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Highlights 

 The implementation of fever screening has become a common practice for preventing the spread 

of COVID-19.  

 This study proposed a trained model prediction using IR-measured facial feature temperatures to 

predict core body temperatures comparable to an FDA-approved product.  

 Five regression models were tested during the study.   

 This study suggests that IR temperature data could provide comparatively accurate core body 

temperature prediction for rapid mass screening of potential COVID cases using the linear regression 

model.  

 

Abstract 

With fever being one of the most prominent symptoms of COVID-19, the implementation of fever 

screening has become commonplace around the world to help mitigate the spread of the virus. Non-

contact methods of temperature screening, such as infrared (IR) forehead thermometers and thermal 

cameras, benefit by minimizing infection risk. However, the IR temperature measurements may not be 

reliably correlated with actual core body temperatures. This study proposed a trained model prediction 

using IR-measured facial feature temperatures to predict core body temperatures comparable to an FDA-

approved product. The reference core body temperatures were measured by a commercially available 

temperature monitoring system. Optimal inputs and training models were selected by the correlation 

between predicted and reference core body temperature. Five regression models were tested during the 

study. The linear regression model showed the lowest minimum-root-mean-square error (RSME) 

compared with reference temperatures. The temple and nose region of interest (ROI) were identified as 

optimal inputs. This study suggests that IR temperature data could provide comparatively accurate core 

body temperature prediction for rapid mass screening of potential COVID cases using the linear 

regression model. Using linear regression modeling, the non-contact temperature measurement could be 

comparable to the SpotOn system with a mean SD of ± 0.285 °C and MAE of 0.240 °C. 

Keywords 

: COVID-19, Core body temperature, Infrared thermography, Regression analysis  

1. Introduction 

 The measurement of body temperature is a vital diagnostic tool and is used by clinicians to assess 

patient treatment plans, even before minor procedures such as administering anti-inflammatories or 
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taking blood cultures and specimens [4]. An elevated body temperature is a key symptom indicating 

many bacterial and viral infections, including COVID-19, with 78 % of 24,410 confirmed adult cases 

presenting with a fever [5]. Moreover, with 17 % of cases being asymptomatic [3], temperature 

screening has become an integral part of the global efforts to slow the spread of the virus [7], along with 

handwashing, social distancing, and the wearing of face covers. There are many temperature 

measurement systems available to measure elevated body temperatures, such as esophageal [8] or rectal 

thermometers [1]. Meanwhile, some other measuring tools can provide a non-invasive way to measure 

core body temperature, such as the Bair Hugger Temperature Monitoring System (SpotOn, 3M 

Healthcare, St Paul, MN, USA) [9].  

Non-contact mass screening body temperature measurement methods have gained strong interest 

during the COVID-19 pandemic, as they offer rapid temperature measurements whilst reducing the risk 

of transmission between members of the public and those administering the screening [7,12,13,14,15,16, 

17, 18]. Two popular modalities currently used to screen temperatures, both using infrared (IR), include 

non-contact IR thermometers (NCITs) and IR thermography (IRT). Despite the benefits of these devices, 

they can only measure temperature as emitted IR radiation from the surface of the skin, which does not 

reliably correlate with core body temperature [19]. Compared to known accurate methods of core body 

temperature measurement, such as rectal thermometry [6], NCITs measure highly variable temperatures 

with lower accuracies than diagnostic standards [1,2]. It is also theorized that the optimal location of 

NCIT measurement, the forehead, is not ideal due to the numerous biological and environmental factors 

causing skin temperature variation [7]. IR thermography, although not clinically viable, is able to map 

skin surface temperatures across the face and neck. Previous studies have investigated the use of IRT 

[20, 21] to evaluate the effect of facial measurement location in temperature screening, suggesting 

different facial features and full-face maximum temperatures could provide better estimations of body 

temperature measurements than forehead measurements alone [10]. 

IR imaging cameras are not efficient for providing reliable temperature readings when not correctly 

calibrated. The FLIR C3 is a thermal camera with an accuracy of 2 °C but is not designed for medical 

use. Some previous works demonstrated a non-contact continuous body temperature measurement 

(CBTM) system based on a single thermal camera [11, 22]. A long-wave infrared (LWIR) camera sensor 

FLIR Lepton 2.5, was used with a breakout board to fetch sequential thermal images of subjects. The 

video data were analyzed with the proposed framework. At first, thermal face detection and tracking 

were used to locate the region of interest (ROI) in the facial part. Then, the raw value of body surface 

temperature was extracted from the determined ROI and passed through the calibrated formula to get the 

result. 

This study aims to fill the gap in non-contact core body temperature prediction by investigating the use 

of regression analysis in thermal image post-processing to improve body temperature measurement 

accuracy when using an IR thermal camera. Regression is a supervised machine learning technique that 

is normally used to predict continuous values. Compared with other machine learning algorithms, 

regression analysis directly indicated the strength of the relationship between dependent and independent 

variables. In this study, the independent variable is the core body temperature, and the dependent 

variable is the temperature of facial features. There are different types of regression: linear regression 

models, regression trees, support vector machines, ensembles of trees, and Gaussian Process regression.  
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Using previously collected temperature data, the optimal input variables based on different facial 

feature temperatures may be determined. With these inputs, the regression models were trained to 

predict reference body temperatures measured using the non-invasive 3M™ Bair Hugger™  

Temperature Monitoring System 370 (SpotOn, 3M Healthcare, St Paul, MN, USA) and comparatively 

assessed the models to find the optimal model for the data. With this methodology, the study aimed to 

calibrate the temperatures measured using IR thermography and improve their accuracy and repeatability 

in measuring body temperature. It was hypothesized that the predicted temperature is comparable to the 

body temperature recorded by SpotOn device. 

2. Materials and Methods 

The focus of our work was to improve the accuracy and repeatability of body temperature 

measurements using IR thermography. The aim of this investigation was to find regression models 

which, when input with certain facial feature temperatures measured in IR images, would predict core 

body temperature. This was completed using previously collected IR thermography and non-invasive 

core body temperature measurements. 

Environmental setup of original experiment and data collection  

In November 2020, IR temperature measurements of 119 non-febrile participants were taken using 

three different devices: an IR camera (FLIR C3, FLIR Systems, Inc., Wilsonville, OR, USA), a non-

contact IR forehead thermometer (NCIT) (JXB-182, Berrcom, Guangzhou, China), and a tympanic 

thermometer (Genius 3, Covidien, Dublin, Ireland). The NCIT was set to the ―body mode‖. The 

tympanic thermometer was set to the ―ear mode‖. NCITs and tympanic thermometers were used for 

measuring facial temperatures. A 3MTM Bair HuggerTM temperature monitoring system 370 (SpotOn, 3M 

Healthcare, St Paul, MN, USA) was used to measure the core body temperature. Since the SpotOn is a 

single-use consumable device, separate devices were used by subjects. During the procedure, a sensor is 

mounted on the patient’s forehead for measurement. In a few seconds’ time, the control unit senses 

contact with the patient. After around five minutes, when the temperature readings have equilibrated, the 

patient’s core body temperature is displayed on the monitor [23].  

Facial feature selection for regression analysis 

To assess the optimal facial feature location, maximum temperatures in established ROIs in each frame 

were also recorded. These ROIs included the eyes, nose, and mouth regions on the frontal plane and the 

Temple and Ear regions on the temple plane. The mean and the standard deviation (SD) of temperatures 

measured in each of these frames and ROIs are illustrated in Figure 1.  

(a) (b) 

  

(a) (b) 

  

Figure 1. Regions of interest (ROIs) with mean maximum temperatures ± SD (°C) extracted in post-

processing from the thermal images in the (a) frontal plane and the (b) temple plane 

 

(a) (b) 

  

Figure 1. Regions of interest (ROIs) with mean maximum temperatures ± SD (°C) extracted in post-

processing from the thermal images in the (a) frontal plane and the (b) temple plane 
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The overall maximum temperature of each participant was also measured and located, with 28.6 % (34 

out of 119) of participants registering the highest temperatures in the ROI for the eyes, 35.3 % (42 out of 

119) registering the highest temperatures in the ROI for the ear (23 out of 119), 7.6 % (9 out of 119) 

registering the highest temperatures in the ROI for the mouth, and 4.2 % (5 out of 119) registering the 

highest temperatures in the ROI for the temple (3 out of 119). The highest temperatures were recorded in 

24.4 % (29 out of 119) of participants outside of these ROIs, including along the neckline of clothes (20 

out of 119), the neck (4 out of 119), the jaw (3 out of 119), the cheek (1 out of 119), and the hairline (1 

out of 119). The maximum temperature overall for the eyes ROI was located at the inner canthus of (17 

out of 119) eyes. Each participant (n = 119) had three thermal images taken using the FLIR C3 thermal 

camera (FLIR, US): one in the frontal plane and two in the temple plane. Each of the thermal images 

was recorded according to parameters given in Table 1.  

Table 1: FLIR Tools parameters  

Parameter Name Parameter Description Parameter Values 

Distance  Distance between the camera and the participant 0.6 m 

Atmospheric 

Temperature 

Room Temperature was recorded by the thermometer probe prior to data 

acquisition of each participant 

Record range: 

19.6 ºC to 21.9 ºC 

Reflective 

Temperature 

Background temperature— assumed to be the same as atmospheric 

temperature 

Record range: 

19.6 ºC to 21.9 ºC 

Thermal tuning Adjustment of the level and span of the thermal aspect of the image to 

highlight regions with temperature within the desired range 

Maximum 

temperature: 39 ºC 

Minimum 

temperature: 30 ºC 

In addition to the maximum temperatures recorded in each participant’s ROIs mentioned above, three 

other maximum temperatures were considered as inputs for this study. These include the maximum 

temperature of the full face and neck located in each thermal image frame (frontal plane and temple 

plane) and the overall maximum temperature, which was the maximum temperature recorded for each 

participant out of the three thermal image frames.  

In total, ten IR thermograph temperature measurements were collected from each participant, with the 

exception of one participant who was wearing a headscarf and thus whose temples and ear temperatures 

could not be recorded. For this reason, this participant’s temperature measurements were excluded from 

the analyses.  

Selection of best testing data  

Since Pearson’s correlation coefficient is based on covariance, it is considered the best method of 

calculating the relationship between variables of interest. It is a statistical method that determines the 

statistical relationship between two or more variables. By using Jupyter Notebook, Pearson’s correlation 

coefficient method was used to calculate each feature’s correlation score with SpotOn temperature 

measurements. For over 120 subjects’ data, 90% of the data were chosen randomly, and Pearson’s 

correlation coefficient method was used to calculate each feature’s correlation score with SpotOn. This 

step was repeated ten times, and the mean of each feature correlation score was calculated. The four 

facial features with the four highest correlation scores were the temple, eyes, nose, and overall 

maximum. Moreover, for further verification, 100% of the data were used to calculate the correlation 
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score for each feature with SpotOn. Nevertheless, the same four features from the previous calculation 

were chosen. 

The features were subsequently paired with each other, as shown in Table 2. The Pearson correlation 

coefficient method was used again to compare the paired features according to the correlation score 

between each other. Because 100 % and 90 % of the subjects’ data were similar, all the data were then 

used to compare each set of paired features. Therefore, at this stage, sets of paired features with a 

correlation score of lower than 0.5 were chosen.  

Table 2: Paired features 

Primary Feature Secondary Feature 

temple nose 

temple eyes 

temple overall maximum 

nose overall maximum 

eyes overall maximum 

eyes none 

Selection of best model 

The four facial features with the highest correlation scores and three paired facial features with the 

lowest correlation scores were used in the model selection process. All data of these features were 

imported into MATLAB regression learner with k-fold Cross Validation where k = 5. The models 

trained included linear regression, regression trees, support vector machines, ensembles of trees, and 

gaussian process regression. According to the results, the model with the lowest minimum root-mean-

square error (RMSE) was chosen, as the roots must be taken into account when evaluating the model’s 

accuracy. Then features were trained by the model with the lowest RMSE. This step was repeated ten 

times, and the mean was calculated. Mean results were then compared according to SD, mean absolute 

error (MAE), and mean squared error (MSE). 
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Where     n is the total number of data points 

                   is the individual measurement of each facial feature (temple, eyes, nose, and overall 

maximum) 
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        is corresponding SpotOn temperature measurement of each facial feature (temple, eyes, 

nose, and overall maximum) 

                 ̅ is the mean value of measurement of each facial feature (temple, eyes, nose, and overall 

maximum) 

                 ̅ is the mean value of measurement of each facial feature (temple, eyes, nose, and overall 

maximum 

3. Results 

Identification of regression model inputs 

Compared with SpotOn temperatures, any facial feature or frame with a Pearson’s correlation 

coefficient greater than 0.3 was included as an input variable during regression model selection. Mean 

correlation coefficients calculated using 90% of the data randomly selected and repeated ten times 

(n=10) identified similar facial features and frames, including the temple, eyes, overall maximum, and 

nose, with correlation coefficients of 0.364, 0.362, 0.338, and 0.321, respectively (Figure 2). 

 

When calculated with 100 % data, temple, eyes, overall maximum, and nose ROI have correlation 

coefficients of 0.364, 0.364, 0.342, and 0.314, respectively (Figure 3). Therefore, the input variables for 

regression model selection are temple, eyes, overall maximum, and nose. 

 

The Pearson correlation coefficient method was used again to compare each pair according to their 

correlation to each other. In this step, we considered that the lower the correlation between the paired 

 

Figure 2. Pearson's correlation coefficient between temperature measurements of SpotOn and IR thermograph 

facial features and frames using 100% of the data. * Indicates coefficients greater than 0.3. 
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features, the better the pair. This is because if the pair were to have a high correlation score, they would 

have many similar numbers in the dataset. Temple — nose, nose — overall maximum, and temple — 

eyes had the three lowest correlation scores of 0.378, 0.470, and 0.568, respectively (Figure 4). 

 

Identification and validation of optimal regression model  

Next, the four features with the highest correlation scores and three paired features with the lowest 

correlation scores were used to make the model selection to see which model suits paired features the 

most. The data of these features were imported into MATLAB regression learner with k-fold Cross 

Validation where k = 5. The result shows linear regression model has the lowest RMSE when inputting 

features of the eye, nose, temple plane, overall max, temple plane-nose, and nose-overall max (Figure 5).  

 

The models for the selected inputs with the lowest RMSE of 0.346 were then trained with a random 

selection of 90 % of the input and tested against the remaining 10% of the data. This process was 

repeated ten times. Mean results were then compared in terms of SD, MAE, and MSE (Figure 6).  

 

Figure 4. Pearson's correlation coefficient between IR thermograph temperature measurements of different chosen 

regression analysis inputs. * Indicates the three pairs with the lowest Pearson’s correlation coefficients. 
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It can be found that the temple-nose pair has the lowest SD (0.285), MAE (0.240), and MSE (0.086), 

so this input pair was selected as the optimal input. To further assess this selection, the SD and MAE 

were calculated after running the SpotOn prediction ten times on the Jupyter Notebook. The results show 

that if the Temple and Nose temperatures are used as temperature inputs, the SpotOn results can be 

predicted with a mean SD of ± 0.285 °C and MAE of 0.240 °C (Figures 7). 

 

 

 

Figure 6. Assessment of (a) standard deviation, (b) mean absolute error, and (c) mean squared error for IR 

thermograph facial feature, frame, and pair inputs with their optimal regression model.  
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4. Discussion 

According to previous studies, the eyes and nose ROI are the expected locations with similar 

temperatures to the core temperature, and calibration of the camera is needed [24, 25, 26]. The temple, 

nose, and eyes are the best locations for taking thermal images. The temple has the highest correlation 

with SpotOn, followed by eyes and then nose. However, by inputting paired features, particularly the 

temple—nose pair, the trained model predicts the SpotOn output with the lowest acceptable error, 

followed by the temple—eyes. Therefore, two photos of the individual (front and side view of the human 

face) were needed in order to predict core body temperature. It can be seen that by using two input 

temperatures, the prediction result is better. In contrast, if the user is required to take only one photo, a 

photo of either the temple or eyes is recommended as their results are only slightly higher than the 

results of the best pair. Our method has a mean SD of ± 0.285 °C and MAE of 0.240 °C compared with 

the SpotOn temperature readings.  

Many countries have implemented the mass screening rule in response to the COVID-19 pandemic 

[27]. In the United States alone, Colorado, Delaware, Kansas, and ten other states recommended 

checking employee temperature at the workplace [28]. Traditional clinical monitoring system such as 

Spot-On is highly reliable at the cost of slow response time [29]. Infrared thermometers and thermal 

imaging cameras have the advantage of being instantaneous and contactless. Most of the non-contact 

devices directly measure facial temperature rather than core body temperature [30]. 

 

(a) 

 

(b) 

Figure 7. (a) The standard deviation (SD) and (b) the mean absolute error (MAE) of the ten SpotOn prediction 

result when using Temple and Nose as the temperature inputs to the robust linear regression model. The dashed line 

represents the mean (a) SD and (b) MAE from all 10 moving samples. 
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When measuring the facial temperature distribution in subjects, there are limiting factors that could 

potentially impact the accuracy of measurement. For example, ambient temperature and interval time 

spent in the ambient temperature of the study area between the scans [31, 32]. Any degree of anxiety 

about measurement could impact blood flow in facial areas, thus influencing the facial temperature [33, 

34]. Moreover, the subjects’ clothing would likely affect the overall body temperature, including the 

facial area [35]. If the subject has done any exercises before the scanning, it would be better to consider 

the skin temperature together with heart rate [36]. In addition, some studies showed that skin 

pigmentation, such as applied cosmetics, could affect facial temperature distribution [37, 38]. It would 

be relevant for future investigations to consider the use of surfaces with designated temperatures in the 

range of temperature with an accuracy of ± 0.1 °C to assist measurement accuracy [39-41].  

Dell’Isola et al. [42] have revealed that the overall uncertainty of non-contact body temperature 

measurement could be higher than the instrumental uncertainty due to additional uncertainties 

introduced by the procedure, the environmental conditions as well as the measuring conditions. The 

overall uncertainty is in the range of 0.40 — 0.62 °C depending on the subject’s pre-procedure status 

(whether resting in an indoor environment or marching in an outdoor environment). In contrast, the 

uncertainty of measurement from contact devices such as SpotOn in controlled conditions is around 0.20 

°C. In order to minimize the overall uncertainty for non-contact devices, a few practices could be 

established: set threshold references on specific body measuring sites such as temple, nose, and eyes; 

follow standardized measurement conditions and method; perform a two-stage measurement procedure 

starting by an initial non-contact measurement, and then followed by a contact body temperature 

measurement if the non-contact temperature reading needs further review.  

5. Conclusion 

In this study, a reliable method to predict human core body temperature was presented. The temple, 

nose, and eyes were selected to be the optimal sites for surface temperature measurement. Therefore, 

front and side photos of the individual faces were needed to predict core body temperature. Out of the 

five training models, the linear regression model had the lowest RMSE. By inputting paired features, 

particularly the temple—nose pair, the linear regression model could match the SpotOn output with SD 

of ± 0.285 °C and MAE of 0.240 °C. This means our method could generate measurements comparable 

to existing contact medical devices.  
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7. Abbreviations 

Abbreviations  

MAE Mean Absolute Error 

MSE Mean Squared Error 

NCITs non-contact IR thermometers 

IR Infrared 

IRT IR thermography 

ROI Regions of Interest 

RMSE Root Mean Square Error 

SD Standard Deviation 

 

8. Figure captions 

Figure 1: Regions of interest (ROI) with mean maximum temperatures ±SD (°C) extracted in post-

processing from the thermal images, as shown in (a) frontal plane and (b) temple plane 

Figure 2: Mean Pearson’s correlation coefficient between temperature measurements of SpotOn and IR 

thermograph facial features and frames using 90% of the data selected randomly. Coefficient 

calculations were repeated ten times (n=10) and averaged. * Indicates coefficients greater than 0.3 

 

Figure 3: Pearson’s correlation coefficient between temperature measurements of SpotOn and IR 

thermograph facial features and frame using 100 % of data. *Indicates coefficients greater than 0.3 

Figure 4: Pearson’s correlation coefficient between IR thermograph temperature measurements of 

different chosen regression analysis inputs. *Indicates the three pairs with the lowest Pearson’s 

correlation coefficient 

Figure 5: Identification of best regression model for each IR thermograph input feature, frame, and pair 

using Minimum Root Mean Square Error (RMSE). *Indicates the optimal regression model for each 

input based on the lowest RMSE 

Figure 6: Assessment of (a) standard deviation (SD), (b) mean absolute error (MAE), and (c) mean 

squared error (MSE) for IR thermograph facial feature, frame, and pair inputs with their optimal 

regression model 

Figure 7: (a) The standard deviation (SD) and (b) the mean absolute error (MAE) of the ten SpotOn 

prediction results when using Temple and Nose as the temperature inputs to the robust linear regression 

model. The dashed line represents the mean (a) SD and (b) MAE from all 10 participants 

 

                  


