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Pancreatic adenocarcinoma (PAAD) is a major threat to people’s health. PRDM1 is a transcription factor with multiple functions,
and its functions have been validated in a variety of tumors; however, there are few studies reported on PRDM1 in PAAD. Using
the GEPIA2 database, this research found that PRDM1 expression in PAAD was significantly higher than that in normal
pancreatic tissue. The Kaplan-Meier Plotter database showed that high expression of PRDM1 in PAAD has a poor prognosis,
suggesting that PRDM1 may be a potential prognostic marker in PAAD. The cBioPortal database shows that the expression of
PRDM1 in PAAD is significantly correlated with its methylation degree. Further analysis on the coexpressed genes of PRDM1
in PAAD was performed by using LinkedOmics database to explore potential mechanisms. Based on gene enrichment analysis,
PRDM1 was implicated in many pathways involved in tumor progression. In the construction of a PPI network of PRDM1
and its coexpressed gene protein via the STRING database, we found that PRDM1 may be involved in the pathogenesis and
development of PAAD. TIMER database suggested that a high level of PRDM1 has a significant positive correlation with
macrophages, neutrophils, and DCs. Potential methylation sites of PRDM1 were found through DNMIVD database, and
MethSurv database explored eight sites which were significantly related with the prognosis of PAAD. In conclusion, PRDM1
may work as a prognostic marker or even provide a potential therapeutic strategy in PAAD.

1. Introduction

Pancreatic adenocarcinoma (PAAD) is a highly malignant
tumor with an extremely poor prognosis and high mortality
(less than 10% 5-year survival) and will be the third major
cause of cancer-related deaths [1, 2]. Because of lacking
early symptoms and effective detection methods, most
patients(80%–85%) present with locally advanced or distant
metastatic disease that cannot be resected [3, 4]. First-line
treatment of metastatic pancreatic cancer is currently only
effective in combination with chemotherapy with cytotoxic
agents [5]. The median overall survival of patients with
metastatic disease remains below 12 months [6]. Over the
past decade, comprehensive annotation of tumor specimens
for characterization has contributed to a better understand-
ing of key genomic changes in PAAD, which includes
molecular classification of tumors based on gene expression

patterns as well as somatic mutations [7]. Besides, these
studies have also revealed specific tumor therapeutic targets
[8, 9]. Unfortunately, due to the potential for drug resis-
tance and limitations, targeted therapy is only available for
a small number of PAAD. Therefore, we hope to find a
new research direction to better understand pancreatic can-
cer and explore possible treatment strategies.

PRDM1 is a transcription factor whose function is regu-
lating transcriptional programs in both innate and adaptive
immune system. Previous studies found that PRDM1 will
influence the nonlymphoid organs excreting tissue-resident
T cell populations by reducing the specific gene expression
[10]; PRDM1 also can encode β-interferon gene repressor
that specifically binds to the PRDI (positive regulatory
domain I element) of the β-IFN gene promoter which can
promote the differentiation of B lymphocytes into mature
Ig-secreting cells [11]. In previous investigations, PRDM1
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has shown its prognostic value in many tumors [12]. Li et al.
show that PRDM1 expression correlates with the prognosis
of HBV infection-related HCC, and high PRDM1 expression
in HCC has a worse prognosis [13]. Zhu et al. found that the
decreased expression of PRDM1 in lung cancer promoted
cancer cell metastasis and correlated with poor prognosis
of lung cancer, and PRDM1 functioned as a tumor suppres-
sor in lung cancer [14]. Hu et al. reported that TGF-β1
inhibited prostate cancer progression by targeting PRDM1
[15]. However, its function in pancreatic cancer remains to
be explored. In this bioinformatics analysis, we try to evalu-
ate the role of PRDM1 in the clinical diagnosis and progno-
sis of PAAD and its potential value as a biomarker.

2. Methods

2.1. GEPIA2 Database. GEPIA2 (http://gepia.cancer-pku.cn/
index.html) is a novel analytical tool. There are multiple
tumor and normal tissue sample data on this platform
[16]. In our study, we utilize the GEPIA2 database to analyze
the differential gene expression, pathological staging, and
related prognostic value of tumor tissue and normal tissue
(p value was generated by t-test, jlog 2FCj > 2, p value
cutoff < 0:01).

2.2. Kaplan-Meier Plotter Database. The Kaplan-Meier Plot-
ter (http://kmplot.com/analysis/index.php?p=background)
consists of data from the survival analysis of 54,675 genes
in 10,461 cancer samples [17]. In this study, the Kaplan-
Meier Plotter database was used to analyze the connection
between PRDM1 and PAAD prognosis.

2.3. cBioPortal Database. cBioPortal (http://cbioportal.org)
is a database that stores DNA copy number, mRNA expres-
sion, noncoding RNA, protein, and clinical information
data. It is an open platform to study different cancer genome
data using interactive exploration technology [18, 19]. In
this study, we analyzed the TCGA pancreatic cancer data
using the cBioPortal database to explore the mutation rate
and distribution of PRDM1 in pancreatic cancer.

2.4. LinkedOmics Database. The LinkedOmics database
(http://www.linkedomics.org/login.php) is an open platform
including all 32 tumor type datasets in the TCGA database
[20]. In this study, we used this database to screen the coex-
pressed genes of PRDM1, ranked according to the Spearman
correlation coefficient, and plotted in the form of a volcano
plot performance, and p values (p < 0:05) were used to
screen for positively or negatively correlated genes.

2.5. DAVID Database. The DAVID database (DAVID
https://david.ncifcrf.gov) is an open platform for gene anno-
tation and visualization. The platform provides researchers
with comprehensive gene annotation tools to better help us
understand the biological significance of genes and then find
beneficial research directions for us. GO and KEGG enrich-
ment analysis helps us integrate extensive bioinformatics
databases (including databases of genomes, biological path-
ways, diseases, drugs, and chemicals) to annotate genes from
genomic or transcriptomic data and understand their bio-

logical characteristics and features [21]. We utilized the
DAVID database to explore the annotation of PRDM1 coex-
pressed genes. Differences were considered statistically sig-
nificant with p value < 0.05 and FDR < 0:05.

2.6. STRING Database. The STRING database (http://www
.string-db.org) is an open platform for protein annotation
[22]. By integrating multiple resources, the STRING data-
base can be used to construct the PPI network of PRDM1.

2.7. TIMER Database. The TIMER database (http://timer
.cistrome.org/) contains immune cell infiltration data of var-
ious tumors in the TCGA database [23]. Relying on TIMER
database, we performed an immune infiltration analysis of
PRDM1 to explore the relationship between PRDM1 and
tumor immune cells.

2.8. TISIDB Database. TISIDB (http://cis.hku.hk/TISIDB/)
integrates multiple datasets to form a database of tumor-
immune cell interaction through literature mining on
PubMed. In addition, the TISIDB database also integrates
resources from UniProt, GO, DrugBank, and other data-
bases [24]. The TISIDB database was used to investigate
whether PRDM1 was related to immune checkpoints in
PAAD.

2.9. DNMIVD Database. DNMIVD database (http://119.3
.41.228/dnmivd/index/) is a methylation chip based on
TCGA and GEO database building of methylation carci-
noma analysis database; the database can view a gene meth-
ylation in the generic cancer sites [25]. In this study, CpGs
loci of PRDM1 will be searched through this database for
subsequent analysis.

2.10. MethSurv Database. MethSurv database (http://biit.cs
.ut.ee/methsurv/) is a use of DNA methylation data network
multivariable survival analysis tool [26]. This study will
explore the methylation site of PRDM1 in pancreatic cancer
and its effect on the survival time of pancreatic cancer
patients through this database.

3. Results

3.1. The Expression Difference of PRDM1 in Pancreatic
Cancer and Normal Pancreatic Tissue. We used the GEPI
A2 database to obtain PRDM1 gene expression data of
tumor samples and corresponding normal pancreatic tis-
sues, thus detecting differences in PAAD of PRDM1 com-
pared to normal tissues. As shown in Figure 1, the
expression of PRDM1 in PAAD was significantly higher
than that in normal pancreas tissues.

3.2. The Prognostic Value of PRDM1 in PAAD. We further
explored the effect and correlation of PRDM1 expression
on overall survival (OS) in PAAD patients by using the
Kaplan-Meier Plotter (Figure 2). We found that high
PRDM1 expression was significantly and negatively corre-
lated with OS in PAAD (p = 0:044). The results showed that
the higher expression of PRDM1 in PAAD was significantly
associated with poorer prognosis, suggesting that PRDM1
may be a potential prognostic marker of PAAD.
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3.3. PRDM1 Mutation Analysis and Its Correlation with
Methylation. It is now widely recognized that genomic
mutations are strongly associated with tumorigenesis. So
we conducted a comparative research of PRDM1 in order
to find out the genomic mutation of PRDM1 in PAAD.
We firstly detected the genetic alterations of PRDM1 in
PAAD through the cBioPortal database. Mutation profile
of PRDM1 gene shows that deep deletion is one of the most
important factors of PAAD gene mutation (Figure 3(a)). In
addition, PRDM1 expression was significantly correlated
with its methylation level (Figure 3(b)) (Spearman: -0.55, p
= 1:59e − 15; Pearson: -0.56, p = 4:06e − 16).

3.4. PRDM1 Coexpression in PAAD. Through the above
analysis, we found that PRDM1 has significant prognostic
value in PAAD, so another database (LinkedOmics) was
applied to detect the coexpressed genes of PRDM1 in PAAD
and analyze the potential biological and functional mecha-
nism. The coexpression genes in PAAD were determined
by Pearson’s correlation test (p < 0:05, jCoefficientj > 0:5).
The results showed that a total of 1280 genes were signifi-
cantly associated with PRDM1, of which 1145 genes had
positive correlations and 135 genes had negative correlations
(Figure 4). In Supplementary Tables S1 and S2, we can see
the coexpressed genes positively or negatively associated
with PRDM1. Further analysis was performed using
coexpressed genes.

3.5. Functional Enrichment of the PRDM1-Related Genes. To
investigate the molecular mechanism of PRDM1 regulation
of PAAD in depth, we performed GO and KEGG analyses
of PAAD. Annotation of PRDM1 coexpressed genes was
performed using the DAVID database. We choose top 10
GO terms that positive correlation coexpression genes
(Figure 5(a)), and top 8 GO term that negative correlation
coexpression genes (Figure 5(b)). We also choose top 10
KEGG pathways of positive correlation coexpression genes
(Figure 5(c)) and 7 pathways of negative correlation coex-
pression genes (Figure 5(d)). These positive correlation
genes were associated with “signal transduction” (GO~BP),
“plasma membrane” (GO~CC), “protein binding”
(GO~MF), and “pathways in cancer” (KEGG), and negative
correlation genes were associated with “oxidation-reduction
process” (GO~BP), “mitochondrion” (GO~CC), “NADH
dehydrogenase (ubiquinone) activity” (GO~MF), and “met-
abolic pathways” (KEGG). All these data were detailed in
Supplementary Tables S3, S4, S5, and S6.

3.6. PPI Network of PRDM1 Coexpression. Molecular
mechanisms (major physiological and pathological changes)
driving cancer progression can be demonstrated by protein-
protein interaction (PPI) analysis. We used the STRING
database to construct a PPI network of PRDM1 and its coex-
pressed chaperones. Through the analysis of the STRING
database, these proteins were screened out with a compre-
hensive score ≥ 0:8. In addition, through MCODE tool, there
are two significant modules (modules 1 (Figure 6(b)) and 2
(Figure 6(c))) with a score ≥ 10 screened (degree cutoff = 2,
node score cutoff = 0:1, and k − core = 2). The results
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Figure 1: Expression of PRDM1 in PAAD and normal pancreas
tissues revealed by GEPIA2 database. ∗p value < 0.01.
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showed that the network of coexpressed genes was com-
posed of 810 nodes and 3187 edges (Figure 6(a)). In addi-
tion, the network of module 1 consisted of 16 nodes and
120 edges, and module 2 consists of 14 nodes and 80 edges.
Figure 7 shows the enrichment pathways of module 1 and
module 2, the most important pathways in module 1 and
module 2 are enriched in the “regulation of actin cytoskele-
ton” and “cell adhesion molecules (CAMs).”

3.7. PRDM1 Influenced the Extent of Immune Infiltration in
PAAD. Nowadays, there are various approaches for explor-
ing novel prognostic biomarkers and developing new can-
cer treatments, among which discovering the interaction
between the host immune defense microenvironment and
various tumor is a very important one. Based on current
research, we know that the overall survival of patients is
affected by immune cell infiltration in the tumor
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microenvironment. Previous studies have found that the
expression of PRDM1 has some correlation with immune
infiltration, so we analyzed the relationship between the
two in PAAD according to the TIMER database. As shown
in Figure 8, a high level of PRDM1 has a significant positive
correlation with macrophages, neutrophils, and DCs.

3.8. The Regulation of Immune Molecules by PRDM1. Using
the TISIDB database, we further explored whether PRDM1
is an important factor associated with immune infiltration.
In Figure 9, we can see that the expression of PRDM1 is
correlated with several immunoinhibitors. PDCD1LG2
(Spearman correlation test: r = 0:674, p < 2:2e − 16) dis-
played the greatest correlations with PRDM1 expression in
PAAD. PDCD1LG2 is a gene that plays a crucial role in
the growth and development of T cells. In addition,
PDCD1LG2 can also participate in costimulatory signaling
and also play a role in the production of IFNG. PDCD1LG2
can interact with PDCD1 to inhibit T cell proliferation,
which is mainly achieved by blocking cytokine production
and cell cycle. These findings suggest that immune finger-
printing may play an unusual role in PAAD.

3.9. PRDM1 CpG Island. Through DNMIVD database, we
explored CpG island of PRDM1, and these sites may also
be potential methylation sites. By looking for these sites,
we will discuss the correlation between PRDM1 methylation
sites and prognosis of PAAD in the following analysis. CpG
island is shown in Table 1.
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Figure 9: Correlation analyses of the PRDM1 expression with immunoinhibitor genes in PAAD via TISIDB.

Table 1: The CpG island of PRDM1.

CpG Group Relation to island

cg00555933 TSS1500 N_Shore

cg01146808 Body OpenSea

cg01761420 1stExon; 5′UTR Island

cg02108623 Body S_Shore

cg05170275 TSS200 Island

cg06789383 Body OpenSea

cg07695181 Body OpenSea

cg08302325 Body OpenSea

cg08358263 3′UTR OpenSea

cg08369079 Body OpenSea

cg08742502 Body; TSS200 OpenSea

cg09305161 Body OpenSea

cg14359052 Body; TSS200 OpenSea

cg16648952 Body OpenSea

cg17143179 Body; 1stExon; 5′UTR OpenSea

cg17521665 Body; TSS200 OpenSea

cg17965230 1stExon; 5′UTR Island

cg19064302 Body S_Shore

cg19464016 TSS1500 N_Shore

cg22186515 TSS200 N_Shore

cg22196848 1stExon; 5′UTR Island

cg24040346 TSS1500 N_Shore

cg24793124 Body; TSS1500 OpenSea

cg24874254 Body; TSS200 OpenSea

cg26351406 TSS200 N_Shore
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3.10. The Prognostic Value of CpG Island Methylation of
PRDM1 in PAAD. We analyzed the prognostic value of
PRDM1 methylation in PAAD in the MethSurv database,
through which we found eight methylation sites with significant
survival differences in PAAD (Figure 10). PRDM1-Body-S_
Shore-cg02108623, PRDM1-Body-S_Shore-cg19064302, and
PRDM1-5′UTR; 1stExon-Island-cg17965230, PRDM1-
TSS200-Island-cg05170275, and PRDM1-Body; 1stExon; and
5′UTR-Open_Sea-cg17143179 and PRDM1-TSS200-N_
Shore-cg22186515 had a better prognosis for PAAD. However,
hypermethylation of PRDM1-Body-Open_Sea-cg16648952
and PRDM1-TSS1500-N_Shore-cg00555933 had worse prog-
nosis for PAAD.

4. Discussion

PAAD is a highly malignant tumor; the widely accepted view
is that PAAD develops from a precancerous lesion to a var-
ied, complex process. PAAD is a heterogeneous disease
characterized by accumulation of alterations in the epige-
netic domain and inherited characteristics over the time as
PAAD progresses [27]. Because PAAD has a poor prognosis,
it is an urgent to find corresponding strategies for the diag-
nosis and treatment of PAAD.

The PR/SET structural domain shares an isoform of the
SET structural domain, the PRDF1-RIZ (PR) homologous
structural domain. There are 19 functionally distinct tran-
scription factors that are encoded and regulated by the
PRDM gene family. This domain has a number of zinc fin-
gers and has methyltransferase activity. These domains
may make the PRDM family have the function of mediating
protein-protein, protein-RNA, and protein-DNA interac-
tions [28]. PRDM proteins attach transcription factors to
target DNA promoters, and this is done by recognizing spe-
cific common sequences or by acting as non-DNA binding
cofactors [29]. PRDM showed strong environmental depen-
dence by selecting different target promoters and binding
sites. In addition, PRDM is involved in many signal trans-
ductions that control cell lifespan and homeostasis. Some
evidence suggest that the PRDM gene family plays an
important role in the evolution of human malignancies
through epigenetic modification, genetic reediting, inflam-
mation, metabolic homeostasis, and other processes [29,
30]. At present, there are many studies on PRDM family try-
ing interpreting its functions, but there are few studies on
PRDM1 in PAAD. So our objective was to explore the role
of PRDM1 in PAAD from the perspectives of the gene
expression level and prognosis, gene pathway, genomics,
methylation direction, and immune infiltration.
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Figure 10: The prognostic value of CpG island methylation of PRDM1 in PAAD.
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In the present study, based on the GEPIA2 database, we
observed that the mRNA expression of PRDM1 was signif-
icantly increased in PAAD, while the expression was low in
normal pancreatic tissue (Figure 1). The Kaplan-Meier
Plotter database shows that the higher the expression of
PRDM1, the worse the prognosis (Figure 2). These results
suggest that PRDM1 may serve as a prognostic biomarker
in PAAD. And the biological role of PRDM1 in PAAD still
deserved to be investigated.

Then, we explored the functions of PRDM1 and its coex-
pressed genes using LinkedOmics database as well as GO and
KEGG analyses to validate the underlying molecular mecha-
nism of PRDM1 in PAAD and elucidate its value (Figure 4).
Most of the PRDM1 coexpressed genes were mainly enriched
in the protein-binding pathway. In addition to this, the enrich-
ment ratio of integral component of membrane, cytoplasm, and
extracellular exosome was more than 20% (Figure 5(a)). These
results suggest that PRDM1 coexpressed genes may play a cru-
cial role in the synthesis of cell membrane or organelle mem-
brane proteins and are involved in the synthesis of these
substances. And KEGG analysis revealed that PRDM1 may be
involved in regulating cell membrane or organelle membrane
proteins in cancer (Figure 5(c)). In the negative coexpression
genes, GO and KEGG analyses suggest that PRDM1 may alter
tumor metabolism (Figures 5(b) and 5(d)). Next, coexpression
gene network complex of 810 nodes and 3187 edges was con-
structed via the Cytoscape software and STRING database
(Figure 6(a)). Then, two modules were filtered out from the
PPI network complex by Cytoscape MCODE analysis
(Figures 6(b) and 6(c)). The results suggest that integrin subunit
α and ADAMTS (A disintegrin-like and metalloprotease
(reprolysin-type) with thrombospondin type1motif) superfam-
ily were screened out. Integrins are a class of cell adhesion mol-
ecules that mediate intercellular and extracellular matrix
interactions [31]. ADAMTS proteins are a superfamily of 26
secreted molecules, including two related but distinct families
[32]. The main substrate of ADAMTS protease is the extracel-
lular matrix fraction, which is zinc endopeptidase in nature.
ADAMTS proteins have many potential associations with other
human diseases. These results show that PRDM1 plays a signif-
icant role in the progression of PAAD.

Next, we investigated the role of PRDM1 in the immune
microenvironment. The present study revealed the connec-
tion between PRDM1 and PAAD immune cells on the basis
of the level of PRDM1 expression and the immune status of
PAAD. The result suggested that PRDM1 significantly asso-
ciated with the level of immune cell infiltration, especially
macrophages, neutrophils, and DCs (Figure 8). The signifi-
cant correlation between PRDM1 expression and immuno-
suppressants was also verified, and as shown in Figure 9,
the largest correlation was PDCD1LG2. This research may
provide a new direction for immunotherapy in PAAD.

In addition, studies over the past decades have shown that
epigenetic alterations, including aberrant DNA methylation,
altered expression levels of various noncoding RNA, and aber-
rant histone modifications, always occur early and manifest
frequently in cancer [33]. The present study showed that with
the increase of PRDM1 expression, its methylation degree also
increased (Figure 3(b)). We used DNMIVD database to find

CpG islands of PRDM1 (Table 1) and MethSurv database to
correlate methylation of these CpG islands with the prognosis
of PAAD (Figure 10). Then, we found that the degree of
PRDM1 methylation was significantly correlated with the
prognosis of PAAD. The relationship between DNA methyla-
tion and PRDM1 expression deserves further research.

5. Conclusion

In conclusion, we applied bioinformatics analysis to study the
role of PRDM1 in PAAD, we found that higher expression of
PRDM1 was associated with a poorer prognosis in PAAD
patients, and PRDM1was closely related to PAAD immuno-
pathogenesis. However, it should be noted that there are some
limitations to this study. For one thing, different databases
have their own algorithms and periodic data update, and the
potential systematic bias was unavoidable. For another, our
data need to be supported by an in vivo/in vitro experimental
study, such as microarray or proteomic analyses, which we are
going to perform. In the future, we believe PRDM1 may work
as a potential prognostic marker for PAAD and even offer a
novel approach to antitumor in the future.
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