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Introduction: Baroreflex sensitivity (BRS) is often presented as a single number, but
it is actually a frequency-dependent phenomenon whose value changes constantly
due to internal and external stimuli. The standing posture, for instance, necessitates
a changeover from vagal to sympathetic predominance for cardiovascular control.
We present a wavelet cross-spectral analysis of blood pressure (BP) and interbeat
interval (IBI) recordings in the search for variations in gain and phase between these
signals. Additionally, we show how the lag in sympathetic response dictates BP-to-IBI
phase relations.

Methods: Recordings in supine and head-up tilted (HUT) position, obtained earlier
in 10 healthy subjects (4f/6m, aged 27–47 years) were used. BP and IBI were
measured from the continuous finger pressure (by Finometer). The cross-wavelet
analysis produced time- and frequency dependent gain (wBRS, wavelet derived BRS)
and phase, using the MATLAB

R©

wavelet toolbox. We also applied the wBRS method
to model-generated BP- and IBI-data with known interrelations to test the results of
this analysis technique. Finally, wBRS values were compared with the xBRS-approach,
which is a time domain method for continuous BRS estimation in a sliding 10-s window.

Results: In resting supine conditions, wBRS fluctuates; more at respiratory frequencies
than in the 0.1 Hz band. After HUT, wBRS at the respiratory frequency decreases from
average 22.7 to 8.5 ms/mmHg, phase between BP and IBI increases from −30◦ to
−54◦; in the sympathetic 0.1 Hz range these numbers are 13.3→6.3 ms/mmHg and
−54◦→−59◦. The values found by xBRS are intermediate between wBRS-resp and
wBRS-0.1 Hz. The Appendix shows that for the simulated data the BRS and phase
values as found by the wavelet technique can be explained from vector additions of
vagal and sympathetic BRS contributions.
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Discussion: During supine rest parasympathetic control of heart rate dominates BRS;
after HUT this is diminished and less effective. Due to the reaction times of the autonomic
effectors, the phase relations between the signals depend on the relative contribution of
the sympathetics, which explains the larger phase shift.

Conclusion: Cross wavelet analysis allows to follow fast BRS changes in time
and frequency, while the computed phase relations help understand sympathetic
participation.

Keywords: baroreflex sensitivity, cross-wavelet analysis, xBRS, phase delay, cardiovascular variability, finger
blood pressure, heart rate, blood pressure

INTRODUCTION

Baroreflex sensitivity (BRS) is commonly defined as the ratio of
a change in inter beat-interval (IBI) and the change in systolic
arterial blood pressure (SAP) that caused it: BRS = 1IBI/1SAP.
Several techniques have been proposed for the determination
of the BRS, e.g., by studying the resulting IBI-increase after an
angiotensin-provoked rise of blood pressure (Smyth et al., 1969),
or following neck suction or a Valsalva maneuver (Goldstein
et al., 1982). Later, investigators derived BRS estimators from
spontaneous fluctuations in pressure and heart-rate for subjects
in resting conditions, either using time-domain techniques such
as sequential methods (Bertinieri et al., 1985; Parati et al., 1988),
or applying spectral approaches (De Boer et al., 1986; Robbe et al.,
1987; Parati et al., 1995).

Most of these techniques return a single BRS-value over a
period of time, although time-varying BRS-values have been
considered, both for time-domain (Westerhof et al., 2004;
Eckberg and Kuusela, 2005; Wesseling et al., 2017) and frequency
domain (e.g., Li et al., 2018) approaches. Several authors
used transfer function analysis to obtain frequency-dependent
BRS values, mainly in animal models; a review is given by
Kawada and Sugimachi (2016).

In real life, the value of the BRS will change continuously, due
to internal and external stimuli, of which a change of posture is a
very strong one, as it necessitates activation of the sympathetic
nervous outflow to the vasculature and concomitantly to the
heart, thereby increasing heart rate and contractility, although
that effect is not strictly necessary as is proven in patients who
have a cardiac transplant (Rudas et al., 1993).

Figure 1 presents a schematic diagram of presumed
baroreflex-mediated delays between blood pressure (BP)
variations and IBI variations. A change in BP affects the heart
rate first of all by fast vagal influence, which may affect the
very interval during which the systolic pressure happens, or the
next one (Pickering and Davies, 1973). In addition, the slower
sympathetic effect of BP variations on IBI is observed only after
a delay of some 2–3 s (Borst and Karemaker, 1983) and so the
length of the present IBI is affected both by the value of the
present BP and by the combined effect of a number of previous
BP values. Hence, for a slowly varying pressure this delay in the
sympathetic contribution to the BRS may counteract the expected
effect. A simple example, considering an open-loop situation:
if the sympathetic influence would have a fixed time to peak

effect of 4 s, then its action on 8-s variations in blood-pressure
(0.125 Hz) would be counter-intuitive: during an increase in
BP the sympathetic effect would tend to increase the heart
rate. The vagal action would still work to lower the heart rate
under these conditions and so an apparent negative sympathetic
contribution to the total BRS-value appears. It follows that
the observed BRS is a combination of vagal and sympathetic
effects, which leads to a frequency-dependent phase-difference
between pressure- and interval variations, as shown previously
(De Boer et al., 1987). In the present study we will stress that
BRS should not be considered as one number, but as a variable,
frequency-dependent phenomenon.

To study simultaneously the variation in time and the spectral
properties of the BRS, we applied a cross wavelet analysis
technique. We tested its use on a set of experimental data which
were available from earlier experiments in our laboratory (JMK).
Data from 10 healthy subjects were analyzed; they were relaxed,
supine (supposedly in a vagus-dominated state), then had three
periods of paced breathing, followed by a head-up tilt, which
would lead to a sympathetically dominated state. We applied
wavelet cross-spectral analysis, which revealed variable gain and
phase in the computed BRS during the experimental protocol.
Similar techniques have been used by Kashihara et al. (2009) for
data from anesthetized rabbits and by Keissar et al. (2010), both
for normal subjects and for patients with cardiovascular issues.
For comparison, we also show an analysis of the variability of
the BRS as found by the xBRS technique for the considered data
(Westerhof et al., 2004; Wesseling et al., 2017).

In addition, we performed the same spectral analysis for a set
of simulated BP and IBI data. The simulated BP values are varying
with both 0.1 Hz and a respiratory frequency (0.25 Hz). The BP
data generate IBI values, using a simple model for the vagal and
sympathetic influence on heart rate. The analysis of the simulated
data both corroborates the validity of the applied analysis
technique, and clarifies the differences in computed wavelet-
derived BRS values (wBRS) under different circumstances.

MATERIALS AND METHODS

Subjects, Experimental Conditions
We used a subset of 25-min recordings from an experimental
study into orthostatic tolerance performed in our Institute in
the period 2001–2002 under auspices of the European Space
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FIGURE 1 | Schematic diagram to explain how the simulated IBI-data were generated. The systolic pressure is considered to rapidly affect the length of the ongoing
IBI, due to the vagal effect. In addition, the values of diastoles/systoles activate the sympathetics: lower pressure values cause more activity, inducing a shorter IBI.
After a pressure change, the effect on IBI starts slowly, but lasts for some seconds, and so the considered IBI is affected by several past pressure-values, as
depicted by the arrows. The dots on the red line indicate the relative contributions of each of these previous pressure values to the ongoing beat duration, in addition
to the vagal effect.

Agency (ESA). The study had been authorized by the appropriate
Ethical Boards and subjects had given written informed consent
in accordance with the Declaration of Helsinki. The anonymized
data from 10 subjects (4f/6m) were used, average age 35 years
(range 27–47), BMI 21.9 kg/m2 (19.3–26.0). The subjects were
resting supine on a tilt table for 10 min, followed by three
frequencies of paced breathing (audio cue, 10, 6, 15/min,
respectively, each for 1.2 min, 1 min recovery); rate and hyper-
or hypoventilation were checked by continuous measurement
of expired CO2 level. Then subjects were head-up tilted (HUT)
in 1 s to a 70◦, relaxed standing position, remained leaning
against the table for 5 min and finally they were tilted back
and 2 min of relaxed supine recording followed (Gisolf et al.,
2004). In this study we used the IBI data and the derived
systolic pressures from the continuous finger blood pressure data
(Finometer, BMI-TNO, Netherlands; sample frequency 200 Hz,
start of an IBI is set by the firmware at a point that corresponds
to the very start of the systolic upslope as determined by a
proprietary algorithm).

The data were analyzed using the beat-to-beat formalism,
in which the nth systolic pressure (SAPn) gets the same index
as the IBI in which it occurs (IBIn), and for spectral analysis
purposes the time between items of the series (i.e., the sample
frequency) is set to equal the mean IBI (De Boer et al., 1984,
1985). This is the most unambiguous way to study time-
and phase-relationships between blood-pressure and IBI data
(Karemaker and De Boer, 2017).

Simulated Data
Simulated data were constructed that are similar to observed
data from our experimental protocol. A series of 2000 SAP-IBI
pairs (“heart beats”) was prepared. The pressure values consisted
of a mean value of 120 mmHg plus the sum of two time-
dependent sinusoidal contributions with frequencies of 0.1 and
0.25 Hz and amplitude 5 mmHg each. In addition, Gaussian noise
(sigma = 2 mmHg) was added. The baroreflex control of IBI
by the systolic pressures is modeled by vagal and sympathetic

contributions (Figure 1). To relate the simulated data to the
experimental protocol, the mean IBI and the vagal strength were
set at different values during the simulated “supine” period (the
first 1500 and final 200 beats) than during the “head up tilt”
period (beats 1500–1800). Mean IBI was set at 1000 ms (supine)
and 700 ms (HUT). Fast (“vagal”) and slower (“sympathetic”)
baroreflex contributions transformed the fluctuations in pressure
values into IBI-variations. The vagal BRS, affecting the length of
the very interval in which the systolic pressure occurred, was set
at 9 ms/mmHg in the supine period and at 3 ms/mmHg during
HUT. The sympathetic contribution consisted of a time-varying
contribution of previous pressures, linearly increasing from zero
to 3 ms/mmHg between 5.6 and 3.2 s before the considered
IBI, and next decreasing to zero again at 0.8 s. Gaussian noise
(sigma = 5 ms) was added. The parameters we used are taken
from our 1987 paper (De Boer et al., 1987), where a justification
for their values is given.

Analysis Technique
Wavelets are short oscillatory signals with an amplitude that
goes from zero to a maximum and back to zero; wavelets are
characterized by their shape, frequency and duration (Torrence
and Compo, 1998). To apply wavelet analysis to a signal, e.g., a
cardiovascular signal, the wavelet is convolved with the signal.
A high correlation value at a certain point in time implies that
the signal at that moment contains information at the frequency
of the wavelet. By applying a series of wavelets with different
frequencies to the signal, its frequency content at each moment in
time can be determined. This is in contrast to standard Fourier-
analysis techniques, which compute the frequency content of the
signal over a period in time.

Cross wavelet analysis is a technique that was developed
in the 1980s for the simultaneous analysis of two signals in
the frequency domain and in the time domain. It is mainly
used in fields such as oceanography (Jevrejeva et al., 2003),
meteorology (Torrence and Compo, 1998), and econometrics
(Rua and Nunes, 2009). The technique has also been applied
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for studies in circulation physiology (Kashihara et al., 2009;
Keissar et al., 2010). The great strength of cross analysis is that
it enables one to study how spectral features evolve over time.
Hence values for magnitude, BRS, phase and coherence can be
determined as a function of time. Using classical cross spectral
analysis, one obtains only a single value for these parameters for
each considered time period. In this paper, we consider the BP-
IBI interaction as an open-loop system, i.e., the variation of IBI is
due to BP fluctuations by means of the baroreflex control system.

We utilized the continuous wavelet transform from the
MATLAB

R©

Wavelet Toolbox (MATLAB
R©

R2018b), which is
both powerful and very user-friendly. We kept most MATLAB

R©

default settings, using Morse wavelets and four octaves with 12
steps each for the logarithmically distributed frequency values
(49 frequencies). For our purpose, mainly the MATLAB

R©

cwt-
function and the wcoherence-function were needed, for the one-
dimensional wavelet transform and for the wavelet coherence
and cross-spectrum, respectively. The wcoherence function was
slightly modified to obtain non-normalized values for the
wavelet cross spectrum.

The wBRS and the phase angle φ between systolic pressure and
IBI were computed as follows:

wcsSS, wcsII, and wcsSI are the cross spectra of SAP vs. SAP,
IBI vs. IBI, and SAP vs. IBI, respectively. For a registration with N
beats, the dimension of these complex matrices is N × 49. Next,
in matrix-notation:

wBRS =
abs (wcsSI)
abs (wcsSS)

φ = angle (wcsSI)

r2
=

abs (wcsSI)2

abs (wcsSS)× abs (wcsII)

This results in three matrices for wBRS, φ and r2, each with
size N × 49. Values were discarded where r2 < 0.5, because for
low coherence the wBRS and phase angle φ cannot be reliably
estimated (De Boer et al., 1985; p. 353). For N beats, N × 2 values
of intervals and pressure are given. Hence, the resulting data in
the N × 49 matrices contain much dependency. For smoothing
purposes, we used a moving average filter with width

√
N/2, i.e.,

32 for a recording of 2000 beats. The apparent frequency in the
wavelet spectra is derived from the global sample rate, which is
one over the averaged IBI. Because the local sample rate is one
over the local IBI, this apparent frequency will vary with the local
IBI (as will be visible in Figures 7A,B).

In order to study separately the low frequency 0.1 Hz-range
and the higher frequency respiratory frequency range, wBRS-
values and phase angle values were averaged in two octave-sized
frequency-ranges: 0.07–0.15 Hz (LF) and 0.15–0.3 Hz (HF).
Hence for the averaging over the frequencies, adjusted frequency
ranges were used, with f adj = f × (IBIlocal/IBItotal), where IBIlocal
is computed with a moving average filter with width

√
N/2.

xBRS-Computation
We computed the instantaneous baroreflex sensitivity (xBRS)
by the cross-correlation of blood pressure and interbeat

interval (IBI) in a 10-s sliding window as described by
Westerhof et al. (2004). In short: a 10 s window moves in 1-s
steps over the SAP and IBI signals, and values are resampled
at a 1 s rate after application of a cubic spline. Then, cross-
correlations of SAP and IBI are computed in this window with 0,
1, 2, and 5 s delay. The delay with the highest cross-correlation
value is taken as optimal delay τ. If this value is positive and
significant at p < 0.05, the quotient of the standard deviations
of IBI and of SAP is taken as the local xBRS value. For details see
also Wesseling et al. (2017).

RESULTS

Example for Subject A
We present the analysis of the data for the first subject in
our protocol. Figures 2A,B are the recordings of the IBI and
SAP during the experimental procedure. The two vertical lines
indicate the moments of the tilt up and the tilt down procedure,
respectively. During the HUT-period, both the value and the
variability of the IBI decrease, while little change is seen in the
blood pressure values.

Figures 3A,B present the wavelet-power of the IBI- and SAP-
data over the same period; vertical is the frequency in mHz,
and the color in each point indicates the amount of spectral
power at this frequency at this moment in time. The vertical
color bar indicates the numeric values. A horizontal dotted line
is drawn at frequency 0.1 Hz. In Figure 3A mainly respiratory
influence is seen for the IBI-spectrum around the 0.18 Hz
range, which disappears during the HUT period. The effect of
a short episode of forced 0.1 Hz breathing at around 12 min is
visible in the figure. The respiratory influence in the spectrum
of SAP values (Figure 3B) is less clear, while some spectral
contributions in the very low-frequency (<0.07 Hz) range may
exist, but we focus in this paper on the higher frequencies.
For this subject, a short burst of power is visible in the SAP
spectrum around 23 min due to the tilt-down activity [Of note:
this is not a movement artifact in the recording, but due to
the cardiovascular dynamics during and after a fast tilt-down
maneuver (Van Heusden et al., 2006)].

Next, Figure 3C presents the wavelet cross-spectrum of IBI
and SAP, where the color indicates the value of the squared
coherence r2. The arrows indicate the phase φ between IBI and
SAP variations, but arrows are only drawn in time-frequency
positions where r2 > 0.5. A horizontal arrow (“3 o’clock”)
indicates no phase difference between IBI and SAP (φ = 0◦),
and an arrow pointing downward in the 6 o’clock direction
implies SAP-variations to lead IBI-variations by 90◦ (φ = −90◦),
Figure 3C suggests during the supine period – until 18 min –
mainly a φ = 0◦ value in the HF range, but during the HUT
period (18–23 min), the phase is approximately φ = −60◦. The
same value of approximately φ = −60◦ is seen around 0.1 Hz
under both experimental conditions, except in the case of paced
breathing at that frequency (around 12 min, Figure 2). Note that
a phase delay of−60◦ at a frequency of 0.1 Hz amounts to a delay
of 1.7 s, or one and a half beat in the supine period, or almost
three beats during HUT.
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FIGURE 2 | Example registration of IBI (A) and SAP (B) data for a resting supine subject, who is passively moved to a 70◦ head-up-tilt position and back (between
the vertical lines). In this case, a large increase in heart-rate during HUT is observed, while the blood pressure level is hardly affected.

Figure 3D presents the computed wBRS for the various
frequencies, where the values are indicated by the color bar.
The wBRS values are shown only when r2 > 0.5. During the
supine intervals the wBRS is seen to be in the 30–50 ms/mmHg
range, while during HUT the wBRS is much lower and is more
clearly defined at lower frequencies.

To differentiate between LF and HF variability, we present in
Figures 3E–H plots of the various variables over time, averaged
over the LF range (red line) and over the HF range (black line).
In Figure 3E, the spectral powers of IBI for both frequency
ranges are not too different, but large fluctuations are seen during
the supine period. The power becomes much less during HUT.
For the spectral values of SAP (Figure 3F), the power tends to
increase during HUT. The spike at the end of the HUT period
was discussed above.

During the supine period the phase between variations
in IBI and SAP is around 0◦ for the HF band; its value
fluctuates between 0◦ and around −60◦ for the LF band
(Figure 3G). During HUT the phase is approximately −60◦
for both frequency bands. The wBRS-values (Figure 3H) show
considerable variability during the supine period, with larger
values of 30–45 ms/mmHg in the HF band than in the LF band
(15–35 ms/mmHg). During HUT, the wBRS diminishes to values
below 10 ms/mmHg.

All Subjects
The same analysis was performed for the experimental recordings
from all ten subjects. The relevant data are summarized in
Table 1, where the subjects are ordered according to their
supine IBI. Although variability exists between the results of
the different subjects, supine, and HUT conditions are seen to
produce highly different results. The paired two-tailed Student’s
t-Test was applied to the results for the supine and HUT periods.
As shown in Table 1, the differences between wBRSsupine and
wBRSHUT were found to be highly significant, both for the low
and the high frequency range. Phase differences between the
supine and HUT period were not significant for the LF, but highly
significant for the HF.

wBRS-Variability
For comparison purposes, the data of Figure 2 were also
analyzed by the sequential xBRS-method (Westerhof et al., 2004;
Wesseling et al., 2017). Figure 4 shows the xBRS values together
with the wBRS values for LF and HF from Figure 3H. The
peaks and troughs in the signals of the xBRS-curve and the HF
wBRS curve are rather similar, and the low BRS value during
the HUT-maneuver is evident in all three curves. Figures 5A,B
are scatterplots of xBRS vs. the LF and HF wBRS, respectively.
Data are shown from the supine (black) and HUT (red) periods.
A clear correlation between the values is seen between the xBRS
and wBRS datasets, which have been computed using rather
different methods.

Simulated Data
For the simulated IBI and SAP data (see section “Materials and
Methods”), the same analysis was performed. Figures 6A,B show
the IBI and SAP values, and Figures 7A,B present the wavelet
spectral values as a function of time. The vertical axis shows
the frequency as derived from a constant sample rate equal to
one over the global mean of IBI (0.96 s in this simulation).
However, with the wavelet technique results are obtained for
frequencies related to the local sample rate, which is one over
the local IBI (see Figure 6A): 1.0 s for beats 1–1500 and 1801–
2000 (“supine”) and 0.7 s for beats 1501–1800 (“HUT”). Hence
the apparent frequency in the wavelet spectra varies with the
local IBI: the imposed 0.1 and 0.25 Hz frequencies appear at
somewhat higher values during the supine period, and at lower
values during HUT.

The wavelet cross spectrum in Figure 7C shows a high
coherence, except at the moments of transition from supine to
HUT and vice versa. Figures 7D–H show for the simulated data
similar information as Figures 3D–H. Especially Figures 7G,H
demonstrate that the wavelet analysis is well able to derive specific
information from the SAP- and IBI-data. The various conditions
(simulated supine vs. HUT) lead to quite different phase angles
(Figure 7G) and wBRS-values (Figure 7H) in the two frequency-
ranges. In the Appendix we show that these wavelet-derived
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FIGURE 3 | Wavelet analysis of IBI and SAP variability, and resulting BRS and phase between SAP and IBI for the data from Figure 2. The colors in the upper panels
show the spectral power for each frequency and for each point of time, (A) for IBI and (B) for SAP. The 0.1 Hz frequency is indicated by a dotted line. (C) shows the
wavelet coherence r2 (color) and phase (arrows) between SAP and IBI. Arrows pointing in the 3 o’clock indicate zero phase difference. Phase is shown only where
r2 > 0.5. In (D), the BRS is calculated from the data in the first two panels (only where r2 > 0.5). In (E,F), the mean spectral power in the LF band (red line) and in HF
band (black line) is shown for IBI and SAP variability. (G,H) show the mean phase between SAP and IBI and the mean BRS for both frequency bands. A negative
phase implies SAP-variations leading IBI-variations.

Frontiers in Neuroscience | www.frontiersin.org 6 July 2019 | Volume 13 | Article 694

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00694 July 5, 2019 Time: 15:16 # 7

de Boer and Karemaker Wavelet Analysis Detects Instantaneous BRS

TA
B

LE
1

|S
um

m
ar

y
of

th
e

re
su

lts
fo

r
th

e
10

su
bj

ec
ts

,o
rd

er
ed

ac
co

rd
in

g
to

su
pi

ne
IB

I.

w
B

R
S

P
ha

se

w
B

R
S

LF
w

B
R

S
H

F
P

ha
se

LF
P

ha
se

H
F

su
p

in
e

–
H

U
T

su
p

in
e

–
H

U
T

S
ub

je
ct

IB
I±

S
D

(s
)

S
A

P
(m

m
H

g
)

(m
s/

m
m

H
g

)
(m

s/
m

m
H

g
)

(d
eg

re
es

)
(d

eg
re

es
)

(m
s/

m
m

H
g

)
(d

eg
re

es
)

S
up

in
e

H
U

T
S

up
in

e
H

U
T

S
up

in
e

H
U

T
S

up
in

e
H

U
T

S
up

in
e

H
U

T
S

up
in

e
H

U
T

LF
H

F
LF

H
F

J
0.

64
±

0.
04

0.
59
±

0.
04

12
9
±

4
14

7
±

7
8.

1
±

2.
7

4.
7
±

1.
2

12
.3
±

3.
0

5.
7
±

1.
4
−

86
±

18
−

77
±

26
−

70
±

13
−

76
±

12
3.

4
6.

6
−

10
6

C
0.

65
±

0.
04

0.
58
±

0.
02

11
4
±

6
11

5
±

7
6.

2
±

1.
7

4.
7
±

1.
5

8.
2
±

2.
8

5.
1
±

1.
2
−

59
±

18
−

57
±

15
−

58
±

19
−

52
±

22
1.

5
3.

1
−

3
−

5

F
0.

76
±

0.
06

0.
64
±

0.
05

11
2
±

7
11

1
±

9
11

.0
±

4.
3

4.
2
±

0.
8

18
.5
±

5.
7

5.
3
±

1.
0
−

41
±

20
−

54
±

14
−

32
±

30
−

63
±

8
6.

8
13

.2
13

31

A
0.

98
±

0.
10

0.
63
±

0.
03

11
5
±

6
11

9
±

6
24

.1
±

12
.1

5.
0
±

1.
4

38
.6
±

12
.1

7.
2
±

1.
4
−

35
±

38
−

61
±

17
−

4
±

23
−

61
±

15
19

.1
31

.4
26

57

E
0.

94
±

0.
08

0.
73
±

0.
06

11
1
±

6
12

2
±

7
12

.5
±

3.
7

7.
5
±

2.
7

26
.6
±

7.
7

11
.5
±

4.
8
−

83
±

21
−

67
±

45
−

46
±

15
−

63
±

17
5.

0
15

.1
−

15
17

G
0.

99
±

0.
08

0.
75
±

0.
06

10
2
±

6
10

6
±

7
14

.6
±

4.
9

7.
3
±

1.
6

19
.8
±

5.
6

7.
9
±

1.
7
−

50
±

14
−

62
±

12
−

25
±

18
−

70
±

10
7.

3
11

.9
12

45

H
1.

04
±

0.
03

0.
82
±

0.
03

10
2
±

4
11

8
±

8
8.

0
±

3.
2

4.
2
±

1.
1

11
.9
±

3.
7

4.
3
±

1.
1
−

48
±

26
−

65
±

16
−

21
±

21
−

71
±

16
3.

8
7.

6
17

50

I
1.

02
±

0.
07

0.
87
±

0.
06

11
7
±

7
11

7
±

6
13

.0
±

5.
6

8.
8
±

3.
7

24
.9
±

7.
7

14
.7
±

4.
1
−

63
±

31
−

74
±

18
−

18
±

21
−

18
±

15
4.

2
10

.2
11

−
1

D
1.

03
±

0.
06

0.
87
±

0.
07

10
4
±

5
11

0
±

6
11

.4
±

4.
2

6.
8
±

1.
8

18
.5
±

6.
5

9.
5
±

2.
0
−

46
±

38
−

41
±

64
−

33
±

20
−

44
±

15
4.

6
9.

0
−

5
11

B
1.

31
±

0.
10

0.
95
±

0.
08

11
3
±

5
11

3
±

6
24

.4
±

12
.8

9.
5
±

2.
3

47
.4
±

13
.6

14
.1
±

4.
2
−

30
±

44
−

34
±

12
4
±

20
−

18
±

17
14

.9
33

.3
4

22

M
ea

n
±

S
E

M
0.

94
±

0.
06

0.
74
±

0.
04

11
2
±

3
11

8
±

4
13

.3
±

2.
0

6.
3
±

0.
6

22
.7
±

3.
9

8.
5
±

1.
2
−

54
±

6
−

59
±

4
−

30
±

7
−

54
±

7
7.

1
±

1.
8

14
.1
±

3.
2

5
±

4
23
±

7

p-
va

lu
e:

0.
00

3
0.

00
2

0.
25

0
0.

00
8

∗
∗

−
∗

Fo
r

ea
ch

su
bj

ec
t,

se
pa

ra
te

su
pi

ne
an

d
H

U
T

va
lu

es
(m

ea
n

an
d

st
an

da
rd

de
vi

at
io

n)
ar

e
gi

ve
n

fo
r

IB
I,

S
A

P,
an

d
w

B
R

S
an

d
ph

as
e

(S
A

P
vs

.
IB

I)
fo

r
bo

th
fre

qu
en

cy
ra

ng
es

.
Th

e
la

st
co

lu
m

ns
gi

ve
th

e
di

ffe
re

nc
e

be
tw

ee
n

m
ea

n
w

B
R

S
an

d
m

ea
n

ph
as

e
fo

r
su

pi
ne

an
d

H
U

T
co

nd
iti

on
s.

Th
e

ro
w

in
di

ca
te

d
“M

ea
n”

sh
ow

s
th

e
m

ea
n

an
d

st
an

da
rd

er
ro

r
of

th
e

va
ria

bl
es

.T
he

p-
va

lu
es

fo
r

th
e

pa
ire

d
tw

o-
ta

ile
d

S
tu

de
nt

’s
t-

te
st

ar
e

gi
ve

n.

FIGURE 4 | Comparison of the computed xBRS (dotted line) with the wavelet
BRS in the LF range (drawn red line) and the HF range (black). Data are for the
subject of Figure 2. The HUT period is indicated.

values correspond well with the theoretical values as derived from
the simulation parameters.

DISCUSSION

In this paper we apply a wavelet technique to analyze the
cardiovascular regulation by the baroreflex during varying
physiological conditions (supine and head-up-tilt). Using data
from healthy subjects, we show that both the magnitude and
the phase of the wBRS − being the wavelet derived BRS in
open loop representation − differ between the supine condition
and during a head-up-tilt maneuver. Analysis of simulated data
demonstrates that the applied technique retrieves the correct
parameters from the simulation (see Appendix). The main
purpose of this paper is to describe the analysis technique and to
demonstrate how the results can be applied to better understand
the relations between cardiovascular signals. Therefore, we do
not emphasize the interindividual differences between subjects
nor the statistical characteristics of the method. This also applies
to possible time patterns in the variability of the instantaneous
wavelet results: in an earlier publication the 20–50 s variations
in xBRS were attributed to the interaction of respiratory and
cardiovascular control in the resting state. The present study was
not designed to investigate this issue further.

Although several authors have used wavelet techniques in
the study of cardiovascular regulation (e.g., Brychta et al., 2006;
Stankovski et al., 2013; Singh et al., 2018), only few papers
are known to us which applied cross wavelet techniques for
the analysis of blood-pressure and heart-rate variability (Keissar
et al., 2006, 2008, 2010; Kashihara et al., 2009). The first papers
of Keissar et al. (2006, 2008) show principally the usefulness
of this technique in the study of the ANS. In their 2010 paper
these authors present the fluctuations of computed BRS values
for supine subjects and during active standing up. In their
registration the BRS values vary less rapidly compared to our
results. We assume this to be due to the differences in analysis
techniques. Kashihara et al. (2009) used wavelet techniques
to identify the dynamic baroreflex properties from transient
changes of step pressure inputs in anesthetized rabbits. Both
Orini et al. (2010, 2012), Carrasco-Sosa and Guillen-Mandujano
(2012) and Carrasco-Sosa and Guillén-Mandujano, 2013 used a

Frontiers in Neuroscience | www.frontiersin.org 7 July 2019 | Volume 13 | Article 694

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00694 July 5, 2019 Time: 15:16 # 8

de Boer and Karemaker Wavelet Analysis Detects Instantaneous BRS

FIGURE 5 | Scatterplots of xBRS vs. the wavelet BRS in the (A) LF and (B) HF range. The black dots indicate data points in supine position, and red dots are for
HUT. The black line of identity is shown.

FIGURE 6 | Simulated IBI (A) and SAP (B) data as described in section “Materials and Methods.” In the simulation, during the “HUT”-period (25 to 28.5 min) the
mean IBI is decreased from 1.0 to 0.7 s and the vagal influence is reduced.

different time-frequency analysis method [SPWVD: smoothed
pseudo Wigner–Ville distribution (Xiang and Hu, 2012)]
to dynamically assess the spontaneous BRS under varying
physiological conditions. In our opinion, the wavelet approach
has similar power as the SPWVD approach and is conceptually
more straightforward. In addition, the wavelet computation is
now readily available in the powerful MATLAB

R©

toolbox.
The summary of data presented in Table 1 indicates that

BRS under supine conditions is higher than during the HUT
period, both for the low and high frequency parts of the signals
(Cooke et al., 1999). In the LF range, the mean phase difference
between SAP to IBI was similar at −54◦ and −59◦ for the supine
and HUT conditions, respectively. This corresponds well with
the phase angle of around 70◦ as suggested by the 1987-model
from De Boer et al. (1987). In accordance with this model,
the phase for the HF variations was much lower (mean: −30◦)

for the data from the supine period; however, during HUT
again a value of −54◦ was found, indicating a departure from
the simple model.

We put the wBRS-technique to the test in two different ways.
First, we compared the wBRS-results, separately for LF and HF,
to the xBRS-method, which is a completely different technique
to obtain a high rate of BRS-estimates in time (cf. Figures 4, 5).
xBRS was shown to take a mid-position between LF-wBRS and
HF-wBRS, which can be understood because xBRS is estimated
in a sliding 10-s window and therefore both respiratory and 10-s
variations will affect the resulting regression coefficient between
BP and IBI. Figure 5B shows a good correlation between xBRS
and HF-wBRS, with, as to be expected, consistently lower values
for xBRS (Frederiks et al., 2000).

As a second test, we constructed a set of simulated SAP data,
which controlled the IBI data through simulated sympathetic
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FIGURE 7 | Wavelet analysis of IBI and SAP variability and resulting BRS for simulated data. The layout of this figure is identical to Figure 3. The colors in the upper
panels show the spectral power for each frequency and for each point of time, (A) for IBI and (B) for SAP. (C) shows the wavelet coherence r2 (color) and phase
(arrows) between SAP and IBI. In (D), the BRS is calculated from the data in (A,B). In (E,F), the mean spectral power in the LF band (red line) and in HF band (black
line) is shown for IBI and SAP variability. (G,H) show the mean phase between SAP and IBI and the mean BRS for both frequency bands. A negative phase implies
SAP-variations leading IBI-variations. The imposed frequencies are 0.1 and 0.25 Hz but due to our beat-to-beat approach the apparent frequencies are slightly
higher during the supine period, and lower during the (shorter) HUT period.
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FIGURE 8 | Vector addition of the frequency-dependent vagal and sympathetic BRS contributions for simulated data. The black vector indicates the vagal BRS
contribution, coinciding in phase with the SAP variation. The blue vectors are the sympathetic BRS contributions, varying in size and direction, as suggested by
Figure 1. The sum of vagal and sympathetic contributions determines the total BRS-vector (red), which controls the IBI-variations, the phase of which differs in
general from the SAP phase. (A,B) are for the simulated supine conditions, with frequency 0.1 and 0.25 Hz, respectively. The orientation and size of the dashed
vector in (A) is explained in detail in the text. (C,D) are for the HUT condition, with faster IBI and less vagal contribution. The figure shows that a variety of phase
angles and BRS magnitudes can result from the combination of vagal and sympathetic effects.

and parasympathetic involvement. The Appendix shows how the
computed wBRS values and the phase angles between variations
in SAP and IBI can be well explained by the vector-addition of the
vagal and sympathetic BRS-contributions (Figure 8 and Table 2).
The Appendix also demonstrates that in the case of interaction of
parasympathetic and sympathetic drive the apparent BRS-value
can be quite different from expectation.

We did not specifically analyze the short periods of paced
breathing in the protocol; in particular the period of 6 breaths
per minute is, generally, well-recognizable in IBI, not so much in
BP (cf. Figure 2 at 12 min), therefore, it also appears clearly in the
IBI spectrum (e.g., Figure 3A).

The large fluctuations in observed values, both for wBRS and
xBRS, are notable. In earlier publications it has been argued
that the blood pressure controlling system is working by noisy
parameters, and hence large intrinsic variability results, even
when time-averaged values are determined (Westerhof et al.,
2004; Eckberg and Kuusela, 2005; Karemaker and Wesseling,
2008; Wesseling et al., 2017). Since our data come from resting,
healthy subjects, the variability observed in this paper might be
pointing directly at the inner working of what also is found by
more abstract approaches such as entropy of the observed beat-
to-beat values of IBI and BP (Richman and Moorman, 2000).
The disappearance of variability after induction of anesthesia
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FIGURE 9 | Bode plot of BRS for simulated supine and HUT data. The size
(A) and the phase angle (B) of the BRS vector are given as a function of
frequency, both for the supine (drawn line) and the HUT conditions (dotted
line).

(Scheffer et al., 1993) is another argument why we consider the
variability of wBRS and phase relations between BP and IBI to
be real phenomena rather than the result of intricate calculations
applied to inherently poor-quality, noisy data.

The system that regulates blood pressure and heart rate is
a closed loop feedback system: blood pressure controls heart
rate through the baroreflex, and the heart rate controls the

TABLE 2 | Calculated length (BRS) and phase angle of the BRS-vectors, relating
the IBI and SAP variations in our simulated data.

Vector-summation

IBI Vagal BRS Freq. BRS Phase

(s) (ms/mmHg) (Hz) (ms/mmHg) angle

Supine 1.0 9 0.10 8.4 −40◦

Supine 1.0 9 0.25 9.7 10◦

HUT 0.7 3 0.10 7.6 −94◦

HUT 0.7 3 0.25 4.6 33◦

Supine 1.0 9 0.16 4.7 4◦

HUT 0.7 3 0.16 3.2 172◦

The first two rows are with the simulation parameters for the “supine” period
(Figures 8A,B) for the two imposed frequencies (0.1 and 0.25 Hz). The next
two rows are for the “HUT” simulation (Figures 8C,D). In addition, values are
given for an imposed frequency of 0.16 Hz (Figures 10A,B). In the latter case,
under simulated HUT conditions the sympathetic influence dominates, leading to
antiphase between IBI and SAP values.

blood pressure - to some extent - through diastolic runoff
(Windkessel effect) and Starling’s law (De Boer et al., 1987; Faes
et al., 2011; Porta et al., 2011). In ambulatory conditions, the
separate determination of open- and closed loop gains is complex
(Parati et al., 2019) and therefore often pharmacological methods
are used for this purpose, applying Granger causality tests
(Porta et al., 2013). A different approach to the study of causal
couplings between the various cardiovascular parameters is in
the information domain studies, often applying entropy measures
(Faes et al., 2011; Javorka et al., 2017a,b, 2018). The technique we
present in this paper only considers the baroreflex control of heart
rate, which amounts to an open-loop analysis. This is justified
if the feedforward gain of the baroreflex control is much larger
than the feedback gain, each gain being scaled according to the
noise entering the system at both ends of the loop (De Boer, 1985,
p. 154). Although the observed phase-relationship between SAP-
and IBI-variability that we present in this paper can be explained
by a high baroreflex gain including sympathetic contributions,
this result certainly does not yet prove that the baroreflex is the
dominant factor in the cardiovascular loop.

FIGURE 10 | Vector addition of vagal and sympathetic BRS contributions for the 0.16 Hz frequency, both for the supine (A) and the HUT condition (B). Around this
frequency the Bode plot (Figure 9B) shows for the HUT condition a phase angle of ±180◦. Note the antiphase between SAP and IBI variations in (B).
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In this paper we extended these earlier studies into
the moment-to-moment variability of the condition of the
autonomic nervous system (ANS). Heart rate- and blood pressure
variability are considered to be reflections of the ANS, but most
techniques to catch its condition in a number require extended
periods of time. For instance, the recommendation of the “Task
Force” (Malik et al., 1996) prescribes a period of at least 5 min to
obtain stable measures. This shows the clash of requirements: on
the one hand the cardiologist/clinician who needs a set number
to describe a patient’s condition, a number that can show health
or disease, and on the other hand the investigator/clinician who
wants to look into the ANS and see how it changes and adapts
to instantaneous stimuli, external or internal. In the latter case
heart rate and blood pressure variability, and also the computed
BRS, are only substitutes for what really is going on inside the
central nervous system.

CONCLUSION

The wavelet approach is an elegant way for time-frequency
analysis of cardiovascular data. It enables the estimation of
(cross)spectra and derived quantities such as wBRS during time-
varying conditions without the need of arbitrary cut-offs. From
the cross spectra, one obtains both the coherence and the phase
between two signals, which can be used as a strict test for model-
based studies. This gives a new way to manage, for instance, the

data streams that are collected in intensive care clinical settings,
but it may also point the way to a more appropriate use and
interpretation of the multitude of e-health data which more and
more people are collecting.
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APPENDIX

Explanation of the Cross Spectral
Results for the Simulated Data
This appendix shows how the amplitudes and phase angles of the
wBRS values as presented in Figures 7G,H can be derived from
the time-course of the BRS as assumed in the simulations.

In our open-loop simulation, the varying SAP values affect
the length of the successive intervals by the vagal contribution –
acting on IBI without delay – and by the slower sympathetic
contributions (Figure 1). The vagal BRS is taken as 9 and
3 ms/mmHg in the supine and HUT condition, respectively, and
the strength of the sympathetic BRS is taken as increasing from
zero to 3 ms/mmHg in the time span of 5.6–3.2 s before the
considered IBI, and then decreasing to zero again at 0.8 s before
the IBI. In the following calculation only small deviations of the
mean values are considered and so the SAP and IBI values may be
considered to be equally spaced at distances 1000 (“supine”) and
700 ms (“HUT”).

The wavelet analysis decomposes the fluctuations in SAP and
IBI into their constituent frequencies, where the phase-angles
between the SAP- and IBI-components may vary. Then, for every
frequency the quotient of the IBI- and SAP-components results
in a BRS-vector, which has a magnitude and phase angle [see also
De Boer (1985, pp. 157–159)].

An example to manually compute the BRS from simulated
data: consider Figure 8A, which represents 0.1 Hz fluctuations
during the “supine” period, i.e., the mean IBI is taken as 1000 ms
and the vagal contribution to the BRS is 9 ms/mmHg. Both the
0.1 Hz SAP-variation and the 0.1 Hz IBI-variation are presented
as rotating vectors in this diagram. The phase of the 0.1 Hz SAP-
variation is defined as 0◦ (direction of 3 o’clock in the figure)
and rotation in this figure is anticlockwise. The variation in
IBI is determined by a number of previous SAP values through
the action of the baroreflex. In our simulation the vagal BRS
contribution (no delay!) has also a phase of 0◦ and a strength
of 9 ms/mmHg (heavy black arrow in Figure 8A). As to the
sympathetic influence: the preceding SAP values have different
weights and lags in their contribution to the total BRS (Figure 1).
The sympathetic contribution of each SAP-value to the total BRS
appears in Figure 8A as a vector (blue arrow).

For example: the dashed arrow indicates the baroreflex
contribution of SAPn − 3 to IBIn. This SAP value leads the
considered IBI by three beats or 3 s, which implies a phase angle

of 3/10 × 360◦ = 108◦ for the considered 0.1 Hz contribution.
The length of the dashed vector is given by the strength of the
BRS-contribution at each instant, 2.75 ms/mmHg in this case. In
a similar way the other sympathetic vectors are calculated. For
a mean IBI value of 1.0 s, five previous SAP-values contribute
to the sympathetic effect, with strengths 0.25, 1.5, 2.75, 2.0, and
0.75 ms/mmHg., and phase angles −36◦, −72◦, −108◦, −144◦,
and−180◦, respectively. These vectors are added to the vagal BRS
(9 ms/mmHg) and the vector summation results in a total BRS
(red arrow) of magnitude 8.4 ms/mmHg and a phase angle of
−39.8◦, which also represents the relative size and phase angle
of the IBI-variation at this frequency.

The figure shows that interval variations lag behind pressure
variations, as expected for a baroreflex-effect. The computed
magnitude and phase angle values correspond with the wBRS
results as shown in Figures 7G,H for the 0.1 Hz variations in the
“supine” period.

In an identical manner, the resulting BRS-vectors for the HF
band (Figure 8B) and for the “HUT” data (Figures 8C,D) are
calculated (Table 2, top four lines). The results are always in
agreement with the wavelet results from Figures 7G,H, although
minor differences exist due to the presence of the added random
noise in the simulated data.

The vector plots show that the delayed action of the
sympathetic influence results in a frequency dependent BRS
value, which needs not be in phase with the pressure variations.
This is illustrated in Figure 9, which shows the Bode plot
(magnitude and phase) for the frequency dependence of the BRS
for our simulated data, both for the supine conditions (drawn
line) and for the HUT period (dashed line). Figure 9A shows
that under supine conditions (drawn line) a slightly different
frequency of the “10-second rhythm,” for example 0.08 Hz or
0.12 Hz, results in quite different apparent BRS-values, 11 and
6 ms/mmHg, respectively. For the simulated HUT conditions,
the phase plot (Figure 9B, dotted line) shows around 0.16 Hz
a phase angle of ±180◦, implying that for this frequency the
interval variations are in antiphase with the pressure variations.
Figure 10 shows the vector-plots of the BRS for this 0.16 Hz
frequency: both for the supine and for the low-vagal-BRS HUT
condition the sympathetic BRS-contribution is seen to counteract
the vagal BRS action. Although this might be a questionable effect
which exaggerates physiologically realistic conditions, the lag in
the sympathetic effect can be expected to influence observed BRS
values to a great extent.
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