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Abstract

Understanding social organization is fundamental for the analysis of animal societies. In this

study, animal single-file movement data—serialized order movements generated by simple

bottom-up rules of collective movements—are informative and effective observations for the

reconstruction of animal social structures using agent-based models. For simulation, artifi-

cial 2-dimensional spatial distributions were prepared with the simple assumption of clus-

tered structures of a group. Animals in the group are either independent or dependent

agents. Independent agents distribute spatially independently each one another, while

dependent agents distribute depending on the distribution of independent agents. Artificial

agent spatial distributions aim to represent clustered structures of agent locations—a cou-

pling of “core” or “keystone” subjects and “subordinate” or “follower” subjects. Collective

movements were simulated following two simple rules, 1) initiators of the movement are ran-

domly chosen, and 2) the next moving agent is always the nearest neighbor of the last mov-

ing agents, generating “single-file movement” data. Finally, social networks were visualized,

and clustered structures reconstructed using a recent major social network analysis (SNA)

algorithm, the Louvain algorithm, for rapid unfolding of communities in large networks. Simu-

lations revealed possible reconstruction of clustered social structures using relatively minor

observations of single-file movement, suggesting possible application of single-file move-

ment observations for SNA use in field investigations of wild animals.

Introduction

Identifying latent structures underlying animal social organization is fundamental in animal

ecology [1], as well as in the social sciences [2]. In order to infer the biological mechanisms

underlying the emergence of complex animal societies, researchers have traditionally recorded

animal social data in the multiple dimensions of animal societies; for example, spatial distances
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among group members, social relationships (male–female or mother–offspring relationships),

and movements based on group decision making.

The recent update of computational models for social network analysis (SNA) enables

quantitative evaluation of complex processes of social networks based using big data. The basic

framework of SNA envisions multiple nodes as animals, viruses, people, or any other agents

within the network and at its edges as a dyadic relation mathematically defined between the

two nodes (e.g., [3–5]). The SNA aims to statistically link network structures with bottom-up

rules defining dyadic relations, e.g., affiliations, friendships, proximities, co-occurrences, fol-

lower/followee, signal sender/receiver, or communications [6]. SNA provides a modern pow-

erful interface for visualizing complex biological networks.

One major biological interest for SNA is statistical approximations of modular, clustered or

hierarchical structures embedded in animal social groups [1, 7]. Doubtless, kinship is a basic

concept in the theory of the socioecology (for a classical kickoff, e.g., [8]). A mother invests

effort in her offspring, mother and offspring generally maintain proximity, and degrees of the

social bonding are reflected by relatedness [9, 10]. Based on the cumulative effects of such

relatedness, social structures are determined by additional social relations, such as male-female

sexual interactions and male-male competition [11, 12]. Consequently, a wide variety of social

roles in the animal group are recognized, and multi-layered clustered structures of the group

emerge [1, 13–15]. Some metrics commonly implemented in the modern SNAs provide statis-

tical indices for modularity, centrality or cohesiveness (e.g., [16]), and have been applied to

actual observational data of animals.

For the practical applications of SNA to observational data, dyadic social interactive

behaviors or distance-based proximities have been commonly used in ecological analyses of

animal societies [3, 17]. Allogrooming is a typical example of dyadic social interaction that is

widely observed in social mammals. Allogrooming is an altruistic behavior and an appropri-

ate behavioral metric for evaluating affiliative interactions (e.g., [18–20]). Likewise, agonistic

interactions, where dominant animals show aggression toward subordinate animals, are also

interpretable and countable behaviors that can be used to characterize dominance hierar-

chies (e.g., [21–23]). Generally, in the case of dyadic social interactions, researchers calculate

the occurrence frequencies of dyadic events using an observational rule; for example, count-

ing the grooming occurrences and recording the identity of the groomer and groomee in a

specific observational session. These data obtained for social interactions can be used to con-

struct matrices of social relationship strength by scoring or weighting the obtained data of

dyadic relationships [17]. However, despite the interpretable advantages of social relation-

ships, there are certain disadvantages associated with such data. Behavioral-based metrics

such as grooming or fighting are generally unsuitable for the automation of data acquisition

or evaluation. Currently, at least, researchers must record animal behaviors via direct obser-

vation or video recording for data analysis. Additional disadvantages are the “specializa-

tions” of social behaviors; for example, grooming might not always be observed in insects, or

we may have little knowledge regarding the agonistic interactions among some animals,

thereby limiting the analysis. In contrast, distance-based data lack contextual information

and are not perfectly linked to social relationships [24]. In the case of distance-based prox-

imities, inter-individual distances are recorded using a regular cycle of sampling rates (e.g.,

recording the distance at 5-min intervals), and proximities are evaluated. Subsequently, a

matrix of social relationships is generated in a similar manner, scoring or weighting the

proximity. Given that close proximity is assumed to indicate an affiliative relationship, the

thresholds of the specific distance defining the social “association” can be used to generate

binary data (i.e., association or isolation), and an adjacency matrix is generated from a sum-

mation of the binary data [17]. These data are generally accepted to indirectly reflect social
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affiliations [25]. Affiliated individuals may maintain proximity as typically seen in mother-

offspring pairs. The recent advanced tracking methods using high-precision GPS (e.g., [26,

27]) or Bluetooth beacons (e.g., [28]) have strongly influenced location-based proximity

metrics due to dramatic expansion of data for interactions among “trackable” animals. Real-

time distance-based proximities among all animal agents empirically reveal core mecha-

nisms underlying collective movement emergencies. Simultaneous tracking of multiple ani-

mals using wearable tags is technologically possible. However, perfect tracking of suitable

numbers of animals in groups/units for analyses of collective movement are still limited to

laboratory-based animals (e.g., [28, 29]) or capturable wild animals [30–32]. Thus, a key ana-

lytical step for SNA is selection of appropriate data, which researchers record massively, eas-

ily, reliably and precisely.

The main objectives of this study were (1) to propose a novel approach for obtaining

observable data that has not been systematically applied in the estimation of animal social

organization, and (2) to provide methodological validation for the proposed approach. The

first objective is based on practicality, particularly with respect to those studying wild animals.

Dyadic social interactive behaviors or distance-based proximities have been a golden standard

used to infer animal social organizations, as mentioned above; however, those studying animal

behavior often experience difficulty in obtaining large amounts of high-quality data for such

dyadic social interactions or spatial proximity in wild animals. For example, it is extremely dif-

ficult to monitor complete behavioral activities, even if wearable sensors are available. Simi-

larly, in most cases, experimental manipulations, such as artificial control of specific individual

movements, are not possible for wild animals (for a discussion of the methodological issues,

see [17]). Accordingly, researchers invariably search for alternative promising types of data,

together with technological updates. For the generalized application of novel types of data,

empirical evidence that can be used to validate the approaches is necessary, which could partly

be achieved using numerical simulations.

In this study, another kind of testable data for the SNA is proposed, that is, “animal single-

file movement” generated by bottom-up rules in the theory of collective movements. This

topic is currently of great interest in animal ecology (for a recent review, e.g., [33]). Typically

in fish schools, bird flocks, insect swarms, or ungulate herds, large numbers of individual

agents show highly-coordinated collective movements [34, 35]. Theoretically, collective move-

ments do not rely on decision-making of specific individuals, e.g., a “leader”, but emerge in a

bottom-up manner such as iterated interactions between animals, either directly (e.g. via visual

cues) or indirectly (e.g. via trail formation).

Animal single-file movement, defined as serially ordered patterns of animals that are

indirectly determined by degrees of inter-agent relations, is a promising target for data col-

lection for linking SNA linking with recent discussions of collective movement by social ani-

mals. First, single-file movements are observable in many free-ranging animal species.

Classically, social animals moving in single file provided an excellent opportunity to count

group members inhabiting dense forests with poor visibility, and further to infer social

structures. Extensive historical fieldwork reveals that such events provide information on

latent key factors underlying animal social organizations, e.g., dominance hierarchy [36, 37],

kin relationships [38], and physiological status, such as breeding cycle [39, 40]. Additionally,

due to the recent human imposed threats such as roads, animals are often forced into single-

file formation to cross risky or dangerous places. Such an aspect of socio-spatial organization

under highly risky situations has also been analyzed in meerkat [41] and elephant [42]. In

fact, recent studies focusing on single-file movement and social system structure have exam-

ined several animal taxa, e.g., wolves, Canis lupus: [36]; zebra, Equus burchellii: [39], buffalo,

Syncems cuffer: [40], chimpanzee, Pan troglodytes: [43], mandrill,Mandrillus sphinx: [44]
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and spider monkey, Ateles geoffroyi: [45]. Second, animal single-file movement can be

recorded without capture and release for attachment of location tags, simply by video-

recording (e.g., camera-trappings). This advantage for studying collective movement avoids

use of GPS collars that are a burden for free-ranging animals, and most cannot be used for

threatened and endangered species [46]. Also, single-file movement is naturally observed

even in zebra heading to water holes [39] or in wolves through snow [47]. Anywhere such

single-file movements are often observable recently developed camera-trapping techniques

[48] would enable collection of a valuable data set. Further, where animal movement is con-

trollable in semi-free range conditions such as narrow gateways to feeders and water,

another opportunity exists. Such single-file movement has been recorded for sheep, Ovis
aries: [37]. Third, serial order patterns governed by collective movements allow behavioral

ecologists to examine individual-based observation essential for documentation and mea-

surement of animal behavior. Fourth, the methodological advantages listed above compen-

sate for the disadvantages of other metrics commonly used in the previous studies, such as

dyadic social interactive behaviors or distance-based proximities.

This study aimed to determine if movement order in single-file movements are informative

and effective observations for the reconstruction of animal social structures using an agent-

based computational simulation model, e.g., [49, 50]. An initial artificial 2-dimensional spatial

distribution was developed using the simple assumption of clustered group structures. Animal

agents in a group are composed of independent and dependent agents. Independent agents

distribute spatially independently each other, while dependent agents distribute depending

movements of independent agents. The artificial spatial distributions aim to represent clus-

tered structures of agent locations—a coupling of “core” or “keystone” subjects and “subordi-

nate” or “follower” subjects. Collective movements were governed by two simple rules, 1)

initiators of the movement are randomly chosen, and 2) the next moving agent is always the

nearest neighbor of the last moving agents. These bottom-up rules allowed simulation of “sin-

gle-file movement” data. Finally, we visualized social networks and reconstructed clustered

structures using a recent major SNA algorithm, the Louvain algorithm, for rapid unfolding of

communities in large networks [51]. The current idea—that artificial agents are initially gener-

ated, collective movements are produced, and collective movements are used to evaluate social

networks—is similar to a previous computer experiment [52]. The current simulation is more

generalized. Parameter assumptions are minimum and used mixed normal distributions.

Parameter conditions were sought where single-file movement data work well for reconstruc-

tion of the latent clustered structures and further discuss possibilities for practical applications

in field investigations of wild animal societies.

Materials and methods

The simulations described below can be used to examine whether individual-by-individual

serially ordered movements, i.e., “animal single-file movements,” provide sufficient infor-

mation to reconstruct the clustered organization that is typically believed to exist in animal

social groups, such as those of primates. Our simulations adopt agent-based models and

involve four main steps: (1) animal agents are distributed in two-dimensional space with

latent cluster organizations; (2) these generated agents are serially aligned following a simple

collective movement rule (generating the “single-file movements”); (3) the social network

structure is computed using an association index defined by serial orders of animal single-

file movement; and (4) the cluster organization of the generated social network is evaluated.

Fig 1 shows a schematic representation of the simulation process. The details of each step

are described below.
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Distributing animals (1st step)

We initially assume that the animal group of interest consists of nI subgroups. Each of these

subgroups has a unique independent animal agent (independenter), who moves independently

of any other agent, and nD dependent animal agents (depender), the spatial locations of which

are invariably dependent on the location of the independenter of the subgroup. For simplicity,

the number nD of dependers in subgroups is assumed to be the same for all subgroups. Accord-

ingly, the total number of animal agents is N = nI(nD + 1). We refer to the independenter of

the i-th subgroup as the i-th independenter.

The locations of independenters are independently generated from the bivariate Gaussian

distribution: the location of the i-th independenter in two-dimensional space is denoted by

xi 2 R
2

and is distributed as

xi � N ð0;SIÞ ð1Þ

for i 2 {1, � � �nI}. Here SI≔
�
s2
I 0

0 s2
I

�
is the covariance matrix of the distribution (σI is the

standard deviation of the independenter). The mean of the distribution is set to 0, the origin of

the plane.

Similarly, the locations of dependers are generated from the bivariate Gaussian distribution,

but with centers dependent on the locations of independenters. The location of the j-th

Fig 1. Schematic illustration of the simulation process. In this example, the parameters were set as follows: nI = 5, nD = 5, σI =

10, σD = 1, nexp = 10. The simulation started from the spatial distributions of agents generated from one latent state of social group

organization, determined by parameters of the mixed Gaussian processes, nI, nD, σI, σD (the two top layers). The “single-file

movement” data sets were then generated using the process described in the section on ordered alignment of agents. The vertical

chains of the 30 circles represent single-file movement (the number of each circle is the agent id). Adjacency matrices Gk for k 2
{1, 2, . . .10} were generated from orders in the single-file movement data set, and were convolved to a single adjacency matrix G,

which was passed to the social network analysis. Finally, a social network graph was produced, with clustering of the local

community (bottom graph). This flow is a single simulation process, which is run 1000 times.

https://doi.org/10.1371/journal.pone.0243173.g001
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depender for the i-th subgroup is denoted by xk where k = nI + (i × j) and are distributed as

xk ¼ xnIþði�jÞ � N ðxi;SDÞ; ð2Þ

for i 2 {1, � � �nI} and j 2 {1, � � �nD}. Here SD≔
�
s2
D 0

0 s2
D

�
is the covariance matrix of the dis-

tribution (σD is the standard deviation of the depender). The mean parameters are set to each

independenter’s locations, xi. For simplicity, we always assume that σD = 1.

Consequently, the spatial distributions of N animal agents in the plane is dependent on

three parameters, nI, nD, and σI. Fig 2 shows the sample spatial distribution with the following

parameter values: nI = 10, nD = 5, and σI = 100.0.

Serialization (2nd step)

Subsequently, “animal single-file movement,” the ordered alignment set of animal agents, is

generated assuming a simple rule of collective movements defined by the mutual distance

between agents. The process is iterative: (1) the agent who first moves (initiator) is randomly

selected; (2) in each iteration step, the nearest agent to the last moved agent is selected to move

next. In this iterative process, the order of the single-file movement is defined as the order of

movement.

More specifically, the initiator y1 is randomly selected from a multi-set of N agents

A1 ¼ fx1; . . . ; xNg: ð3Þ

The next moving agent y2 is selected by

y
2
¼ arg min

xk2A2

ky
1
� xkk where A2 ¼ A1 n fy1

g: ð4Þ

Fig 2. Example of the agent spatial distribution generated with model parameters, nI = 10, nD = 5, σI = 100.0.

https://doi.org/10.1371/journal.pone.0243173.g002
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Similarly, the i-th moving agent is determined by

yi ¼ arg min
xk2Ai

kyi� 1
� xkk where Ai ¼ Ai� 1 n fyi� 1

g: ð5Þ

Here, k�k represents the Euclidean distance on the plane. The process of agent selection is

repeated N − 1 times. Consequently, a totally ordered set is generated:

C≔ fy
1
; . . . ; yNg; ð6Þ

which we refer to as “animal single-file movement.” Note that the process of generating C
depends on the three parameters, nI, nD, and σI.

We repeat the process of generating the distribution of animals (1st step) and constructing

the animal single-file movement (2nd step) nexp times. Here, we implicitly refer to nexp, the

number of observation opportunities for single-file movement in the field. In the following

step, we therefore assume nexp takes an experimentally feasible value, say, nexp = 10, or 30.

Finally, we denote the set of nexp single-file movements by C≔ fC1; . . . ;Cnexpg.

Generating a social network (3rd step)

In this step, we construct a weighted graph representing the social network structure of ani-

mals using the information of C.

The graph is defined by an N × N adjacency matrix G constructed from C as follows: First,

given an animal single-file movement C, we define an adjacency matrix G as follows:

G ¼

a11 � � � a1i � � � a1N

..

. . .
. ..

.

ai1 aii aiN

..

. . .
. ..

.

aN1 � � � aNi � � � aNN

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð7Þ

where aij = aji is 1 if the agents xi and xj are adjacent in C, and 0 otherwise (by definition, all

diagonal elements are 0). The adjacency matrix G for C is defined as

G≔
Xnexp

k¼1

Gk ð8Þ

where Gk is the adjacency matrix for Ck, and is the k-th single-file movement in C.

For the implementation of this step, we use a recently widely used framework for social net-

work analysis, NetworkX (https://networkx.github.io/documentation/stable/index.html) in

python3 based on the from_numpy_matrix() method (https://networkx.github.io/

documentation/stable/reference/generated/networkx.convert_matrix.from_numpy_matrix.

html). We note that the parallel_edges = False option is set, and the entries in G are interpreted

as the weight of a single edge joining the vertices.

Clustering (4th step)

Finally, we run a graph clustering algorithm to examine whether the subgroup structure of ani-

mal agents can be reconstructed from G. For this purpose, we apply the Louvain algorithm,
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which is one of the greedy optimization algorithms of modularity. The algorithm is imple-

mented in the Python module community (or python-louvain on pypy) as its method

community.best_partition (see https://python-louvain.readthedocs.io/en/latest/api.

html). We denote the number of clusters in the result of the Louvain algorithm by neval. Fig 3

represents an example of a social network graph with clustering obtained using our procedure.

Evaluation of the method

Here, we describe our procedure for estimating the accuracy of the clustering we obtained. For

this purpose, we simply count the number of clusters obtained, neval, and compare this with

the “correct answer” and the number of subgroups nI. Namely, we consider the ratio r =

neval/nI and refer to this as the score of the cluster estimations. When r = 1, our procedure suc-

cessfully recovers the information of the number of clusters, whereas r> 1 or r< 1 implies an

overestimation or underestimation, respectively. For each combination of parameters nI 2 {1,

2, � � �20}, nD 2 {1, 2, � � �20}, nexp 2 {10, 30}, and σI 2 {1.0, 2.0, 5.0, 10.0, 100.0}, we run the entire

procedure 1000 times and compute the average �r of the score r. The result are discussed in Sec-

tion Experimental Results.

Remarks on the method

As described in section Experimental Results, the proposed method works reasonably well for

most of the selected parameter values. In this subsection, we attempt to explain why this is the

case by showing that the modularity of the “true” clustering is likely to be higher than that of

the clustering obtained by attaching two clusters of the true clustering together. Given that the

Louvain algorithm optimizes the modularity through a process of inductive amalgamation of

clusters, if the true clustering has this property, the algorithm can be expected to generate the

true clustering, which implies that the score r will be 1.

We begin by recalling the definition of modularity. Consider a weighted graph G with n
nodes defined by a symmetric n × n weighted adjacency matrix G = (aij) and a clustering of G
into mutually disjointed sets of nodes C1;C2; . . . ;CnI where nI is the number of clusters. The

modularity of this clustering is defined as

Q ¼
1

2M

Xn

i;j¼1

aij �
kikj
2M

� �

dðCðiÞ;CðjÞÞ ð9Þ

where ki and kj are the sum of the weights of edges from nodes i and j, respectively;M is the

sum of the weights of all edges in the graph; C(i) and C(j) are the clusters to which nodes i and

j belong, respectively, and δ is the Kronecker delta function. Thus, δ(C(i), C(j)) is 1 if i and j
belong to the same cluster but otherwise 0. Note that 2M = ∑i,j aij. For G construction in the

3rd step of our method, if an animal single-file movement has N − 1 edges,M = (N − 1) nexp

holds.

If we assume that fC1;C2; . . . ;CnIgbe the true clustering, that is, the clustering exactly

reflects the original subgroup structure of animals, and denote its modularity by Q, and then

consider a clustering fC1; . . . ;Cp [ Cq; . . . ;CnIgobtained from the true clustering by attaching

Cp and Cq together and denote its modularity by Q0, a direct calculation shows that

Q0 � Q ¼
m
M
�
KpKq
2M2

ð10Þ

wherem is the sum of the weights for all edges from Cp to Cq; Kp and Kq are the sum of the

weights for all edges from Cp and Cq, respectively. We want to show that this quantity is
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Fig 3. Example of a social network graph clustered using the Louvain algorithm. This graph was generated from the spacing

patterns of animal agents shown in Fig 2.

https://doi.org/10.1371/journal.pone.0243173.g003
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negative; that is,

m <
KpKq
2M

: ð11Þ

For simplicity, we assume that in each single-file movement, no mixture of subgroupsoc-

curs; that is, the first nD + 1 agents in the movement belong to the same subgroup, and the

next nD + 1 belongs to another one, and so on. This is more or less equivalent to assuming that

σI is very large, and therefore each each subgroup is completely separated. In this case, (11) can

be reasoned as follows: A single-file movement assigns nD edges to the first and last clusters

and nD + 1 edges to others. Therefore, Kp, Kq� nDnexp follows. Hence, a sufficient condition

for (11) to hold is as follows:

m <
ðnDnexpÞ

2

2M
¼

n2
Dnexp

2ðnIðnD þ 1Þ � 1Þ
¼
nD
2
�

nD
ðnD þ 1Þ � 1=nI

�
nexp
nI
: ð12Þ

In contrast, the number of edges between agents that belong to different subgroups is nI − 1

for each single-file movement. Therefore, the sum of the weights for edges in G connecting dif-

ferent subgroups is (nI − 1) nexp. Thus, the expected value ofm is

ðnI � 1Þ nexp
nIðnI � 1Þ

¼
nexp
nI

ð13Þ

provided that all the ordering of subgroups in single-file movements is equally probable. The

right-hand side of (12) can now be understood as the expected value ofmmultiplied by

nD
2
�

nD
ðnD þ 1Þ � 1=nI

; ð14Þ

which is approximately nD/2 in our parameter settings. This implies that, when nexp is suffi-

ciently large, (12) is very likely to hold for all values of p, q.

Experimental results

Fig 4 is the contour plots of the calculated average score �r for some selected sets of parameter

values. This suggests that the average score increases as parameters σI and nexp increases, just

as expected. It is also observed that the score decreases as nI, the numbers of the independen-

ter, increases. In contrast, it increases as nD, the numbers of the depender, increases. In sum-

mary, scores will be better with large σI, nexp, nD and small nI (expect for the case of nI = 1). In

the cases of nexp = 30 and σI� 5, scores were often perfect, i.e., �r � 1. Thus, cluster size estima-

tions were often successful, if animal single-file movements were observed 30 times.

Discussion

Result interpretations

Simulations with agent-based models suggest that recent implementation of a community clus-

tering algorithm in the SNA could well estimate latent community structures generated by

mixed Gaussian distributions under several parameter conditions. First, SD ratio parameters,
sI
sD

,

likely influence performance for identification of clustering structures. The greater these ratios

are, the more precise the estimations of cluster size obtained. This result is reasonable since the

contrast of the modular structure becomes clear (see Fig 2 as an example of the σI = 100). Like-

wise, the more iterations, the more accurate scores of clusters size became. This result is also not

surprising. An important result is the effect of numbers of dependers for the cluster estimation.
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Fig 4. Contour plots for average performance scores for cluster estimation, �r in 1000-steps simulations. Areas

near the score of 1.0 represents areas of parameter combinations where perfect estimation scores returned.

https://doi.org/10.1371/journal.pone.0243173.g004
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Results consistently indicate that greater numbers of dependers improved estimation perfor-

mance, at least within the range of parameter settings used in study simulations. Too many

dependerswould likely lead to overestimations of the cluster sizes, but such confusion occurred

only in the case of σI = 1, nexp = 10, and did not occur using most other parameter combinations.

An additional lesson from the simulations is an implication that appropriate numbers of the

independenters exist for better performance in cluster estimation. At least for parameter settings

of 1� nI� 30, a single-digit number, except for 1 and 2, likely shows better performance. In

summary, results suggested that SNA applications of the Louvain algorithm to single-file move-

ment data work well even when using only 30 iterations in simulations (nexp = 30), when 1) the

independenters range between around 3 and 10, 2) dependenters count is as large as reasonable,

and 3) SD ratios of independenter per dependenter are high.

Practical applications: Primate societies as a possible candidate

Looking back to observations of actual animal societies in reality, animals would fit with con-

ditions appropriate for fine reconstruction using the present method? A promising candidate,

for example, are primate societies.

Primates are middle to large mammals mainly inhabiting tropical forests and sometimes

adapting to dry savanna, temperate forests or cool-temperate climates [53]. Primates show a

large diversity of social systems [54], from simple monogamous to complex multi-level societies

that presumably emerged based on the ecological constrains, such as competition for food and

threats of predation, as discussed in successful ecological models, e.g., [55–57]. Their societies

are the most investigated animal society from both theoretical and empirical perspectives, and

the “social roles” or “social structure” have been commonly recognized under the ecological

constrains, e.g., an “alpha” subject, the most dominant social rank, or the kin-based clusters,

such as the female affiliative bonding [57, 58]. Thus, principles of primate social formation rely

on kin-based relationships and due to ecological constrains, group size is typically limited to

about 100 individuals, but mostly groups range from 2.5-50 individuals [59]. Group size and

structure, which are often consist of a few matrilineal clustered families and a few independent

males, seemingly match with the successful parameter conditions indicated in the simulations.

Another advantage of primates is methodological characteristics of primate behavioral ecol-

ogy. Primates are typically long-lived animals with slow life histories, and long-term studies that

have been ongoing continuously for approximately a decade or more, are relatively common

[60, 61]. Traditionally, primatologists have made individual long-term observations. Conse-

quently, all group members can be perfectly identified in both field and captive studies. Observa-

tions at road or river crossings—a suitable event for single-file movement—have been reported

in field observations for several primate species, e.g., chimpanzee [62], mandrill [44] and pro-

boscis monkeys [63]. Such events (single-file movement) would potentially happen frequently in

the field, though these observations may be used only for counting group members. Relevant

findings of simulations are that the SNA works well for only 30 iterations of the single-file obser-

vation, and such observations may well exist for well-studied primates. Given advantages in pri-

mate groups, applications of the present SNA to their single-file movement data can be

empirically tested soon. The quest to find the social structures of the primates is a fundamental

issue, studied by many pioneer primatologists. Thus, the proposed approach provides a novel

and empirical tool to analyze primate society, especially for their socio-spatial organization.

Next for the methodological generalizations

We must acknowledge that our proposed simulation approach has certain limitations. Firstly,

we examined only a very limited number of parameter assumptions regarding animal social
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organization. For example, the number of dependenter per independenter is always constant,

and the “clustering parameters,” represented by the SD ratio of
sI
sD

, were also assumed to be

constant for the dependenters and independenters. Moreover, the simulated single-file move-

ments were observed without any misidentification of the passing agents. However, it is often

difficult to reproduce the behavior of wild animals based on the strong and simple assump-

tions characterizing the present simulations. For methodological generalization, we must fur-

ther evaluate the simulated groups of the variable sets of the parameters, or a simulated case of

the single-file movement in which the identities of some agents are masked.

Ideally, the method should be validated using realistic animal data. As mentioned above,

camera trapping would be a promising interface to automatically collect data on single-file

movements. For primate researchers engaged in longitudinal field projects, animal identifica-

tion is possible by observing video clips obtained using camera traps.

Finally, we also acknowledge possible integration with other social network data in primate

societies. The output from the single-file movement-SNA is just one dimension of inference

for social structures. For a deep understanding of social organizations, investigation of animal

society with multidimensional views and data is needed. For example, genetic test of related-

ness is a direct evaluation of network patterns. Behavioral observations, e.g., traditional quanti-

tative grooming counts of the groomer-groomee or vocal exchanges of callers and responders,

are also direct metrics that reflect social networks. Gut bacterial flora of groups of individuals

was recently suggested as a possible candidate to elucidate the network structures of animal

society. Thus, access to many kinds of elemental data is available for predictions concerning

social networks. Together with comparisons among network structures reconstructed by dif-

ferent metrics, an ultimate understanding of fundamental mechanisms underlying the animal

society will eventually emergence.
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