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Abstract: Accurate weather data are important for planning our day-to-day activities. In order to
monitor and predict weather information, a two-phase weather management system is proposed,
which combines information processing, bus mobility, sensors, and deep learning technologies to
provide real-time weather monitoring in buses and stations and achieve weather forecasts through
predictive models. Based on the sensing measurements from buses, this work incorporates the
strengths of local information processing and moving buses for increasing the measurement coverage
and supplying new sensing data. In Phase I, given the weather sensing data, the long short-term
memory (LSTM) model and the multilayer perceptron (MLP) model are trained and verified using
the data of temperature, humidity, and air pressure of the test environment. In Phase II, the trained
learning model is applied to predict the time series of weather information. In order to assess the
system performance, we compare the predicted weather data with the actual sensing measurements
from the Environment Protection Administration (EPA) and Central Weather Bureau (CWB) of
Taichung observation station to evaluate the prediction accuracy. The results show that the proposed
system has reliable performance at weather monitoring and a good forecast for one-day weather
prediction via the trained models.
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1. Introduction

Weather plays an important role in people’s lives. Through weather monitoring, data analysis
and forecasting can be performed to provide useful weather information [1]. In terms of forecasting,
since there are many factors that affect weather changes, it is challenging to predict the weather
accurately [2]. Considering system operations and processing technologies, the existing systems for
weather monitoring and prediction can be described from the system architecture and the information
processing perspectives, respectively.

From the system architecture perspective, weather monitoring stations can be static or mobile.
With the information provided by the fixed meteorological stations, there is some simulation software
that uses numeric simulation to define the temperature in each grid [3]. The precision of the estimated
calculus for each grid is proportional to the number of weather stations distributed over the city.
In Lim et al. [4], the National Weather Sensor Grid (NWSG) system is designed to monitor weather
information in real time over distributed areas in a city, where the weather stations are set in
schools. In Sutar [5], a system is developed to enable the monitoring of weather parameters like
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temperature, humidity and light intensity. However, mobility issues and communication protocols are
not considered.

The mobile weather station is installed on the vehicle, constantly driving in a specific area to
collect data and send the data to different receivers via wired or wireless technologies, which leads
to a better balance of coverage than static observatories. In Foina et al. [6], a city bus is applied as a
mobile weather station to collect data through the path traveled by the vehicle. The system has three
levels of interaction, the device integrated into the buses, terminal computer, and system computer.
Although the PeWeMos system [6] argues that it may monitor the very fine details and weather changes
within the one area and provide very fine weather information and changes in even a sufficient amount
of time, the interpretation of the sensed weather data and the cooperation of the buses, bus stops,
and passengers for weather monitoring are not addressed. Hellweg et al. [7] uses floating car data for
road weather forecasts, which aims to increase the resolution of the weather observation network and
the forecast model. The preliminary results show that bias corrections and quality control of the raw
signals are key issues to enable safe autonomous driving. Considering the impact of communication
channels on information quality, the weather’s impact on the performance of a radio link had been
studied in [8], which analyzes the correlation between several weather variables and the behavior of
control frames in an outdoor wireless local area network. Based on the bus information management
system, our previous work [9] combines the advantages of local information processing and bus
mobility, and proposes a real-time weather monitoring system, including a weather monitoring system
and a management subsystem between buses and stations. Figure 1 shows the system model, including
signal, control, and communication components.
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From the information processing perspective, since forecasting is a very important analysis topic,
machine learning provides a capability to the systems to learn and improve from experience [10,11].
Moreover, with machine learning, data analysis, and prediction can be achieved without understanding
the physical processes (e.g., applying the past data to predict future data [12]). Readers may refer
to [13] for a full discussion.

In the literature, many prediction models for rainfall and weather forecasting have been proposed.
For instance, Parashar [14] proposes a system for monitoring and reporting weather conditions so as
to be notified in advance to take relative measures to reduce possible damage. An Arduino Mega is
used with some weather sensors to display the sensed values on the LCD screen, and the machine
learning technology is applied to train the model and prediction and put the prediction results on the
website. It mainly monitors the weather conditions and predicts the average, maximum and minimum
temperature of the next day, not providing more detailed information like the weather conditions
(e.g., temperature, humidity, and air pressure) for each hour.
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Singh et al. [15] develops a low-cost, portable weather prediction system that can be used in remote
areas, with data analysis and machine learning algorithms to predict weather conditions. The system
architecture uses the Raspberry Pi as the main component with temperature, humidity, and barometric
pressure sensors to obtain the sensed values and then train according to the random forest classification
model, and predict whether it will rain. Note that although the system hardware in Singh et al. [15]
and that of the proposed weather monitoring and forecasting systems are similar, the system in
Singh et al. [15] only describes the probability of precipitation. In Varghese et al. [16], with Raspberry
Pi and weather sensors, data are collected, trained, and predicted using linear regression machine
learning models for evaluation via mean absolute error and median absolute error.

Instead of only considering the information processing perspective, this work simultaneously
adopts the system architecture and the information processing perspectives. On the basis of the system
architecture in Chen et al. [9], a pair of bus stops and a bus, the gateway, and the server can work as a
group to dynamically operate the control system and communication system, which extend the system
to apply the collected data with machine learning algorithms for providing weather monitoring and
forecasting. Note that given basic meteorological elements such as pressure, temperature, and humidity,
this work focuses on the prediction of the temperature, humidity, and pressure for the next 24 h
with mild weather changes. For the forecast of severe weathers, in order to accelerate the training
process and improve the predictive accuracy, Zhou et al. [17] state the predictors should contain major
environmental conditions, which include meteorological elements such as pressure, temperature,
geopotential height, humidity, and wind, as well as a number of convective physical parameters
(i.e., including additional and advanced sensor equipment) to build the prediction system.

The major contributions and features of this work are: (1) proposition of a novel real-time
weather monitoring and prediction system with basic meteorological elements; (2) development of an
information processing scheme for increasing the management efficiency via a bus information system;
(3) construction of machine learning models to analyze the trend of weather changes and predict the
weather for the next 24 h. Table 1 describes the performance comparison of existing and proposed
systems, which shows that besides temperature prediction, the proposed system is able to provide a
forecast of basic meteorological elements (e.g., temperature, humidity, pressure) for one-day weather
prediction via the trained models.

Table 1. Comparison of prediction behaviors.

System Training Model Prediction

Parashar [14] Multiple Linear Regression Model

1. Maximum and Minimum
Temperatures on the Next Day

2. Mean Temperature on the Next Day

Singh et al. [15] The Random Forest Classification Raindrop Prediction

Varghese et al. [16] Linear Regression Model Maximum and Minimum Temperatures
on the Next Day

The Proposed System
1. Long Short-Term Memory Model
2. Multilayer Perception Model

Temperature, Humidity, Pressure in the
Next Twenty-Four Hours

The rest of the paper is organized as follows: Section 2 depicts the system architecture, including
information processing, data transmission/reception processes, the system components, and the
implementation of the system. Section 3 presents machine learning models and input data formats.
Section 4 describes the experimental results of each processing block and depicts the performance
comparison of different prediction models. Finally, summarize this research in Section 5.
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2. System Description

2.1. Overview

The proposed system is developed via an information management system, transmission
technologies, signal processing, and machine learning technologies. Considering the operations
among the system components (i.e., nodes, the gateway, the server, and the client), Figure 2 shows the
overall system block diagram of communication and data transmission/reception. The functions of
each system component are described as follows:

1. Nodes: The nodes are mainly for buses and bus stations to obtain weather information through the
Raspberry Pi with sensors (e.g., temperature and humidity sensors, Near-Field Communication
(NFC) modules, etc.). The nodes on a bus transmit the information to those on a neighboring bus
station, and then the nodes on the bus station send the data to the gateway.

2. Gateway: The gateway is a relay station, used to upload the data to the server for the next
processing step and connect two networks, one of which is composed of the nodes, the other uses
the Internet Protocol Suite.

3. Server: The server is a data center and control platform at the backend of the website, which receives
the data transmitted by the gateway, classifies the data, stores it in the database, and then applies
the data for integrating machine learning prediction and model training. The server delivers
the data requested by the site and responds to the client with the desired information. With the
current and former weather information, the proposed system is able to perform temperature,
humidity, and barometric pressure forecasts for the next 24 h (detailed in Section 3).

4. Client: Users can browse the website through PCs and mobile devices to obtain the current
weather information or the forecasting for planning their daily activities.
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Figure 2. Overall system block diagram.

2.2. System Architecture and Operations

Figure 3 shows the system architecture, composed of three major parts: Figure 3A bus–station
operations, Figure 3B station–gateway–server operations, and Figure 3C server–client operations,
which introduce the message flow between each part, including data collection, information sharing,
data processing, and data storage.
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passengers, and the solid lines indicate the communication links between each part of the system.
Note that parts (A), (B), and (C) represent bus–station operations, station–gateway–server operations,
and server–client operations, respectively.

2.2.1. Bus–Bus Station Operations

Hardware/Software Implementation

In the bus–bus station block (i.e., block A), Raspberry Pi 3 Model B+ [18] is used on buses and
stations with several weather sensors and wireless communication modules to achieve data collection
and transmission. The hardware structures on the bus and the bus station include the Raspberry Pi and
the sensors (i.e., temperature, humidity, barometric pressure, PM 2.5, ultraviolet, and raindrop sensors).
Here we briefly explore the usage of wireless technologies for system operations. For modeling the
interactions among the bus, the bus station, and passengers, the Near-Field Communication (NFC)
module is applied to simulate the EasyCard system on a Taiwan bus to count the number of people
and signal sensing at the bus station to request parking. The bus and the station use the wireless
communication module XBee Serial 2 (S2C) for data transmission. The station also uses the LoRa
module which is used for wireless transmission with the Gateway. Since Raspberries have only digital
inputs, some sensors need to be paired with the MCP3008 to convert analog signals. The current
weather information can also be viewed via the monitors of the bus and station. With the Raspberry Pi
running on the Linux system, in the experiment, Python programming is used to obtain the sensing
values and process the data, and a MySQL database is built on the Raspberry Pi of the bus and station
to record the data.

Communication Operation

Figure 4 (without the dashed box) shows the process of collecting, storing, and transmitting the
sensor data of the bus. When the NFC module obtains the number of passengers or the measurements
from weather sensors, the data are stored in the MySQL database. After the data are processed, they
will be transmitted to the bus station via the XBee module, and then the user can view the weather
information through the screen. At the bus station, the data sent from the bus through the XBee module
are stored in the database, which will be forwarded to the gateway via LoRa wireless technology.
Figure 4 (with the dashed box) shows the process of data transmission/reception at the bus station.



Sensors 2020, 20, 5173 6 of 21

Sensors 2020, 20, x FOR PEER REVIEW 6 of 24 

 

information through the screen. At the bus station, the data sent from the bus through the XBee 
module are stored in the database, which will be forwarded to the gateway via LoRa wireless 
technology. Figure 4 (with the dashed box) shows the process of data transmission/reception at the 
bus station. 

 
Figure 4. Framework on the bus and the bus station, where the bus station is with the dotted box. 

2.2.2. Bus Station–Gateway–Server Operations 

The LG01 LoRa gateway [19] is used as a relay station between the station and the server. The 
station transmits the data to the gateway, and then the gateway uploads the data to the server with 
the LoRa wireless technology, which bridges a LoRa wireless network to an IP network. For the 
software implementation, writing a C program in the Arduino development environment allows 
Gateway to receive signals sent by LoRa at the bus station, and then upload it to the server through 
the HTTP network protocol. 

2.2.3. Server–Client Operations 

With the Windows 7 development environment and a Django network framework, Python and 
JavaScript are used for programming, and SQLite is used for setting the database. The software 
implementation of the proposed weather system includes a web server and a database in order to 
perform data processing, storage, and website display. When the data is recorded to the database, an 
Excel file will be exported at the same time, which contains the time, temperature, humidity, and air 
pressure values. Afterwards, Python in the Jupyter Notebook environment and the learning model 
are applied to make weather predictions and upload the results for storage, where the prediction 
information is shown on the website. Table 2 details all the sensor information in the database, 
including the time, the detection values, and the ID of a bus stop of five sensors (i.e., an ultraviolet 
sensor, a raindrop sensor, a temperature/humidity sensor, an air pressure sensor, and a PM 2.5 
sensor). Note that the row of Pred temp is a set of predicted values of humidity, temperature, and 
pressure. Table 3. describes the measurement unit of each sensor. 
  

Figure 4. Framework on the bus and the bus station, where the bus station is with the dotted box.

2.2.2. Bus Station–Gateway–Server Operations

The LG01 LoRa gateway [19] is used as a relay station between the station and the server.
The station transmits the data to the gateway, and then the gateway uploads the data to the server
with the LoRa wireless technology, which bridges a LoRa wireless network to an IP network. For the
software implementation, writing a C program in the Arduino development environment allows
Gateway to receive signals sent by LoRa at the bus station, and then upload it to the server through the
HTTP network protocol.

2.2.3. Server–Client Operations

With the Windows 7 development environment and a Django network framework, Python and
JavaScript are used for programming, and SQLite is used for setting the database. The software
implementation of the proposed weather system includes a web server and a database in order to
perform data processing, storage, and website display. When the data is recorded to the database,
an Excel file will be exported at the same time, which contains the time, temperature, humidity, and air
pressure values. Afterwards, Python in the Jupyter Notebook environment and the learning model
are applied to make weather predictions and upload the results for storage, where the prediction
information is shown on the website. Table 2 details all the sensor information in the database,
including the time, the detection values, and the ID of a bus stop of five sensors (i.e., an ultraviolet
sensor, a raindrop sensor, a temperature/humidity sensor, an air pressure sensor, and a PM 2.5 sensor).
Note that the row of Pred temp is a set of predicted values of humidity, temperature, and pressure.
Table 3. describes the measurement unit of each sensor.

Table 2. The sensor information.

Table Name Time Sensor Name

Uv Time Ultraviolet Bus stop
Rf Time Rainfall Bus stop

Temp Time Temperature Humidity Bus stop
Press Time Pressure Bus stop
Pm25 Time Atpm10 Atpm25 Bus stop

Pred_temp Time Temperature Humidity Pressure Bus stop
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Table 3. The unit of each sensor.

Name Unit

Temperature ◦C
Humidity %
Ultraviolet UV Index

Pressure Pa
PM 2.5 µg/m3

Rainfall 0 à Rain
1 à No rain

2.3. Machine Learning

To build a prediction model, this work applies the opensource data of the Environmental
Protection Administration (EPA) and the Central Weather Bureau (CWB) in Taiwan [20], about
50,000 hourly measurements in the last six years of the Taichung Observatory, as the training data
source. Every measurement includes temperature, humidity, and air pressure at a 1 h measurement
interval. Before training the model, first, process the dataset. Next, organize the data according to a
specific format, and then perform predictive model training. Accordingly, the temperature, humidity,
and air pressure values are first taken out from the opensource dataset. Next, the measurement data is
divided into training dataset, test dataset, and validation dataset, and then the average and standard
deviation of the three datasets are taken. Finally, the data are standardized.

3. Input Data Format

In order to examine the prediction performance, the measurement data is processed through
different formats (i.e., G1, G2, G3, and G4) as shown in Table 4. Let InD

T indicate the sensing value at what
time of the day, where In represents the input data, D indicates the present day, and T represents the time
in 24 h format. Denote the day before as D-1. For instance, InD

23 represents 23:00 of the present day and
InD−1

22 represents 22:00 of the previous day. Each type of input data format is represented by a timeline,
where each data contains three values: temperature t, humidity h, and pressure p. Assuming that the
weather data at 24:00 (i.e., the red part of Figure 5) is to be predicted, the G1 format is considered for
the evaluation of adjacent time periods (i.e., the input data (the gray parts of Figure 5) will contain
four entries from 21:00 to 24:00 yesterday and data from 23:00 today). The rationale for the G1 format
is to explore the data characteristics at short adjacent time periods. For the G2, G3, and G4 formats,
we investigate the impact of the data formats at moderate time period (e.g., G2 for the past 12 h) and
long time period (e.g., G3 for the past 24 h and G4 for the past 48 h) on the prediction performance.
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Table 4. Input data format.

Group Format of Data

G1 InD−1
21 InD−1

22 InD−1
23 InD−1

24 InD
23

G2
[

InD−1
21 InD−1

22 InD−1
23 InD−1

24 InD
23

]T

G3
[

InD−1
21 InD−1

22 InD−1
23 InD−1

24 InD
23

]T

G4
[

InD−3
24 InD−2

1 . . . InD−2
24 InD−1

1 . . . InD−1
24 InD

1 . . . InD
22 InD

23

]T

Learning Model Architecture

This subsection describes the learning models used in this work: the long short-term memory
(LSTM) model and the multilayer perceptron (MLP) model. For the LSTM [21,22] model, it uses three
gates to adjust previously stored data: input gate, output gate, and forgetting gate and improves the
problem of the recurrent neural network (RNN) gradient vanishing. The forget gate is used to decide
which information will be discarded from the cell state. The input gate determines how much new
information is added to the cell state. The output gate is based on the cell state to determine what
value is invited to output. The LSTM combines the structure of three gates to protect and control
information. Therefore, the performance of LSTM is better than that of RNN in the task of long-term
memory. In Figure 6, the upper horizontal line is the state of the cell. Selectively let messages through
three gates. The forget gate is used to determine which messages pass through the cell, then enter
the input gate, decide how many new messages to add to the cell state, and finally decide the output
message through the output gate.Sensors 2020, 20, x FOR PEER REVIEW 9 of 24 
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This work applies the LSTM with a forget gate. In Figure 6, Ct and ht represent the cell state and
the output value for the current moment, and Ct−1 and ht−1 represent the cell state and the output
value of the previous moment. Denote ft, it, ot, C̃t as forget gate’s activation vector, input/update gate’s
activation vector, output gate’s activation vector, cell input activation vector, respectively. Let W and b
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be a weight matrix and a bias vector parameter, respectively, which need to be learned during training.
Let σg and σc be the sigmoid function and the hyperbolic tangent (Tanh) function, respectively.

The first step is to decide what information to throw away from the cell state via a sigmoid layer
called the forget gate layer. It looks at ht−1 and input vector xt, and outputs a number between 0 and
1 for each number in the cell state Ct−1. Note that a 1 represents “completely keep this” while a 0
represents “completely get rid of this”. Thus, the forget gate’s activation vector is given by

ft = σg
(
W f ·[ht−1, xt] + b f

)
(1)

The next step is to decide what new information to store in the cell state. The input gate layer and
the Tanh layer are applied to create an update to the state.

it = σg(Wi·[ht−1, xt] + bi) (2)

C̃t = σc(WC·[ht−1, xt] + bC) (3)

Then, the new cell state Ct is updated by

Ct = ft ∗Ct−1 + it ∗ C̃t (4)

Finally, based on the cell state, we need to decide what to output. First, we run a sigmoid layer
which decides what parts of the cell state for the output. Then, we put the cell state through and
multiply it by the output of the sigmoid gate, which yields

ot = σg(Wo · [ht−1, xt] + bO) (5)

ht = ot ∗ σc(Ct) (6)

An MLP [23] model consists of at least three layers of nodes (an input layer, a hidden layer, and an
output layer). In the MLP model, some neurons use nonlinear activation functions to simulate the
frequency of action potential, or firing of biological neurons. Since MLPs are fully connected, each
node in one layer connects with a certain weight to every node in the following layer. After each data
processing is completed, learning performs in the perceptron by adjusting the connection weights,
which depends on the number of errors in the data output compared to the results.

The LSTM and MLP model architectures are paired with TensorFlow and Keras for model training.
The LSTM parameter lookback is set to 5. The Adam optimization algorithm is applied for training the
network. The loss value is evaluated via the root mean square error (RMSE). The activation functions
use Tanh and scaled exponential linear units (Selu) functions. Units and activation functions of each
layer are summarized in Table 5. Referring to the above LSTM layer, we can match the data by adjusting
the number of cells, entering dimensions, and activating functions. The time distributed dense layer
is to gradually apply the dense layer to the sequence. The dense layer is used to activate neurons in
neural networks. For the MLP parameters, initialize weights with a normal distribution. The activation
function uses the rectified linear units (Relu) function. Table 6 summarizes the units and activation
functions at each layer of the MLP model, where the flatten layer is to flatten the high-dimensional
matrix into a two-dimensional matrix, retaining the first dimension, and then multiplying the values
of the remaining dimensions to get the second dimension of the matrix. When the model is trained,
we can determine whether the model is overfitting such that the model can be adjusted according to
the loss value and accuracy of each training. By testing the parameter values of different combinations
and layers, the model suitable for the data is finally found.
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Table 5. LSTM: units and activation functions of each layer.

Layer Units Activation Function

LSTM 50 tanh
Time Distributed Dense 30

LSTM 30 tanh
Dense 15 selu
Dense 3 selu

Table 6. MLP: units and activation functions of each layer.

Layer Units Activation Function

Flatten 15
Dense 15 relu
Dense 3

The weather data collected by the sensors are processed according to the above data processing
steps and format. The proposed model mainly focuses on predicting the weather condition for the
coming day, including temperature, humidity, and air pressure. That is, assuming the current time is
0:00 with a weather prediction, the predicted temperature, humidity, and pressure values are obtained
for the next 24 h (i.e., a weather prediction from 1:00 to 24:00). Accordingly, at 1:00 for performing an
updated 24 h weather prediction (i.e., a weather prediction from 2:00 to the next day 1:00), the weather
data collected by the sensors at 1:00 will be added to the original dataset to form a new input dataset for
the sequential prediction of the next 24 h. Finally, the system accuracy is evaluated by the comparison
between the predicted weather data and the measurement values via the root mean square error
(RMSE), mean absolute error (MAE), and percentage error, as depicted in (1)–(3). Therefore, referring
to the training model described above, weather prediction can be achieved.

RMSE(X, h) =

√√
1
m

m∑
i=1

(
h
(
x(i)

)
− y(i)

)2
(7)

MAE(X, h) =
1
m

m∑
i=1

∣∣∣∣h(x(i))− y(i)
∣∣∣∣ (8)

Percentage Error =
|Predicted value− Exact value|

Exact value
× 100 (9)

The overall prediction model training process divides the original data into a training set,
a verification set, and a test set after data processing, and then performs model training. After completing
the model evaluation, the system adjusts the parameters according to the evaluation results and then
continues training, and finally gets the prediction model.

After the data are processed, the trained prediction model is used to make a prediction. As the
prediction is completed, the predicted values are added to the dataset to form a new dataset, and then
the next prediction is performed until the final result is obtained, which completes the prediction task.

4. Experimental Results

To assess the system performance, this section explores information processing between bus and
bus station and discusses the prediction performance of the learning models.

4.1. Information Processing Between Bus and Bus Station

Figure 7 (left) illustrates the bus experimental module, including sensors, a transceiver, a MCU
board, and a NFC module. Figure 7 (right) depicts the bus station experimental module, including
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sensors, a transceiver, a MCU board, a NFC module, and a LoRa module. Figure 8 shows the weather
information, updated every minute, on the bus and at the bus station, respectively.Sensors 2020, 20, x FOR PEER REVIEW 12 of 24 
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The following two experiments are executed to evaluate the stability of data reception, considering
data transmission from a bus and data reception at a bus station with 1.5 s transmission time interval.
The first experiment aims to determine the acceptable transmission range between a transmitter–receiver
pair. Figure 9 (left) shows that the boundary of the transmission range with 97% data reception rate is
about 150 m for a pair of static transmitters and receivers. Moreover, the data loss scenario happens with
a transmission range of 200 m. For a farther transmission range, say a distance of 240 m, the reception
rate drops to zero.

Due to the bus movement, the second experiment explores the impact of mobility on data reception
performance. Based on the transmission range (about a distance of 240 m) from the first experiment,
the data reception is examined where the bus moves towards the bus station upon arrival and departure.
Under this circumstance, consider the passengers getting on or off the bus. Figure 9 (right) shows the
data reception rates with a bus at the speed of 30 km/h in different communication ranges. Notice that
the acceptable reception range is about 150 m with a 60% reception rate. In this work, we use an XBee
module with an outdoor line-of-sight communication range up to 100 m. The reception variation for a
distance above 100 m is because the signals reflected from various surrounding objects (multipath
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reception) converge at the receiving point. Therefore, possible obstacles (e.g., trees, the movement
of people and vehicles) in an open space lead to a change in the quality of communication. At the
same time, depending on the relative position of surrounding objects the signals can both be amplified
and attenuated at the receiving point. Readers may refer to [24] for testing of communication range in
ZigBee technology. In addition to exploring the reception rate, the results from Experiment 2 can be
applied to determine the transmission time interval, considering the transmission range and the bus
speed. For instance, with a bus at the speed of 30 km/h, the communication duration between the bus
and the bus station is about 30 s, which suggests that the transmission time interval may be set for 10 s
to ensure that the data can be received within the transmission range.
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4.2. Prediction Performance

After the data are uploaded to the server’s database, predictions can be made through the trained
prediction model. Referring to Table 4, two models are applied in this work: (1) the LSTM model
and (2) the MLP model, considering the prediction of the temperature, humidity, and pressure values.
The proposed models are evaluated on a large-scale database built by the EPA and CWB, Taiwan,
which includes about 50,000 hourly measurements in the last six years of the Taichung Observatory
(from 1 October 2013 to 10 June 2019). Note that the predicted values with the two models are compared
with the actual measurements of the CWB on 21 March 2020 via RMSE, MAE, and percentage error.

4.2.1. The LSTM Model

Referring to Table 4 for the LSTM model, Figure 10 is a prediction graph for the four input groups,
with respect to temperature, humidity, and pressure. Table 7 shows the prediction results of different
input data formats via RMSE and MAE values. Observe that the performance of the first input group
(G1) is more in line with the actual values. Table 8 demonstrates the differences between the LSTM
models with a different number of cells, calculating the loss value and accuracy of the test dataset,
where the loss is calculated in mean square error, and the number of units used by the final model
is fifty.
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Table 7. Forecast results of different input data formats with the LSTM model.

G1 G2 G3 G4

RMSE
Temperature 1.3219 2.2876 2.21 3.5664

Humidity 2.8696 3.1219 3.1839 7.6588
Pressure 0.7676 1.2327 1.2753 1.338

MAE
Temperature 1.0561 1.8424 1.9387 2.8843

Humidity 2.2483 2.4855 2.553 5.9607
Pressure 0.6557 0.9508 1.0008 1.0208

Percentage Error
Temperature 4.15% 7.09% 7.79% 11.15%

Humidity 3.39% 3.70% 3.93% 9.34%
Pressure 0.07% 0.09% 0.10% 0.10%
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Table 8. The loss value and accuracy of the LSTM model trained in different units.

Units Test Loss Test Acc

30 0.0638 0.913
40 0.0634 0.9118
45 0.0627 0.913
47 0.064 0.9106
48 0.0634 0.9117
49 0.0629 0.9114
50 0.0623 0.9125

4.2.2. The MLP Model

Given the input formats in Table 4 for the MLP model, Figure 11 is a prediction graph for the four
input groups, from which the first input group (G1) of trends in the performances of temperature and
air pressure are more in line with the actual values. Table 9 shows the prediction results via RMSE
and MAE values. For the prediction of humidity, the prediction performance with the second input
group (G2) has the smallest RMSE, MAE, and percentage error values (e.g., RMSE (G1) = 6.7972; RMSE
(G2) = 0.4853; RMSE (G3) = 5.3816; RMSE (G4) = 4.9940). However, due to the lack of proper trend
prediction as shown in Figure 11 and considering the overall prediction performances in temperature,
humidity, and pressure, the first input group (G1) is selected to compare with the performance using
the LSTM model.

Table 9. Forecast results of different input data formats with the MLP model.

G1 G2 G3 G4

RMSE
Temperature 0.907 2.5569 2.2171 2.0243

Humidity 6.7972 4.5853 5.3816 4.994
Pressure 1.0369 1.2808 0.9948 1.271

MAE
Temperature 0.7731 2.2124 1.94 1.7937

Humidity 5.604 3.9413 4.4632 4.3236
Pressure 0.8433 0.965 0.8659 1.1227

Percentage Error
Temperature 3.17% 8.78% 7.73% 6.87%

Humidity 8.61% 5.70% 6.11% 6.38%
Pressure 0.08% 0.10% 0.09% 0.11%
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With the input format G1, Figure 12 shows the comparison of prediction results of the LSTM and
MLP models in terms of temperature, humidity, and pressure, which is summarized in Table 10. Observe
that for the temperature prediction, the performances of the two models are close. From 8 a.m. to 6 p.m.,
the MLP performance is slightly better than the LSTM performance. However, the LSTM performance
is better in other time periods. For the humidity and pressure parameters, the prediction performance
of LSTM is superior to that of MLP for achieving a better tendency prediction. Although the LSTM
shows a slight advantage over the MLP model, the above results may be due to the depth of the model
at training or the differences in the number of cells and parameters used in each layer.
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Figure 12. Forecast results of temperature, humidity, and pressure on 21 March 2020: LSTM model vs.
MLP model.

Table 10. Forecast performance on 21 March 2020.

Temperature Humidity Pressure

RMSE
LSTM 1.3219 2.8696 0.7676
MLP 0.907 6.7972 1.0369

MAE
LSTM 1.0561 2.2483 0.6557
MLP 0.7731 5.604 0.8433

Percentage Error LSTM 4.15% 3.39% 0.07%
MLP 3.17% 8.61% 0.08%

4.3. Comparison of Temperature Prediction

The proposed prediction system is compared with the system architectures in Parashar [14] and
Varghese et al. [16]. In this work, the basic hardware architecture consists of the Raspberry Pi and
the sensors. The data transmission and storage are carried out through wireless communication
technologies and a database. Parashar [14] uses multiple linear regression (MLR) to train the model,
which is a statistical technique that uses multiple explanatory variables to predict the outcome of the
response variable. Then select the relative characteristic values of the highest, lowest, and average
temperatures, respectively, for training. Finally, predict the highest, lowest, and average temperatures
of the next day based on the weather data of the past three days. The system proposed in this paper
uses the LSTM and MLP models for training and predicts the temperature, humidity, and pressure
values within the next 24 h. Table 11 shows a comparison between the system of Parashar [14] and the
proposed system, including training models, feature selections, prediction methods, and information
display. The left side is the system of Parashar [14], while the right side is the proposed system.
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Table 11. Comparison table of training and prediction methods.

Machine Learning

The system in Parashar [14] The proposed system

Training Model

2016.05.01 ~ 2018.03.11 2013.10.01 ~ 2019.06.10

MLR LSTM, MLP

Feature Selection

max temperature Maxtempm_1×, Maxpressure_1×, Mintempm_3×,
Maxpressure_3×, Meanpressurem_3 Temperature

min temperature
Mintempm_1×, Meantempm_3×, Maxtempm_1×,

Maxtempm_2×, Maxdewptm_1×, Maxdewptm_3×,
Meandewptm_1×, Meandewptm_2×, Meanpressure_1

Humidity

mean temperature Meantemp_3×, Meanpressure_3×,
Maxtemp_1×, Maxtemp_2×, Mintemp_1 Pressure

Prediction

Maximum temperature, minimum temperature, mean temperature on the next
day

Temperature, humidity, pressure
in the next 24 h

Weather data for the past 3 days The first type of data format (G1)

Web Display

Present Temperature, Min Temperature
Max Temperature

Temperature, Humidity,
Pressure, UV, PM25, Rain

Tomorrow Min Temperature, Max Temperature
Mean Temperature

Temperature, Humidity,
Pressure

The proposed system mainly predicts temperature, humidity. and pressure for the next 24 h.
In contrast, the system in Parashar [14] only predicts the maximum, minimum, and average values
of temperature of the day. In Varghese et al. [16], with Raspberry Pi and weather sensors, data are
collected, trained, and predicted using linear regression (LR) machine learning models for evaluation
via mean absolute error and median absolute error. The proposed prediction system is based on
hourly weather data for training and prediction, and uses the percentage error, MAE, and RMSE as
evaluation criteria. In addition to these three evaluation criteria, the explained variance of temperature
is calculated for comparison with Parashar [14]. The comparison is mainly for the average temperature.

Table 12 describes the comparison of temperature prediction for the next day’s mean temperature.
In terms of MAE performance, the LR model in Varghese et al. [16] has the MAE value, MAE (LR) = 2.5.
The prediction performances of the system with the MLR model in Parashar [14] (MAE (MLP) = 1.10)
and the proposed system with the LSTM model (MAE (LSTM) = 1.056) are close. And the proposed
system with the MLP model has the lowest MAE value (MAE (MLP) = 0.7731), which suggests that the
proposed models are good at prediction. In the explained variance, the performances of the proposed
models are better than that of the literature as well. Moreover, the proposed system can provide past
and current weather information and weather forecast values for the next 24 h.

Table 12. Comparison table of the next day’s mean temperature (unit: ◦C).

Next Day Mean Temperature Accuracy

MLR [14] LR [16] LSTM MLP

Explained Variance 0.95 N/A 0.865 0.904
Mean Absolute Error 1.10 2.5 1.0561 0.7731

To further assess the predictive skill, the predicted results of the proposed system are compared
with the CWB actual values, the CWB predicted values, and those of the AccuWeather system [25],
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where the AccuWeather system is a Media Company in the United States, providing commercial weather
forecasting services worldwide. Table 13 presents the comparison of actual values and the predicted
results with respect to the highest and lowest temperatures on 21 March 2020 in Taichung. Observe that
referring to the CWB forecast report [20], the highest and lowest temperatures of the CWB predicted
values on 21 March 2020 in Taichung are in the 28–31 ◦C range and in the 18–21 ◦C range, respectively.
For predicting the highest temperature, the AccuWeather system, the proposed LSTM model, and the
proposed MLP model have 1.75%, 5.26%, and 3.51% prediction errors, respectively. For the prediction
of the lowest temperature, the AccuWeather system, the proposed LSTM model, and the proposed
MLP model have 11.11%, 2.53%, and 6.06% prediction errors, respectively, which suggest that the
proposed system is competitive with the existing systems.

Table 13. Comparison of the highest and lowest temperatures on 21 March 2020 (unit: ◦C).

Temperature

CWB Actual Value CWB Predicted Value [20] AccuWeather [25] LSTM MLP

Highest Temperature 28.5 28~31 29 27 27.5
Lowest Temperature 19.8 18~21 22 20.7 21

5. Conclusions

This paper presents a real-time weather monitoring and prediction system based on bus
information management, combined with information processing and machine learning to complete the
communication and analysis of information between buses, stations, and sensors. The proposed system
contains four core components: (1) information management, (2) interactive bus stop, (3) machine learning
prediction model, and (4) weather information platform. The website shows weather information via a
dynamic chart. In addition to the current temperature, humidity, air pressure, rainfall, UV, and PM 2.5,
the system provides a forecast of temperature, humidity, and air pressure for the next 24 h.

Although the proposed system achieves effective weather monitoring and information
management, misalignment may be present due to the significant weather changes, which is the
major challenge to overcome. In the future work, in addition to optimizing the system operation,
we are planning to refine the prediction system, considering the deployment of nodes based on bus
routes, the learning models, including more physical parameters, exploring the effects of forecast
and measurement errors on the forecasting models, reanalyzing the dataset (e.g., performing data
revisions), applying multiple data sources [26] and information processing technologies, which may
achieve better prediction accuracy.
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