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BRAIN, NATURAL INTELLIGENCE, AND COGNITIVE
DEVELOPMENTAL ROBOTICS

Understanding cognitive functions and mechanisms of development in animals is essential for
the future generation of more intelligent systems (Hirel et al., 2011; Hassabis et al., 2017). In
traditional robotics the robots perform predefined tasks in a fixed environment. However, the
field of modern robotics is seeking approaches to develop artificial systems to execute tasks in less
predefined dynamic environments. Such robotic systems should learn from information extracted
from the environment to demonstrate actions like natural intelligence (Matarić, 1998). However,
such capabilities cannot be achieved sufficiently with classical control approaches (Christaller, 1999;
Hassabis et al., 2017).

Bio-inspired robots are usually developed using general network architectures of biological
neural systems (Meyer andGuillot, 2008), synaptic plasticity (Grinke et al., 2015), correlation-based
learning rule with synaptic scaling (Tetzlaff et al., 2011). Recent progresses in cognitive sciences
and developmental neurobiology have promoted a new branch of robotics named “Cognitive
Developmental Robotics (CDR)” (Asada et al., 2009; Asada, 2013; Min et al., 2016). Such robots
behave in response to a dynamic environment by Spiking Neural Networks based controllers. CDR
has emerged as a scientific field of research aiming to develop robots with abilities to effectively
interact with dynamic environments and show brain-like cognitive abilities such as memory and
learning. CDR has just started and its design principles and methodology have not been established
(Wang et al., 2002).

To construct a software of a CDR system, a computational model of agent-environment
interaction that define dynamical response of the CDR executed by a SNN with a sufficient
architecture is required. Briefly, it is done as follows (Asada et al., 2009; Asada, 2013; Xu et al.,
2014):

Step 1. Propose a hypothesis based on the simplification of known experimental data (so far,
mainly at synaptic or network levels). The hypothesis is translated into an efficient
algorithm.

Step 2. Conduct computer simulations by implementing the algorithm that is expected to be
efficient for real robots from a computational complexity point of view.

Step 3. Verify the proposed hypothesis with a real robot. If hypothesis does not work, then propose
a new hypothesis and go to step 1.
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There are many challenges to implement natural intelligence
in artificial neural systems including CDR (Xu et al., 2014).
This is mainly due to the high number of neuronal populations
involved in many cognitive functions, diversity of neuron types
(e.g., 122 neuro types in rat hippocampus), and morphological
features of neurons in sub-regions of the brains that influence
different modes of spiking in neurons (burst, sparse, and
normal spiking; Wheeler et al., 2015). In addition, cellular event
and molecular pathways underlying neuronal changes through
cognitive phenomena that take place in different time scales
from seconds to days (Tetzlaff et al., 2012) are essential for
investigating the cognitive abilities and to implementing them in
CDR (Figure 1).

Memory and forgetting of learned knowledge from dynamic
environments are essential for life by sensing certain (and
important) features of the environment to react accordingly.
Exploring the mechanisms of learning and memory are essential
for understanding of higher cognitive functions of the brains and
so to develop future CDR systems.

Current cognitive artificial systems are based on the
designer’s understanding of the possible mechanisms. Designer’s
understanding of the cognitive function can be used for

FIGURE 1 | The integration of three levels of neuronal information for developing future generation of CDR. Molecular and cellular information underlying learning and

memory are mainly modeled by Computational Systems Biology approaches (CSB). Neural Network information is modeled by Computational Neuroscience

approaches (CN). Current Cognitive Developmental Robotics (CDR) is based on Neural Networks information; however, here we argue that the use of different levels

of information by combining CSB and CN approaches in bioinspired Spiking Neural Networks (SNN) will help develop more intelligent CDR.

controller structure in the cognitive developmental robot’s
brain.

COMPUTATIONAL SYSTEMS BIOLOGY OF
LEARNING AND MEMORY

Many signaling pathways allow the neuron to receive,
process, and respond to information from other neurons
while components of different pathways interact, resulting in
signaling networks. To understand learning and memory in
neural systems at the systems level, the understanding of the
structure and dynamics of cellular and biochemical function,
rather than the characteristics of isolated parts of the brain are
required (Kandel et al., 2014).

A system-level understanding of a neuronal system can be
described as the network of gene interactions and biochemical
pathways, as well as the mechanisms by which such interactions
modulate the electrophysiological properties of neurons.
Computational systems biology methods analyze biochemical
signaling networks to model their role in complex biological
processes (Kitano, 2002; Kotaleski and Blackwell, 2010).
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To predict and investigate the properties of neural systems,
computational neuroscience and computational systems biology
use computational approaches to investigate more or less
the same neural systems but unfortunately there has been
little interaction between the two fields to explore neural
mechanisms of cognition (De Schutter, 2008). Despite the
similarity in aims and approaches of computational systems
biology and computational neuroscience, many computational
neuroscientists have little interest in molecular process of
neurons (Figure 1; De Schutter, 2008).

COGNITIVE DEVELOPMENTAL ROBOTICS:
OPPORTUNITIES AND CHALLENGES

The new generation of SNNs and their application in CDR
research can benefit from the combination of computational
systems biology and computational neuroscience approaches
to develop novel algorithms for brain-like architectures with
cognitive capabilities, especially memory and learning. For this
purpose, a delicate simplification of complex molecular and
cellular mechanisms and implementation of such computational
approaches in artificial neural systems allows SNNs accurately
capture human and animal behavior (Figure 1).

To consider developing brain-like architectures, we should
note that biological neurons show a variety of morphological
features like dendrite and axon shapes, spiking features, and
different synaptic mechanisms (Wheeler et al., 2015). An
important neuroscience research stream that may affect robotic
studies would be the study of role and mechanisms of sparse,
burst as well as normal spiking patterns in different neurons
(Mendis et al., 2016).

The question is how these variations are correlated with
cognitive functions and more importantly how to development
them in SNNs. The implementation of biophysical and
morphological features of different neurons in different parts of
the brain is an essential progress toward developing of intelligent
neural systems including CDR. Hence, we suggest that novel
integrative approaches to develop SNNs like which integrate
electrophysiological features of neural systems and algorithms
from both systems biology and computational neuroscience
algorithms, will allow for the development of intelligent cognitive
systems (Figure 1).

Toward more intelligent CDR systems, novel inspired
memory, and learning algorithms may play important roles.
Sources of information are mainly molecular mechanisms of
memory and learning, synaptic mechanisms and theories of
large scale neural networks. Simplification of information on
these fundamental capabilities of the brains and creating inspired
mechanisms regarding balance of excitatory and inhibitory
neurons in the neural systems are essential for developing novel
CDRs using spiking neural networks (Yizhar et al., 2011).

Specially, we claim that computational systems biology based
algorithms for memory and learning play fundamental roles
in progress toward implementing cognitive functions in CDR.
Moreover, using these algorithms in CDR systems may be used
in experimental studies to design and test experiments.

Three main sources of information for CDR research using
computational systems biology of learning and memory are as
follows (Figure 1):

1. Molecular information:Modeling of molecular mechanisms
of synaptic plasticity using computational systems biology
approaches can provide implementation of basic memory
and learning in CDR systems (Bellas et al., 2014). Long
Term Potentiation (LTP), Long Term Depression (LTD),
and inhibitory plasticity (Kullmann et al., 2012) are some
of this molecular information. Most important challenge to
achieve these goals is to demonstrate similar behavior in
CDR systems while keeping time complexity of the system
sufficiently. One of the examples of incorporating molecular
information in artificial systems is modeling of associative
learning in artificial neural networks (Smith et al., 2008).
Moreover, to implement molecular mechanisms of synaptic
events one can avoid information on channel expression and
their biophysical activities by using simplified neuron models
like Leaky Integrate Fire neuron model (LIF) that is widely
used in spiking neural networks (Izhikevich, 2003).
As an example from recent studies, SNNs have been used
for the operant conditioning learning process as robot
brain controllers. For this purpose, Spike Timing Dependent
Plasticity (STDP) and habituation has been combined to create
a network with only three neurons which implements operant
conditioning (Cyr et al., 2014).

2. Cellular information: Non-synaptic neural communication
play important role in dynamics of biological neural
networks. One of these mechanisms is retrograde signaling
as chemicals diffused from pre to post synaptic neurons as a
consequence of synaptic stimulation (Harrington and Ginty,
2013). Recently, a bio-inspired SNN has been developed that
simulates performance in first order as well as second order
conditioning (Faghihi et al., 2017). The system architecture
is based on Drosophila olfactory system and physiological
roles of inhibitory neurons and simplification of systems
biology of axonal retrograde signaling diffusion and function.
According to a systems biology based hypothesis, retroaxonal
signaling transfer information backward along axons such that
strengthening of a neuron’s output synapses stabilizes recent
changes in the same neuron’s inputs (Harris, 2008).
In addition, while neuronal morphology is affected by
environment, their role in information processing in robotic
systems has not been studied. Hence, to create brain-
like systems the dependency of neuronal activity and their
morphology (Araya et al., 2014) should be involved in CDR
research.

3. System information: Although neuronal types and their
electrophysiology features of many sub-regions of animal’s
brain are remarkably known, their information processing and
principles of their cognitive functions are not fully known.
However, it is possible to use available information to create
CDR systems. For this purpose, network size can limit the
speed of the algorithms while to achieve efficient memory
one needs to develop large scale neural networks. Therefore, a
balance between these two parameters using simplified neuron
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models should be considered. Recently, a neural network
named Evolved Plastic Artificial Neural Networks (EPANN;
Soltoggio et al., 2017) has shown interesting capabilities to
respond to sensory-output experiences. This neural system is
composed of sensory unit, information processing unit and
output unit (behavior unit).

As another example, inspired by anatomy and spatio-temporal
learning paradigm in the hippocampus and prefrontal cortex
a robot has been developed to encode sensory and temporal
information (Hirel et al., 2011). This robot performs tasks
requiring the behavior of the robot to integrate sensory and
temporal information but it is not based on biological features
of neurons in hippocampal regions. Definitely, to implement
hippocampal like cognitive capabilities in artificial systems one
needs to involve details of biological information at molecular,
cellular and network level available in hippocampus knowledge
base (Wheeler et al., 2015), thus requiring the integration of data
from computational neuroscience and computational system
biology (Figure 1). Hence, computational systems biology
approaches can be applied to simplify such complicated
biological information to integrate with computational
neuroscience algorithms to modify them or present novel
algorithms. Applying such algorithms in SNNs can help develop

artificial systems mimicking the behavior of biological neural
systems.

Regarding the complexity of memory and learning in animals’
brain, computational systems biology based models can play
critical role in future CDR research by integrating three
mentioned levels of neuronal information underlying learning
and memory (Figure 1).

Finally, we emphasize that although the complexity of
computational systems biology based algorithms may limit its
applications in CDR research, we believe that novel methods
to develop integrated information using computational systems
biology approaches can play critical role in future CDRs.
Interestingly, CDRs can also provide new understanding of
how cognitive functions may be developed and constructed in
dynamic environment. Overcoming these challenges CDR can
make progress toward more intelligent and gaining brain-like
actions in the future in parallel to advances in experimental
neurobiology.
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