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Variations in oral microbiome 
profiles in rheumatoid arthritis 
and osteoarthritis with potential 
biomarkers for arthritis screening
Bin Chen1, Yan Zhao1,2, Shufeng Li3, Lanxiu Yang4, Haiying Wang1, Tao Wang2,  Bin Shi2, 
Zhongtao Gai8, Xueyuan Heng9, Chunling Zhang7, Junjie Yang5 & Lei Zhang1,6,7,8,9,10

The key to arthritis management is early diagnosis and treatment to prevent further joint destruction 
and maximize functional ability. Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common 
types of arthritis that the primary care provider must differentiate, in terms of diagnosis and treatment. 
Effective and non-invasive strategies for early detection and disease identification are sorely needed. 
Growing evidence suggests that RA has a correlation with oral microbiome and may be affected by its 
dynamic variations. There is already a study comparing oral microbiome in patients with RA and OA, 
however, it did not screen for potential biomarkers for arthritis. In this study, we assessed the oral 
microbiome in saliva samples from 110 RA patients, 67 OA patients and 155 healthy subjects, using 16S 
rRNA gene amplicon sequencing. The structure and differences in oral microbiome between RA, OA and 
healthy subjects were analyzed. Eight oral bacterial biomarkers were identified to differentiate RA from 
OA. This report provides proof of oral microbiota as an informative source for discovering non-invasive 
biomarkers for arthritis screening.

Rheumatoid arthritis (RA) is a highly prevalent, chronic inflammatory and systemic autoimmune disease. 
Multiple clinical studies have suggested a potential link between RA and periodontopathic bacteria such as 
Porphyromonas gingivalis1. Traditionally, osteoarthritis (OA) is viewed as a mechanically induced condition, and 
the role of inflammatory factors, such as those derived from microbiota, has been considered minor. Although 
there are significant differences in the pathogenesis of RA and OA, the clinical symptoms of rheumatoid arthritis 
and osteoarthritis are similar and sometimes difficult to distinguish, especially in the case of unilateral knee RA, 
which is more difficult to distinguish from OA. It may also affect prognosis in patients. Therefore, it is necessary 
to find a strategy for early detection of arthritis.

Recent molecular investigations have indicated that each individual carries over 200 species in their oral 
microbiome2. The relationship between periodontopathic bacteria and systemic diseases has been explored for 
several years3–5. Several studies have confirmed that oral bacteria have been associated with pancreatic cancer6, 
Parkinson’s disease7, systemic lupus erythematosus8, colorectal cancer, lung inflammation9, type–2 diabetes10,11. 
Oral bacteria can be mobile and affect sites in and around the oral cavity. It can enter the bloodstream easily 
and also during daily mastication, brushing, flossing and in diseased state. Oral bacteria may penetrate through 
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relatively permeable epithelial pockets to reach the underlying gingival connective tissue, enter the bloodstream 
and travel throughout the body12,13.

Many clinical studies have shown that RA and OA may be associated with oral microbiota and are affected by 
it. Scher et al.14 used pyrosequencing to compare the composition of subgingival microbiota in patients with RA 
and controls, revealing that Prevotella and Leptotrichia species only existed in RA. Subsequently, a more intensive 
study performed metagenomic shotgun sequencing to detect the dental and salivary microbiome in patients with 
RA and controls. It was observed that Haemophilus spp. decreased in RA, and Lactobacillus salivarius numbers 
increased. Also, the functions of oral microbiome changed in RA15. However, recent findings suggest that OA 
may also be regulated by the microbiome, but there are very few studies describing the potential effects of oral 
microbiota in patients with OA.

In our study, we aim to describe the oral microbiome in patients with RA, OA and healthy subjects, and their 
potential association with RA and OA. We also attempted to distinguish RA and OA by identifying differences in 
oral microbiome and found a set of potential biomarkers for distinguishing RA and OA non-invasively.

Results
Variations in Oral Microbiota Profiles in RA and OA.  We compared the oral microbiota profiles of 110 
RA patients, 67 OA patients and 155 healthy subjects. Alpha diversity analysis reveals that there was no signifi-
cant difference in observed operational taxonomic units (OTUs) (P = 0.213, Welch’s t-test, Fig. 1a) and PD whole 
tree index (P = 0.426, Welch’s t-test, Fig. 1b) between RA and OA, while the healthy group had significant differ-
ences compared to groups with RA (P < 0.001) and OA (P < 0.001). To visualize the overall differences in beta 

Figure 1.  Alpha and beta diversity in RA, OA and healthy subjects. (a) Rarefaction analysis of observed 
OTUs. Using the mean of observed OTUs randomly sampled 150 times at 40000 sequencing depth. Error bars 
represent standard deviation. (b) Rarefaction analysis of Shannon index. Using the mean of observed OTUs 
randomly sampled 150 times at 40000 sequencing depth. Error bars represent standard deviation. (c) Weighted 
UniFrac principle coordinate analysis of RA, OA and healthy subjects. Ellipses are added to better visualize the 
cluster and separation between RA, OA and healthy control. (d) Weighted UniFrac principle coordinate analysis 
of RA and OA.
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diversity between the microbiome profiles of these three groups, we conducted a Principal Coordinate Analysis 
(PCoA) of weighted and unweighted UniFrac distances. Beta diversity comparisons using Analysis of similarities 
(ANOSIM) for oral data suggested a minor, but statistically significant community difference between RA and 
OA (ANOSIM, R = 0.07, P = 0.001) (Fig. 1c,d). The data in healthy subjects suggested significant differences 
from that of RA and OA. The microbial composition of RA, OA and healthy subjects did differ at the phylum and 
genus levels (Fig. 2a,b). The most common phyla were Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria 
and Fusobacteria. The relative abundance of Proteobacteria in healthy subjects was significantly higher than in 
patients with RA and OA (P < 0.001, Welch’s t-test), and the relative abundance of Firmicutes (P < 0.029, Welch’s 
t-test) in patients with OA is significantly higher than those in patients with RA. To further evaluate microbiome 
differences among patients with RA, OA and healthy subjects, the Linear discriminant analysis (LDA) Effect Size 
(LEfSe) method was used to discover the difference in microbiota composition and identify significant biomark-
ers, thus revealing 24 genera and 14 species (LDA > 2) (Fig. 2c). Many of the taxa were differentially abundant in 
RA and OA and contained: Neisseria subflava, Haemophilus parainfluenzae, Veillonella dispar, Prevotella tannerae, 
Actinobacillus parahaemolyticus, Neisseria, Haemophilus, Prevotella, Veillonella, Fusobacterium, Aggregatibacter, 
and Actinobacillus, which were more in RA, while Rothia dentocariosa, Ruminococcus gnavus, Streptococcus, 
Actinomyces, Lautropia, Rothia, Granulicatella, Ruminococcus, Oribacterium, and Abiotrophia numbers increased 
in OA (Fig. 2c). We also compared healthy subjects with the arthritis group (RA + OA), revealing potential 
opportunistic oral pathogens. Prevotella melaninogenica, Veillonella dispar, Prevotella, Neisseria, Porphyromonas, 
Veillonella, Haemophilus, Rothia, Streptococcus, Actinomyces, Granulicatella, Leptotrichia, Lautropia, and 
Fusobacterium were increased in the arthritis group (Fig. 2c). Since gender and age varied significantly among the 

Figure 2.  Taxonomic profiles and biomarkers of patients with RA, OA and healthy subjects. (a) Barplots of 
taxonomic profiles of patients with RA, OA and healthy subjects at the Phylum level. (b) Barplots of taxonomic 
profiles of patients with RA, OA and healthy subjects at the genus level. (c) Histogram of the LDA scores, where 
the LDA score indicates the effective size and ranking of each differentially abundant taxon (LDA > 2).
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groups, it may confound the identified associations. We tested the age and gender effects on the oral microbiome 
using Spearman’s rank correlation test (Supplemental Table S2). The results indicate that oral microbiome has no 
significant correction with gender. There are only 5 taxonomies affected by the factor of age, however, they don’t 
belong to the identified different abundant taxonomies among RA, OA and healthy subjects.

Imputed functions of Oral Microbiota in RA and OA.  Given the structural changes within the oral 
microbiota in patients with RA and OA, we explored microbiota functions based on inferred metagenomes using 
the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) algorithm. 
PICRUSt is a computational approach in which evolutionary modeling is used to predict the present gene fam-
ilies from 16S rRNA gene sequencing data and a reference genome database. In all, 6,909 predicted genes were 
assigned to 301 KEGG, level 3 modules. Forty-seven pathways were significantly different between RA and OA 
(P < 0.05; Welch’s t-test, Supplemental Table S3), of which 28 KEGG pathways were related to metabolism. The 
differences between 22 pathways were extremely significant between RA and OA (P < 0.01; Welch’s t-test, Fig. 3a). 
The most significantly different KEGG pathways included lipopolysaccharide biosynthesis (Fig. 2b), lipopoly-
saccharide biosynthesis proteins (Fig. 3c) and glycolysis/gluconeogenesis (Fig. 3d). For KEGG hierarchical level 
1 functional modules, metabolism was the most abundant module, then genetic information processing and 
environmental information processing (Supplemental Fig. S1). The signaling and environmental information 
processes were significantly different between RA and OA (P < 0.05, Welch’s t-test). For KEGG hierarchical level 
3 functional modules, transporters were the most abundant module, followed by ABC transporters and DNA 
repair, then recombination proteins (Supplemental Fig. S2).

Potential biomarkers for distinguishing RA and OA.  To evaluate the potential value of identified bac-
terial biomarkers for clinical differentiation of RA and OA, we constructed the receiver operating characteristic 
(ROC) curve and computed the area under the curve (AUC) values. We chose 10 OTUs with an LDA value 
greater than 3.0 in the LEfSe analysis, as candidate biomarkers (Streptococcus, Actinomyces, Lautropia, Neisseria, 
Neisseria subflava, Haemophilus parainfluenzae, Haemophilus, Veillonella dispar, Prevotella and Veillonella). To 
verify the best prediction model, we constructed the ROC curve for each arrangement combination in these 
10 candidate biomarkers, as the prediction model. The training and validation sets were randomly selected 5 
times and the average AUC was calculated (Supplemental Table S4). The average AUCs of 3 biomarker models 
were greater than 0.85 (Fig. 4). Moreover, the biomarker model with 8 OTUs (Actinomyces, Neisseria, Neisseria 
subflava, Haemophilus parainfluenzae, Haemophilus, Veillonella dispar, Prevotella and Veillonella) generated the 
highest AUC value of 0.8756.

Discussions
We compared the oral microbiota in patients with RA, OA and healthy subjects. We showed that profiling the 
bacteria associated with the oral cavity may have value in the detection of RA and OA. We also found that patients 
with RA and OA had an oral microbiota with higher microbial diversity compared to healthy subjects, indicat-
ing that there could be more harmful bacteria or opportunistic pathogens in the oral cavity of patients with RA 
and OA. Interestingly, when compared to healthy subjects, the following potential opportunistic oral pathogens 
increased in the arthritis group (RA + OA): Prevotella melaninogenica, Veillonella dispar, Prevotella, Neisseria, 
Porphyromonas, Veillonella, Haemophilus, Rothia, Streptococcus, Actinomyces, Granulicatella, Leptotrichia, 
Lautropia, and Fusobacterium. Most of them are Gram-negative anaerobic bacteria. In keeping with this, 
Porphyromonas, Prevotella melaninogenica, Actinomyces and Streptococcus are considered to be directly respon-
sible for periodontitis16. Previous studies also reported that they were associated with RA1,17,18. Porphyromonas 
gingivalis has been demonstrated to be directly linked to RA through citrullination and induction of antipepti-
dyl citrulline antibodies reacting to citrullinated human self-proteins19. P. melaninogenica causes a deficiency of 
terminal galactose residues by binding to the Fc region of the IgG molecule and metabolizing galactose with its 
enzymes20. A lack of terminal galactose residues early in the course of RA is associated with a worsening prog-
nosis21. In patients with chronic inflammatory diseases, oral microbiome dysbiosis is associated with the disease. 
Previous studies have found that alpha diversity of oral microbiome was significantly decreased in Sjögren syn-
drome22 and Behçet’s disease11, but our study found an increased alpha diversity in the patients, which could be 
due to the difference of disease. Consistent to these studies, our study also found an increase in the abundance of 
Streptococcus and Haemophilus in the diseased subjects.

Very few studies have been conducted on oral microbiome of patients with RA and OA using next-generation 
sequencing (NGS). Mikuls et al.23 compared the subgingival microbiome of RA and OA patients. Compared 
to OA, 10 taxa were lower in numbers in patients with RA, and this study failed to identify a biomarker that 
could reliably distinguish RA from OA. The result from our study contrasted with the report from Mikuls et al., 
and only Streptococcus was consistent. We found that Prevotella was more abundant in patients with RA instead 
of being lower. Scher et al.14 also revealed that Prevotella was found in greater abundance in patients with RA. 
Differences in the findings across studies may relate to the oral sampling site. Our study collected saliva samples 
instead of subgingival plaque like in Mikuls et al. The research indicated that the microbiome between suprag-
ingival and salivary communities displayed strong differences24,25. We also used machine learning to conduct a 
classification analysis for selected biomarkers. We succeeded in identifying biomarkers that could reliably distin-
guish RA from OA in patients.

The translocation of microbiota-derived molecules into the systemic circulation is one route for the micro-
biome to mediate osteoarthritis. A recent study reported that systemic and synovial concentrations of bacterial 
Lipopolysaccharide (LPS) positively correlated with joint inflammatory response and the severity of joint deg-
radation26. LPS also plays a role in RA and can upregulate all of the cytokines27. Furthermore, bacteria-derived 
LPS by itself is also capable of potentiating collagen-induced arthritis (CIA) in mice. In a nutshell, oral bacteria or 
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bacteria-derived LPS could invade blood and be transported to joints, where they could stimulate innate immune 
receptors in bone, cartilage and synovium. Lyu28 et al. detected the key drivers in oral microbial community 
related to dysbiosis in RA. They found that the development of biofilms is one of the drivers of persistent infec-
tions. LPS was found to play a role in biofilm formation29, and previous study also found that P. gingivalis can 
grow in the biofilm, which can become destructive and may contribute to RA30.

Figure 3.  Functional analysis of oral microbiota in patients with RA, OA and healthy subjects. (a) Extended 
error barplot with 95% confidence intervals showing significantly different KEGG pathways between RA and 
OA. Corrected P-values are calculated using Benjamini-Hochberg FDR approach (b) Lipopolysaccharide 
biosynthesis (c) Lipopolysaccharide biosynthesis proteins (d) Glycolysis/Gluconeogenesis; *indicates the mean 
of the data, the data points outside of the whiskers are shown as crosses+.
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Despite significant advances in understanding pathophysiology of RA and OA, early diagnosis and thera-
peutic intervention remain a challenge31. Rheumatoid factor (RF) and cyclic citrullinated peptides (CCPs) have 
usually been used as the biomarkers for RA, but have relatively low sensitivity32 and low specificity33 for early 
RA. Magnetic resonance imaging (MRI) techniques have been developed for early-stage evaluation of cartilage 
damage in OA34, however, MRI is expensive and not easily/widely accessible. There are a host of advantages in 
using oral microbiota as a source of biomarkers for predicting and screening disease. Saliva is a non-invasive 
collection method that does not cause discomfort and pain to subjects. Therefore, it is widely used in the study of 
biomarkers in diseases. We profiled the oral microbiome and discovered 8 biomarkers that offered an alternative 
strategy for the diagnosis of RA and OA. Further studies to validate these potential biomarkers using a larger 
clinical cohort are warranted.

Conclusions
We explored the differences in oral microbiome profiles of patients with RA, OA and healthy subjects using 
next-generation sequencing. Most importantly, we compared the oral microbiome and their potential functions 
in RA, OA and healthy subjects. Finally, 8 bacterial biomarkers were selected in the prediction model for distin-
guishing RA and OA in a non-invasive manner. This can be subjected to further clinical validation to develop new 
strategies for diagnosing RA and OA. Moreover, we need to further explore how bacteria can affect RA and OA, 
to help prevent and treat RA and OA.

Methods
Patients and Samples.  This study was approved by the Institutional Review Board of Shandong Normal 
University and Shandong Academy of Medical Sciences. Written informed consents and questionnaire data sheets 
were obtained from all subjects who visited the Department of Orthopedics, Qianfoshan Hospital Affiliated 
to Shandong University, and Guoyitang Hospital. They agreed to serve as sample donors, in compliance with 
national legislation and the Code of Ethical Principles for Medical Research Involving Human Subjects of the 
World Medical Association (Declaration of Helsinki). All methods and experimental protocols in this study were 
performed in accordance with relevant guidelines and standard operating procedures. Saliva samples were col-
lected using standard methods35: 5~10 mL of unstimulated whole saliva was collected in a 50 mL sterile tube from 
each subject, between 9~10 a.m. (collection time not more than 30 minutes). All subjects were asked to refrain 
from drinking, eating and hygiene-related procedures for at least 2 hours prior to collection, and all patients with 
apparent oral problems (periodontal disease et al.) were excluded. Samples were immediately frozen and stored 
at −80 °C. In all, 110 patients with RA who fulfilled the 2010 revised ACR/EULAR classification criteria were 
included36. 67 patients with OA met the 1995 revised ACR classification criteria37, and 155 healthy subjects served 
as controls (Table 1). The full list of sample information is available in the supplementary data (Table S1).

DNA Extraction and 16S rRNA Gene Sequencing.  For each sample, 1.5 ml of saliva was used for DNA 
extraction. The saliva was centrifuged at 12,000 × g for 15 min at 4 °C,and then the precipitation was used for 
DNA extraction (Qiagen DNeasy Blood & Tissue Kit). Quantitation of DNA was measured by Nanodrop 2000 
(Thermo Scientific). To generate 16S rRNA gene amplicons, in a 50 ul reaction, typically 50 ng of DNA was 
used as a template, with 0.4 uM of V1–V2 barcoded primers, targeting 27 F and 355 R of the bacterial 16S rRNA 

Figure 4.  The ROC curve based on 8 most-distinctive OTUs. The maximum AUC value is then selected and 
drawn.

Healthy Subjects (n = 155) RA (n = 110) OA (n = 67) P-values

Age (mean ± SD) 49.96 ± 11.17 56.65 ± 11.36 57.79 ± 9.712 P < 0.01

Gender (M/F) 80/75 20/90 21/46 P < 0.001

Table 1.  Characteristics of all subjects.
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gene (5′ AGAGTTTGATCMTGGCTCAG3′ and 5′ GCTGCCTCCCGTAGGAGT3′). DNA was purified with 
QIAquick PCR Purification Kit (Qiagen) and PCR purification procedure. All amplicons were quantified and 
pooled to equalize concentrations for sequencing, using HiSeq 2500 (Illumina).

16S rRNA Gene Sequence Analysis.  The 16S rRNA gene sequence paired-end data set was joined and 
quality filtered using the FLASH method, described by Magoč and Salzberg38. All sequence analysis was pro-
vided in the Quantitative Insights Into Microbial Ecology (QIIME, version 1.9.1) software suite39, according 
to the QIIME tutorial (http://qiime.org/) with some modifications. Chimeric sequences were removed using 
usearch6140 with de novo models. Sequences were clustered against the 2013 Greengenes (13_8 release) riboso-
mal database’s 97% reference data set (http://greengenes.secondgenome.com/downloads). Sequences that did 
not match any entries in this reference were subsequently clustered into de novo OTUs at 97% similarity with 
UCLUST. A taxonomy was assigned to all OTUs using RDP classifier within QIIME and the Greengenes reference 
data set. Rarefaction and rank abundance curves were calculated from OTU tables using alpha diversity and rank 
abundance scripts within the QIIME pipeline. The hierarchical clustering based on population profiles of most 
common and abundant taxa was performed using UPGMA clustering (Unweighted Pair Group Method with 
Arithmetic mean, also known as average linkage), on the distance matrix of OTU abundance. This resulted in a 
Newick-formatted tree, which was obtained using the QIIME package.

Statistical Analysis.  To account for any bias caused by uneven sequencing depth, the least number of 
sequences present in any given sample from a sample category was selected randomly. Prior to calculating 
community-wide dissimilarity measures (α-diversity and β-diversity), we rarefied the OTU table to a sequenc-
ing depth of 40000 per sample for both diversity analyses. All PCoA were based on weighted UniFrac distances 
using evenly sampled OTU abundances. The prediction of the functional composition of a metagenome, using 
marker gene data and a database of reference genomes was done with PICRUSt as described by Langille et al.41. 
The graphical representation of the results was done with STAMP and the calculation of P values was done using 
Welch’s t-test (P values were corrected for Benjamini-Hochberg FDR).

The ROC curves.  The Support Vector Machine (SVM) classifier from R package e1071 was adopted for clas-
sification analysis of the selected biomarkers. Five-fold cross-validation was used to evaluate the performance of 
the prediction model. The ROC curves as well as the AUC value was calculated using the ROCR R package.

Data Availability
The data sets generated during and/or analyzed during the current study are available with the corresponding 
author, on reasonable request.
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