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Mental stress is becoming increasingly widespread and gradually severe

in modern society, threatening people’s physical and mental health. To

avoid the adverse effects of stress on people, it is imperative to detect

stress in time. Many studies have demonstrated the effectiveness of

using objective indicators to detect stress. Over the past few years, a

growing number of researchers have been trying to use deep learning

technology to detect stress. However, these works usually use single-

modality for stress detection and rarely combine stress-related information

from multimodality. In this paper, a real-time deep learning framework

is proposed to fuse ECG, voice, and facial expressions for acute stress

detection. The framework extracts the stress-related information of the

corresponding input through ResNet50 and I3D with the temporal attention

module (TAM), where TAM can highlight the distinguishing temporal

representation for facial expressions about stress. The matrix eigenvector-

based approach is then used to fuse the multimodality information about

stress. To validate the effectiveness of the framework, a well-established

psychological experiment, the Montreal imaging stress task (MIST), was

applied in this work. We collected multimodality data from 20 participants

during MIST. The results demonstrate that the framework can combine

stress-related information from multimodality to achieve 85.1% accuracy

in distinguishing acute stress. It can serve as a tool for computer-aided

stress detection.
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Introduction

Stress is an individual’s adaptation response to internal or
external threats (Freeman, 1986; Mitra, 2008). It can affect
people’s daily performance, memory, and decision-making
abilities (Sharma and Gedeon, 2012; Nigam et al., 2021). Acute
stress occurs when people are faced with urgent tasks such as
mental arithmetic, academic exams, or public speaking (Allen
et al., 2017). It usually disappears when the urgent task is over.
If acute stress continues to permeate a person’s life, it can
result in decreased physical and mental health and even lead
to immune system disorders, cardiovascular disease, depression,
or other diseases (Sauter et al., 1990; Segerstrom and Miller,
2004; van Praag, 2004; Heraclides et al., 2012; Beanland et al.,
2013; Steptoe and Kivimäki, 2013). In modern society, stress
has become increasingly widespread and severe. The European
Union has established it as one of the most common causes of
health problems (Wiegel et al., 2015).

To avoid harm to people caused by chronic or acute stress,
it is essential to detect people’s stress state as early as possible
and prevent the adverse effects of stress on people. Psychological
evaluation of stress can be used to detect an individual’s stress
state (Alberdi et al., 2016). Stress is assessed by filling out a
questionnaire or talking to a psychologist. Since psychological
evaluation is instantaneous and subjective, it often leads to
false or even incorrect stress detection and is unable to meet
the requirements of real-time detection (Ren et al., 2019). In
contrast, using objective indicators such as physiological signals
and behavioral information to detect stress is not affected by
subjective influence (Setz et al., 2010; Cinaz et al., 2011; McDuff
et al., 2012; Wei, 2013; Sharma et al., 2021).

When people are under stress, the autonomic nervous
system (ANS) is stimulated and regulates involuntary body
functions (Tsigos and Chrousos, 2002). As a result of changes
in involuntary body functions, the electrocardiogram (ECG),
voice, and facial expressions of people are affected. ECG is the
physiological signal that can record cardiac activity. As regulated
by the ANS, during stress, the heart rate increases, and the
heartbeat’s standard deviation becomes larger (De Rosa, 2004;
de Santos Sierra et al., 2011). These changes can be presented
by ECG. Dominated by the ANS during stress, the pitch and
speaking rate of voice are affected, while the energy and spectral
characteristics of voice also change. The mean value, standard
deviation, range of pitch increase, and jitter of pitch decrease
when people are under stress. The spectral centroid goes up,
and energy is concentrated in higher frequency bands (Lu
et al., 2012). Likewise, affected by stress, facial expressions
involving the eyes, mouth, and cheeks are different from calm
(Liao et al., 2005; Sharma and Gedeon, 2012; Sundelin et al.,
2013; Pampouchidou et al., 2016). The overall changes in these
multiple facial regions constitute changes in facial expressions.

In recent years, multimodality fusion methods have
received increasing attention. It has been widely used in
computer-aided diagnosis and performs better prediction than

single-modality-based methods (Yang et al., 2013; Vidya et al.,
2015; Zhu et al., 2020). Since the ECG, voice, and facial
expressions describe stress changes in a different way and
are jointly affected by the ANS (Giannakakis et al., 2017).
Fusing these multimodalities can detect the stress state from
multiple aspects.

Deep learning technology has shown excellent performance
in many fields (LeCun et al., 2015; Hatcher and Yu, 2018).
Different from the handcrafted feature engineering methods, it
automatically extracted the features of input through the deep
learning network to minimize the feature extraction process and
achieve better generalization ability. Due to the advantages of
deep learning, a growing number of researchers are trying to use
deep learning technology to detect stress (Jin et al., 2016; Hwang
et al., 2018; Winata et al., 2018). Convolutional neural networks
(CNNs) are an attractive way to distinguish different classes of
inputs in deep learning technology. CNNs can extract features
in multiple dimensions of the input, among which 2D-CNN
can capture the global and local spatial information, and 3D-
CNN can also capture the temporal information. Studies have
proven that CNNs are effective for stress detection (Jin et al.,
2016; Hwang et al., 2018; Winata et al., 2018), but the potential
of using CNNs that fuse multimodality for stress detection
remains to be explored.

In this work, a real-time deep learning framework that
fused ECG, voice, and facial expressions for acute stress
detection is proposed. Furthermore, we designed the temporal
attention module (TAM) to find the keyframes related to
stress detection in facial expressions. The proposed framework
avoids complicated feature extraction and only requires
simple preprocessing. The contributions of our work can be
summarized as follows:

(1) This work proposes a deep learning framework that
combines ECG, voice, and facial expressions for acute stress
detection. The fusion method is based on the matrix eigenvector,
which achieves 85.1% detection accuracy.

(2) The proposed framework utilizes TAM. The TAM
assigns different learnable weights to different frames of
facial expressions to highlight the distinguishing temporal
representation for facial expressions about stress.

This research is organized as follows. The section “Materials
and methods” introduces multimodality data acquisition,
preprocessing, and the real-time deep learning framework.
Section "Results" shows the results of our experiment, and
Sections “Discussion” and “Conclusion” present the discussion
and conclusion of our research, respectively.

Materials and methods

Materials

To collect multimodality data from people under stress,
it is necessary to stimulate stress in participants by designed
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experiments (Setz et al., 2010; Tomova et al., 2016; Smets et al.,
2018; Stepanovic et al., 2019). Many different stress-induced
methods have been validated to stimulate stress. The most
commonly used experimental paradigms are the Stroop Color-
Word Interference Test and the Montreal Imaging Stress Task
(MIST; Aitken, 1969; Lovallo, 1975; Kirschbaum et al., 1993;
Renaud and Blondin, 1997; Dedovic et al., 2005; Reinhardt et al.,
2012; Smeets et al., 2012; Tanosoto et al., 2012).

MIST is the gold standard experiment for stimulating
stress. As a well-established psychological experiment employed
in stress assessment, it has been proven to put people into
a stress state by measuring the amount of cortisol in their
saliva (Lederbogen et al., 2011; Kiem et al., 2013; Sioni
and Chittaro, 2015). To date, a large number of studies on
stress have been carried out on the basis of MIST and its
modified experiments (Boehringer et al., 2015; Chung et al.,
2016; Wheelock et al., 2016; Gossett et al., 2018; Hakimi and
Setarehdan, 2018; Li et al., 2018; Xia et al., 2018; Noack et al.,
2019; Perez-Valero et al., 2021). The MIST is a computer-based
standardized psychological experimental designed to assess
the effects of psychological stress on people’s physiology and
behavior (Dedovic et al., 2005). To obtain multimodality data
from participants in a stressful state, this work used MIST to
induce people to be under stress.

Participants
Twenty right-handed participants (11 males, 9 females,

mean age = 22.75, SEM = 0.13, age-range 20–25 years, 20
Chinese) participated in the MIST to stimulate psychological
stress. All the participants were participating in MIST for the
first time. The overall flow of MIST was introduced before the
experiment started.

Data collection
MIST is a computer-based psychological experimental

paradigm that mainly includes (1) the calm stage, (2) the control
stage, (3) the experimental stage, and (4) the recovery stage.

In the calm stage, the participants read the equation with the
answer. In the control stage, the participant clicks on the correct
answer in the program and reads out the calculation and the
result, and the screen will display correct or incorrect. During
the experimental stage, the participants perform calculations
with time constraints, and the program adaptively adjusts the
time constraints and difficulty. If the participants correctly
solve three arithmetic tasks in a row, the program will reduce
the time constraints and raise calculation difficulty. Both the
control stage and the experimental stage can cause psychological
stress in the participants. The recovery helps participants return
to a calm state. After the MIST experiment, each participant
was asked to fill out a stress questionnaire. Figure 1 shows
the MIST process.

This work used the MIST program written and deployed
using JDK 8u66 for Windows. The program can automatically

create arithmetic tasks including addition, subtraction,
multiplication, and division. There are five categories of
difficulty for calculation problems, the two easiest of which are
the addition or subtraction of 2 or 3 one-digit integers. The
two classes of medium difficulty contain 3 or 4 integers and
allow for multiplication. For the most difficult category, the
calculation includes addition, subtraction, multiplication, and
division of four integers. The answers to all computational tasks
are integers between 0 and 9.

The multimodality data collection platform used in this
work includes two computers (one for the MIST experiment
and one for collecting data), a physiological signal acquisition
device Biopac MP160, and a Sony video camera FDR-AX700.
The MP160 contains the participant’s ECG signal through
a wireless transmission module and transmits data to the
collecting computer through the network cable. The ECG
signal is acquired by three-electrode leads, two electrodes
placed symmetrically in the fourth or fifth rib region, and
one electrode placed in the right upper chest area, where the
sampling frequency is 2000 HZ. The camera captures the facial
expressions and voice of the participants during the MIST
experiment and sends them to the collecting computer, where
the resolution of the video is 1920∗1080 and 30 fps. The camera
and sensor are turned on at the same time, aligning the data
according to the data and video length. The platform diagram
is shown in Figure 2.

The process of participants completing one equation is
considered as a piece of data. A piece of the sample contains
participants’ facial expressions, ECG, and voice. The samples
were labeled according to the stage of MIST. In this way, 1271
samples were acquired, including 531 labeled “calm” and 740
labeled “stress.”

Methods

The real-time deep learning framework proposed in this
work used ECG, voice, and facial expressions for stress
detection. Each modal was preprocessed before being input
into the framework. ECG and voice were converted into the
form that represents their time-frequency changes, and facial
expressions were extracted from the collected video. Then
the multidimensional features of each modality were extracted
through the deep learning framework. The fully connected
layers in the framework obtained the information about the
stress state, and the framework fused them into a global
matrix for stress detection. An overview of multimodality stress
detection in this work is shown in Figure 3.

Data preprocessing
Facial expressions preprocessing

This work removed background information to isolate the
facial area, which can avoid being disturbed by irrelevant
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FIGURE 1

The Montreal imaging stress task process.

information of surrounding noise and clutter in different
scenarios of reality. Video Vi was framed into sequence of image
frames Vi = (framei1 , framei1 , ..., framein), and the face area
was detected by MTCNN [45] on each image frame and then
aligned. Facei = (facei1 , facei1 , ..., facein) denotes a sequence
of face images detected from sequence Vi.

Electrocardiogram preprocessing

The original ECG signal contains high-frequency and
electrical noise. And intercepting the ECG signal according
to temporal leads to the start position and the end position
of the heartbeat in different samples being inconsistent. We
preprocessed the original ECG signal below to solve these
problems. The preprocess of ECG is shown in Figure 4.

(1) Denoising: The ECG signal was passed through a
notch filter with a cutoff frequency of 50 Hz to eliminate the
interference caused by the industrial frequency current. The
energy of the ECG signal is concentrated in the frequency band
of less than 50Hz. Filtering out the ECG signal higher than
50Hz will not affect the expression of ECG changes. Then a
pass filter with a cutoff frequency of (0.5, 50) Hz was used
to reduce the influence of electrode noise, muscle noise, and
baseline wander noise on the ECG signal. After that, the ECG
signal was standardized to eliminate amplitude scaling in the
heartbeat cycles.

(2) Heartbeat relocating: Due to the interception according
to the temporal causes, the start position and the end position
of the heartbeat in different samples were inconsistent. In this
work, the start position and end position of the ECG signal were

MIST

Biopac MP160

Data 
collection

Camera

 

FIGURE 2

Data collection platform.

relocated based on Niu’s work (Niu et al., 2020). It takes the
middle temporal position between the first R wave in the sample
and its preceding R wave in the collected ECG data as the start
position. The middle temporal position between the last R wave
in the sample and the R wave after it in the collected ECG data
is considered the end position. The short-term autocorrelation
function is used to calculate the temporal distance between two
R waves (Piotrowski and Różanowski, 2010).

First, We detected the temporal position of each R wave in
the ECG signal through a sliding window with a threshold. The
temporal position of the R waves was recorded asR1, ...,RN.
Second, we reversed the ECG signal 2 s before the R1 and
calculate the short-term autocorrelation function as X1(n). The
short-term autocorrelation function of the ECG signal 2 s after
the R5 was calculated as XN(n). X1(n) and XN(n) were clipped
using thresholds α = 0.1 and β = −0.1 with the following
formula:

X (n) =


x (n)−α, x (n) > α

0, β ≤ x (n) ≤ α

x (n)−β, x (n) < β

The temporal between the first sample and the maximum
sample of the first harmonic in X1(n) represents the temporal
distance T1 between R1 and its preceding R wave. We take
the middle temporal position of T1 as the start position. The
temporal between the first sample and the maximum sample of
the first harmonic in XN (n) represents the temporal distance
T2 between Rn and the R wave after it. The middle temporal
position of T2 was taken as the end position of the heartbeat.

(3) Visualization: The relocated heartbeat were converted
into the form of an image. The vertical axis represents the
amplitude of the heartbeat and the horizontal axis represents the
temporal of the heartbeat.

Voice preprocessing

The Mel spectrogram calculated in the time-frequency
domain analysis contains time and frequency information of
voice. It converts the linear frequency scale into a logarithmic
scale and represents the distribution of signal energy on
the Mel-scale frequency, which is similar to human hearing.
Mel spectrogram can intuitively show the spectral changes
of voice over time. Therefore, we convert the voice into the
Mel spectrogram.
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FIGURE 3

Multimodality stress detection.

FIGURE 4

Electrocardiogram preprocessing.

After the voice data are divided into each sample, we pre-
emphasis the data. Then, the Hamming window of 30ms length
is used to frame the data with 15 ms overlap.

After that, we calculate energy density using the short-time
Fourier transform (STFT) and transform the frequency into
Mel-scale band to extract Mel spectrogram.

Real-time deep learning framework for stress
detection

The real-time deep learning framework was developed
by combining ResNet50 (He et al., 2016) and I3D with the
temporal attention module. ResNet50 extracts the global and
local features of the ECG matrix and Mel spectrogram through
identity mapping. I3D with the temporal attention module
learns the spatiotemporal changes in facial expressions, and the
temporal attention module enables I3D to extract important
temporal features.

The stress state information in their fully connected layers
was combined into a global matrix, leading to a multimodal

stress information representation. The multimodality
information about stress was fused for stress detection
based on matrix eigenvectors.

ResNet50
Converting the ECG and voice signals into three-

dimensional matrices can represent higher-order and
nonlinear characteristics of the signals. This work used
Resnet in 2D-CNN to extract multiple features from the
ECG and Mel spectrogram. ResNet avoids the problem of
gradient disappearance and explosion in traditional 2D-CNN
through shortcut connections. The 2D convolution strategy
of ECG and Mel spectrogram input in this work is shown in
Figure 5.

The 2D-CNN has a convolution layer composed of 2D
convolution kernels. The convolutional layer can extract
features in multiple dimensions to obtain the feature
representation of the internal structure of the ECG and
Mel spectrogram by scanning them with the 2D convolution
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FIGURE 5

2D convolution strategy for electrocardiogram and Mel spectrogram input in this work.

kernels and reducing the number of parameters through local
connectivity and parameter sharing. The 2D convolution can be
expressed as:

vxyij = f(bij +
∑
m

Pi−1∑
p = 0

Qi−1∑
q = 0

Wpq
ijmv

(x+p)(y+q)
(i−1)m )

where vxyij is the i convolution result at the j position in
feature map (x, y) of the layer; f is the activation function
Rectified Linear Unit (ReLU; Nair, 2010); bij is the deviation
of the feature map; m is the index of the feature map in
layer i−1; Qi, Pi is the height and width of the convolution
kernel; and Wpq

ijm represents the value at the position of
the feature map.

In traditional 2D-CNN, when the network structure
becomes very deep, there will be unavoidable problems of
gradient disappearance or explosion, and the problem of
accuracy saturation or decline. This causes such networks to be
unable to capture the overall stress information in the input.
Resnet avoids the problems caused by a network structure
that is too deep through the residual block with shortcut
connections. The residual block connects the inputs in the
lower layers and high layers which converts the input maps
into identity maps.

This work used ResNet50 to extract effective representations
of stress in ECG and Mel spectrogram input. ResNet50 has half
the floating-point operations (FLOPs) of ResNet101, and only
5% more than ResNet34. It reduces the number of FLOPs while
satisfying the accuracy requirements. The overall architecture of
ResNet50 is shown in Figure 6.

The residual block in Figure 6 is defined as:

y = F (x, {Wi})+ X

where X is the input of weight layer; ReLU is the activation
function; F(X, {Wi} ) is the output after three convolution
layers. Identity mapping adds F(X) and X as the input y to the
next residual block.

I3D With the Temporal Attention
Module

As mentioned above, detecting stress by facial expressions
requires comparing temporal changes in multiple facial regions,
including the eyes, mouth, and cheeks. This work used the
inflated 3D-CNN (I3D) with the temporal attention module
to learn the overall changes in facial expressions during stress.
The I3D extracts the features of stress in facial expressions
and the temporal attention module tells I3D which frames are
important. The 3D convolution strategy for facial expressions
input in this work is shown in Figure 7.

The 3D-CNN has a 3D convolution kernel that can
analyze successive frames of facial expressions and capture
spatiotemporal features of facial expressions. The 3D
convolution can be expressed as:

vxyzkm = f(bkm +
Pk−1∑
p = 0

Qk−1∑
q = 0

Rk−1∑
r = 0

wpqr
kmnu

(x+p)(y+q)(z+r)
(k−1)n )

where vxyzkm is the position k in the m feature map of the (x, y, z)
layer; f is the loss function; u is the input from the k−1 to k layer;
Pk,Qk,Rk are the width height and depth of the convolution
kernel size; bkm is the deviation of the wpqr

kmn feature map.
In traditional 3D-CNN (C3D), each layer generally uses

a single-size convolution kernel and forward propagation,
which cannot extract overall features. This results in the entire
facial expression being ineffectively represented. The inflated
3D-CNN (I3D; Carreira and Zisserman, 2017) combines the
advantages of GoogLenet (Szegedy et al., 2015) and 3D-CNN.
It uses the inflated inception module for feature extraction.
The inflated inception module uses convolution kernels of
different sizes to extract features, and finally concatenates them
to increase the network’s ability to extract overall features.
Therefore, for facial expressions, the corresponding features of
stress in multiple facial regions can be extracted by I3D.

During facial expression changes, subtle changes tend to
last only a few frames, so not all frames are equally important
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The overall architecture of the ResNet50.
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3D convolution strategy for facial expressions input in this work.

for distinguishing facial expressions. The identical scale is used
to pool temporal information in traditional I3D, which makes
important frames lost and trapped in local details.

To enhance the global perception of temporal information
in I3D and avoid getting caught in local temporal details, this

work proposed the temporal attention module (TAM) for the
I3D layers. In TAM, global pooling is calculated for each input
frame. Then two fully connected layers and a sigmoid function
are used to generate a temporal attention map, which is finally
combined with the multiplication of the original feature maps to
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change the proportion of temporal information captured by the
initial layer of I3D. It makes I3D highlight the distinguishing
features while ignoring interfering features when extracting
the temporal information of facial expressions. The overall
architecture of I3D with TAM is shown in Figure 8.

Formally, a statistic z ∈ RT is generated by shrinking u ∈
RC × H × W (Fs(.)) through its channel and spatial information
C × H × W:

zt = Fs (ut) =
1

C × H × W

C∑
i = 1

H∑
j = 1

W∑
k = 1

ut(i, j, k)

To use the shrinking information, we follow it with a second
operation Fex(.). We want to ensure that different frames are
allowed to be emphasized, so we choose sigmoid activation as
a simple gating mechanism:

S = Fex (z,W) = σ
(
g (z,W)

)
= σ(W2δ(W1z))

where δ refers to the ReLU function. W1 ∈ R
T
r × T and W2 ∈

RT × T
r , where r is the reduction ratio. The final output of the

TAM is acquired by multiplying S and u:

Output = Fscale (ut, St) = Stut

Multimodality fusion

This work proposed a fusion method based on the
eigenvector corresponding to the largest eigenvalue of the
matrix. In our method, the posterior probability information
of each stage for each modality is composed as a vector.
The vectors of the three modalities are composed into the
stress information matrix. Our method uses the normalized
eigenvector corresponding to the largest eigenvalue of the
matrix as the weight to fuse the multimodality information.

After Resnet50 and I3D with TAM extracted input
features about stress, their fully connected layer can obtain
the posterior probability information of the stress stage of
the input. For each modality, the probability of each stage
Pcalm,Pcontrol,Pexperimental derived from this modality can be
composed as a vector, and the vectors of the three modalities
Vvoice,Vface,VECG can be composed as a matrix, which
contains probabilistic information about each stage of each
modal. We define this matrix as the stress information matrix
Mglobal.

Mglobal = (VVoice,VFace,VECG)

=

 Pcalm_V,

Pcontrol_V,

Pexperimental_V,

Pcalm_F,

Pcontrol_F,
Pexperimetal_F,

Pcalm_E

Pcontrol_E
Pexperimental_E


In Mglobal, the eigenvalues of Mglobal indicate how

much the probability is scaled, and the eigenvectors of

Mglobal indicate the direction of the probability. Compared
with other eigenvalues and their corresponding eigenvectors,
the largest eigenvalue and its corresponding eigenvector
indicate that the probability in this direction is amplified
to the greatest extent, that is, the probability of this
matrix in this direction is the largest. Given this property
of them, we use the eigenvector corresponding to the
largest eigenvalue in Mglobal to calculate the weight vector
to fuse the multimodality information from Mglobal for
stress detection.

In Mglobal, the probability of the three stages of
MIST is included. The eigenvector Wmax represents the
eigenvector corresponding to the largest eigenvalue in
Mglobal. We normalize Wmax as the weight vector Wweight.
wcalm,wcontrol,wexperimental represent the weight values of the
calm, control, and experimental stages, respectively.

Mglobal→Wmax
normalize
−→ Wweight = (wcalm,wcontrol,wexperimental)

After obtaining the weight values, the weight values are used to
construct a diagonal weight matrix W.

W =

wcalm

0
0

0
wcontrol

0

0
0

wexperimental


The cross-modal global matrix Mglobal is multiplied with the
weight matrix to obtain the weighted matrix Wglobal.

Wglobal = W∗Mglobal = (wcalm,wcontrol,wexperimental)

(wcalm,wcontrol,wexperimental)

=

 wcalm−V,

wcontrol−V,

wexperimental−V,

wcalm−F,

wcontrol−F,

wexperimental−F,

wcalm−E

wcontrol−E

wexperimental−E


In Wglobal, wcalm = (wcalm−V,wcalm−F,wcalm−E)

represents the weighted posterior probability of the calm
stage. wcontrol = (wcontrol−V,wcontrol−F,wcontrol−E)
represents the weighted posterior probability of the
control stage. wexperimental = (wexperimental−V,wexperimental−F,

wexperimental−E) represents the weighted posterior probability
of the experimental stage. Whether the value of Wglobal (wi) is
positive or negative, it’s in the direction of the represented stage
axis, the absolute size of its value represents the probability in
this stage. Our method’s output is the stress state corresponding
to the absolute maximum in Wglobal. The fusion process is
shown in Figure 9.

Output = max
[∣∣∣∣ ∑3

i = 1
wcalmi−i,

∑3

i = 1
wcontroli−i,

∑3

i = 1
wexperimental−i

∣∣∣∣]
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FIGURE 8

The overall architecture of the I3D with temporal attention module.

Results

The performance of the proposed deep learning framework
for stress detection was evaluated with the collected dataset
through four sets of experiments, including multimodality

stress detection, single-modality-based stress detection, the
effectiveness of the temporal attention module in I3D, and
comparison with different models. The 10-fold-cross-validation
method was utilized on the dataset for cross-validation to ensure
the generalization ability of our method.
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FIGURE 9

The fusion method based on matrix eigenvector.

Implementation details

This work randomly divided 80% of the data after leaving
one-fold out into the training set and 20% into the validation set.
The experimental environment is 64-bit Windows 10, GeForce
RTX2070, and 16 GB memory. Our implementation is based
on Python version 3.6.13 and PyTorch version 1.9.0 with
CUDA version 11.4.

ResNet50 parameter settings

During training, the trainable parameters in ResNet50
were initialized with the uniform random distribution. For
the ECG matrix and Mel spectrogram, the input size is
307 × 230. They are randomly cropped at 224 × 224
and flipped horizontally for better training. The network
was trained by Adam optimization. The learning rate is
0.0001. The network is trained using a batch size of
32 for 80 epochs.

During validation, the input of the ECG matrix and Mel
spectrogram are also center-cropped at the same size of training
without horizontal flipping.

I3D with temporal attention module
parameters settings

During training, the trainable parameters in I3D with the
temporal attention module were also initialized with a uniform
random distribution. For facial expressions, 64 consecutive
frames of facial expressions are randomly sampled from each
video. Input frames are rescaled to 224 ∗ 270 and randomly
cropped to 224 ∗ 224. Frames are randomly flipped horizontally
for data augmentation to improve the invariance properties of
geometric perturbations. The network was trained by the Adam
optimization. The learning rate is 0.01. The network is trained
using batch size 1∗3∗64 for 30 epochs.

During validation, the input frames of facial expressions are
sampled at the fixed central location of each video. These frames
are rescaled and center-cropped at the same size of training
without horizontal flipping.

Multimodality stress detection

The deep learning framework fused ECG, voice, and facial
expressions for stress detection. Information about stress in
multimodality can be obtained from the fully connected layer
of ResNet50 and I3D with the temporal attention module in the
framework. The framework integrated them into a global matrix
for representation and used the fusion method based on matrix
eigenvectors to detect stress.

The performance of the proposed deep learning framework
and every single-modality-based method in the framework for
stress detection was compared in the terms of four widely used
metrics: accuracy, precision, recall, and F1-score. As expected,
the multimodality method provided the best performance in
stress detection, suggesting that the deep learning framework
using multimodality data for stress detection can achieve
better stress detection performance than the single-modality-
based method.

As illustrated in Table 1, stress detection using
multimodality improved performance compared to using
only single-modality data. The accuracy of multimodality
result is increased from the highest accuracy of the
single-modality result of 83.9–85.1%. Revealing the deep
learning framework can efficiently fuse the multimodality
information for stress detection and is more effective than
single-modality-based methods.

Moreover, the results demonstrated that using either single-
modality or multimodality all can effectively detect stress. This
work can use either of them to distinguish between calm and
stress, which allows the method to be applied in situations where
multimodality data are not available.

TABLE 1 Stress detection accuracy, precision, recall and F1-score
using single- and multimodality data.

Modal Accuracy Precision Recall F1-Score

ECG 0.741 0.737 0.743 0.731

Voice 0.830 0.825 0.829 0.827

Facial expressions 0.792 0.795 0.803 0.799

Fusion 0.851 0.857 0.866 0.861

The bold values are the result of the multimodality stress detection.
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TABLE 2 Stress detection confusion matrix of the single-modal and multimodality methods.

Actual labels Predicted labels

ECG Voice Facial expressions Fusion

Calm Stress Calm Stress Calm Stress Calm Stress

Calm 0.751 0.266 0.821 0.164 0.868 0.262 0.913 0.193

Stress 0.249 0.734 0.179 0.836 0.132 0.738 0.087 0.807

Single-modality stress detection

Stress causes changes in people’s involuntary body functions,
and each modal of the changes can be used for stress detection.
Compared with the handcrafted feature engineering methods,
the deep learning network can automatically extract multiple
features of the input. This work explored the use of Resnet50
and I3D with the temporal attention module to extract features
in ECG, voice and facial expressions for stress detection.

After feature extraction, each single-modality was used
for stress detection after simple preprocessing. The confusion
matrices of each single-modal based method are shown
in Table 2, and the matrices are also compared with the
multimodality-based method.

In the single-modality-based method, the best recognition
of the calm state is achieved by facial expressions of 86.8%, and
the best recognition of the stress state is achieved by voice of
83.6%. Furthermore, the matrices also prove that ResNet50 and
I3D with TAM can effectively extract stress-related features in
each modality after simple preprocessing.

Effectiveness of the temporal attention
module

To explore the effectiveness of TAM, an ablation experiment
was designed that removed TAM for I3D with TAM. The
confusion matrices of I3D without TAM are shown in Table 3.
Compared with the confusion matrices of I3D with TAM in
Table 2, the overall detection performance and the recognition
of the calm state is improved with TAM, which proves that
TAM can enhance the perception of temporal information

TABLE 3 Stress detection confusion matrix of I3D without temporal
attention module.

Actual labels Predicted labels

Calm Stress

Calm 0.824 0.261

Stress 0.176 0.739

between the calm state and stress state in I3D and emphasize
the distinguishing temporal features in facial expressions.

This work also compared the performance of I3D without
TAM and I3D with TAM in terms of the above four widely used
metrics. As shown in Figure 10, without TAM, the accuracy,
precision, recall, and F1-score of stress detection by facial
expressions dropped by approximately 1.7, 2.0, 2.1 and 2.1%,
respectively. The result demonstrates the feasibility of the TAM
in finding the more influential association between frames in
facial expressions about stress and I3D with TAM can achieve
better performance in stress detection.

Time assessment for real-time
applications

This work also analyzed the time duration of the real-time
deep learning framework to verify that real-time performance
requirements are met. The results show that the framework
meets the needs of real-time stress assessment. Each process
present in the framework was evaluated which mainly consists
of three parts, namely preprocessing, feature extraction, and
multimodality fusion. The results of the time duration are
visualized in Figure 11.

Comparison with widely used
convolutional neural networks

In this part, the comparison experiment is conducted
with several widely used CNNs in each modality to evaluate
the effectiveness of our work. The CNNs are ResNet101,
GoogLeNet, EfficientNet, and C3D (Szegedy et al., 2015; Tran
et al., 2015; He et al., 2016; Tan and Le, 2019), which are
widely used and have been proven to have a strong performance.
Table 4 presents their stress detection results.

As is indicated in Table 4, the accuracy of ResNet101
for stress detection by ECG and voice are 70.6 and 80.2%,
both of which are lower than ResNet50. This proves
that although Resnet has shortcut connections, blindly
increasing the network depth cannot greatly improve the
performance and will also increase the number of FLOPs.
GoogLeNet and EfficientNet achieved 72.3 and 76.3%,
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FIGURE 10

Performance comparison of I3D without temporal attention module (TAM) and I3D with TAM.

FIGURE 11

Time assessment for real-time applications.

and 76.9 and 80.9% accuracy for stress detection using
ECG and voice, respectively, owing to different structures
being used to solve the problems of gradient disappearance
or explosion.

Table 4 also shows that I3D with TAM outperforms
I3D and C3D, achieving the highest accuracy for stress
detection using facial expressions. Compared with C3D, I3D
can better extract the overall features of facial expressions
through the inflated inception module, while TAM can

highlight the distinguishing information in the overall
features and find the keyframes in facial expressions to
achieve optimal stress detection performance. The I3D
with TAM proposed in this work can simultaneously
extract the distinguishing and overall features of facial
expressions through the inflated inception module and TAM.
The feature maps extracted by I3D with TAM have more
information, which can better use facial expressions for
stress detection.
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Since ResNet50 achieve 83.0% accuracy for stress detection
using voice and EfficientNet achieve 76.9% accuracy for
stress detection using voice. We explore EfficienNet for stress
detection using ECG and voice, and I3D with TAM for stress
detection using facial expressions. The same fusion method is
used to fuse multimodality information for stress detection. The
results are shown in Table 5.

Although EfficientNet produces good performance in stress
detection using ECG and voice, the comparison of the fusion
results shown in Table 5 reveals that ResNet50-based fusion
method can achieve better fusion accuracy. We prove that our
proposed real-time deep learning framework based on ResNet50
achieves better performance in stress detection.

Discussion

The automatic stress detection in people with objective
indicators demonstrated that it can be reliable and does not
require many human resources. It avoids the inference of
stress detection caused by the instantaneous and subjective
psychological evaluation. However, many stress detection
research uses a single-modality-based for stress detection. For
the multimodality data of people under acute stress, single-
modality-based stress detection does not fully use all the
collected data. Therefore, this work explored a way to fuse
multimodality for acute stress detection.

In this work, a real-time deep learning framework
was proposed to fuse multimodality for acute stress

TABLE 4 Stress detection accuracy, precision, recall and F1-score of
several widely used convolutional neural networks.

Modal Model Accuracy Precision Recall F1-score

ECG ResNet101[98] 0.706 0.712 0.717 0.714

GoogLeNet[97] 0.723 0.735 0.739 0.737

EfficientNet[99] 0.769 0.773 0.781 0.777

ResNet50[98] 0.741 0.737 0.743 0.740

Voice ResNet101[98] 0.802 0.797 0.801 0.799

GoogLeNet[97] 0.763 0.756 0.752 0.754

EfficientNet[99] 0.809 0.804 0.812 0.808

ResNet50[98] 0.830 0.825 0.829 0.827

Facial
expressions

C3D[100] 0.582 0.582 0.500 0.538

I3D[101] 0.775 0.775 0.782 0.778

I3D with TAM 0.792 0.795 0.803 0.799

TABLE 5 Stress detection accuracy, precision, recall and F1-score by
multimodality using different convolutional neural networks.

Fusion Accuracy Precision Recall F1-score

EfficientNetI3D with TAM 0.839 0.850 0.858 0.854

ResNet50 I3D with TAM 0.851 0.857 0.866 0.861

detection. Our work is trying to detect acute stress.
We do not detect different levels of stress. This work
proposed a fusion method based on matrix eigenvectors
to fuse multimodality information. Furthermore,
we designed the temporal attention module (TAM)
to find the keyframes related to acute stress in
facial expressions.

MIST can stimulate acute stress in both the control and
experimental stage by measuring changes in participants’
cortisol. To evaluate the performance of the proposed
framework, the multimodality dataset was collected from
20 participants during the MIST experiment. Compared to
the number of participants in other stress detection research,
many research collects stress data from 10-30 participants.
Xia analyzed variations in both electroencephalogram
(EEG) and ECG signals from 22 male subjects (Xia et al.,
2018). Minguillon collected multiple biosignals from 10
subjects (Minguillon et al., 2018). Perez-Valero conducted a
group of 23 participants over the MIST experiment (Perez-
Valero et al., 2021). To confirm whether the participants
developed acute stress during the MIST experiment, we
asked each participant to fill out a questionnaire after the
MIST experiment. In the questionnaires, all participants
reported experiencing acute stress in both the control and
experimental stages of MIST. Given the inter-individual
differences in the reaction to MIST, we considered the acute
stress generated in both phases as the same category. The data
were labeled as “calm” and “stress” instead of different stress
levels.

This work provides a method for stress detection using
multimodality. The method achieves 74.1, 79.2, and 83.0%
detection accuracy using ECG, facial expressions, and voice,
respectively. In the single-modality-based method using facial
expressions, using I3D with TAM achieves a 1.7% higher
detection accuracy than using I3D. After the probability
information in every single modality is fused by the proposed
multimodality fusion method, the detection accuracy of 85.1%
can be achieved. The results show that the overall stress
detection performance is improved by using multimodality.
In our results, the recognition of the stress state for the
fusion method is lower than the single-modality-based method
using voice. This is caused by the accuracy of the single-
modality method using ECG and the accuracy of the
single-modality method using voice. In our multimodality
fusion method, the stress information matrix is constructed
for each multimodality sample. For the recognition of the
stress state, the single-modality method using ECG has an
accuracy of 73.4%, and the single modality method using
facial expressions has an accuracy of 73.8%. This leads to
an increased probability that two or three modalities’ stress
information in a sample is simultaneously opposed to the
real state. When the main probability information of the
two modalities is opposite to the real state, it will dominate
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the main probability direction of the stress information
matrix. This caused the stress information matrix to be more
likely at the opposite of the real state, leading to incorrect
recognition results. The results in this work show that the
overall stress detection performance is improved by using
multimodality.

Compared with other methods using other signals, a
variety of objective indicators are used for stress detection.
The other signals such as EEG, electromyogram (EMG),
and functional near-infrared spectroscopy (fNIRS) require
special equipment and a lot of pre-collection preparations
and post-collection work, it limits the practical application
of these signals and is unpleasant for the experimental
participants. Our work demonstrates the reliability
of detecting acute stress using ECG, voice, and facial
expressions. The results show that using those feasible
multimodality can achieve 85.1% stress detection accuracy.
In addition, the modalities used in this work are easy to be
acquired in daily life.

Conclusion

In this work, a real-time deep learning framework was
proposed to fuse ECG, voice, and facial expressions for stress
detection. The result shows that the fusion of multimodality
information about stress can achieve 85.1% detection accuracy,
which provides a reference for the research of multimodality
stress detection based on deep learning technology in the
future. The framework extracted the stress-related features of
each modal through ResNet50 and I3D with TAM and gave
different weights for each type of stress state according to
the global stress information matrix. At the same time, this
work designed the temporal attention module to find the more
influential association between frames in facial expressions for
stress detection. Compared with the optimal single-modality-
based method, the accuracy of the multimodality result is
improved by 2.1%. This work provides an objective reference
for fusing multimodality to detect stress based on deep learning
technology, and preventing stress from harming people’s
physical and mental health.
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