and do not follow neuro-
anatomical pathways [25]. However, if these pathways contribute to PrPSc spread, it is
conceivable that a putative role of kinesin-1 in the transport of PrPSc within axons could
be obscured by these other routes. Fourth, PrPSc has also been postulated to spread
along neurons by a domino effect involving repeated conversion of membrane-anchored
PrP [27,28]. Moreover, during conversion, small oligomeric PrPSc are created [29,30],
and these could spread by kinesin-mediated axonal transport but go undetected with
the resolution used in our assays. Fifth, lysosomes, exosomes, tunneling nanotubes,
microsomes and extracellular vesicles have also been hypothesized as routes of spread
for PrPSc [1,31]. A final consideration to explain our equivalent observation of early
PrPSc deposition in the thalamus, substantia nigra and pons is the fact that the neuronal
interconnectivity in the brain is extremely complex, with abundant crosstalk. In addition
to receiving input from the striatum, the intralaminar nuclei of the thalamus, substantia
nigra pars compacta and pedunculopontine nucleus of the pons also project neurons to
the striatum, making it possible that retrograde transport in these neurons could have
transported the PrPSc seen in our study. More definitive experiments need to be conducted
to conclude whether neuronal versus non-neuronal pathways are responsible for the net
spread of PrPSc.

Three other groups have tested whether alterations in axonal transport mechanisms
can alter scrapie incubation periods. Hafezparast et al. studied mouse scrapie infection in
a Loa mouse that carries a point mutation in the heavy chain subunit of cytoplasmic dynein
resulting in impaired fast retrograde transport in spinal cord motor neurons [32]. Loa mice
infected with scrapie strain RML by either peripheral or intracerebral routes did not differ
in scrapie incubation periods from non-mutant control mice. Their results showed that
dynein, a molecular motor responsible for retrograde transport, was not critical for spread
of scrapie infection in peripheral nerves. Kunzi et al. took a more global approach to axonal
transport by studying RML scrapie prion infection in mice that overexpressed 4-repeat
human tau [33]. The tau-overexpressing mice had impaired anterograde and retrograde
fast axonal transport, although the mechanism causing the impairment was not fully
understood. Following inoculation of the sciatic nerve, no differences were seen in scrapie
incubation periods compared to non-mutant controls. Heisler et al. identified muskelin
as a key adapter protein that could complex with either dynein or KIF5C and coordinate
directional transport [18]. Depletion of muskelin altered PrPC vesicle transportation
resulting in less PrPC degradation by lysosomes and an increase in PrPC transport to
the plasma membrane. When muskelin-deficient mice were infected with RML scrapie,
the mice succumbed to disease much faster, likely due to decreased PrPSc degradation
and increased vesicle delivery to the plasma membrane. While these data do not directly
implicate KIF5C as a transporter of PrPSc, the indirect evidence that PrPSc is likely also
transported by molecular motors is compelling. However, the Hafezparast and Kunzi
studies and our current work suggest that alterations in prion spread and pathogenesis are
not detectable when kinesin and dynein are mutated or deleted in mice.

http://mouse.brain-map.org/experiment/show/74511818
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The failure to slow the tempo of prion spread in our current experiments and those
of others might merely reflect the lack of detailed knowledge of the possible transport
mechanisms available for prion aggregates in these rather crude in vivo models. Alter-
natively, PrPSc may use molecular motors to move within the axon, but the rate-limiting
step for overall PrPSc pathogenesis could occur at a different location, such as the synapse,
where an entirely different mechanism would be required for spread and uptake of PrPSc.
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