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Abstract

The hippocampus is essential for the formation of memories for events, but the specific features of hippocampal neural
activity that support memory formation are not yet understood. The ideal experiment to explore this issue would be to
monitor changes in hippocampal neural coding throughout the entire learning process, as subjects acquire and use new
episodic memories to guide behavior. Unfortunately, it is not clear whether established hippocampally-dependent learning
paradigms are suitable for this kind of experiment. The goal of this study was to determine whether learning of the W-track
continuous alternation task depends on the hippocampal formation. We tested six rats with NMDA lesions of the
hippocampal formation and four sham-operated controls. Compared to controls, rats with hippocampal lesions made a
significantly higher proportion of errors and took significantly longer to reach learning criterion. The effect of hippocampal
lesion was not due to a deficit in locomotion or motivation, because rats with hippocampal lesions ran well on a linear track
for food reward. Rats with hippocampal lesions also exhibited a pattern of perseverative errors during early task experience
suggestive of an inability to suppress behaviors learned during pretraining on a linear track. Our findings establish the W-
track continuous alternation task as a hippocampally-dependent learning paradigm which may be useful for identifying
changes in the neural representation of spatial sequences and reward contingencies as rats learn and apply new task rules.
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Introduction

The hippocampal formation (comprising the dentate gyrus,

CA3, CA2, CA1, subiculum, presubiculum, parasubiculum, and

entorhinal cortex [1]) is essential for creating detailed new

memories of experiences [2–5]. In non-human subjects such as

laboratory rats, lesions of the hippocampal formation as well as

non-destructive perturbations of hippocampal neural activity

impair learning and memory in a variety of behavioral paradigms

[6–14]. Parallel multielectrode single-unit recording studies in rats

have revealed that neurons in the hippocampal formation code for

diverse features of the rat’s experience: past and present spatial

locations in the environment, intended future destination of travel,

running speed, head direction, landmarks, visual and geometric

features of the environment, goal locations, odors, conditioned

stimuli, and sequences of events [15–27]. Some studies have

characterized changes in hippocampal neural coding during

incidental learning upon changes in environment [28–34] and

during task learning following a sudden change of task demands

[35–39]. However, the functional contribution of the hippocam-

pus to these forms of learning has not been established, so the

significance of these neural correlates is unclear. We feel that it is

important to acknowledge that the significance of neural coding

phenomena in the hippocampal formation such as place cells,

phase precession and sequential replay remains to be established.

To date, no one has shown conclusively that any of these

phenomena contributes to learned changes in behavior. Thus,

while these various firing patterns clearly exist, and while there are

hypotheses about their possible functional significance, we still lack

a direct link between neural coding by hippocampal neurons and

the learning and memory functions of the hippocampus.

Ideally, we would have a hippocampally-dependent learning

paradigm that is suitable for single-unit recording studies.

Unfortunately, most classic hippocampally-dependent learning

paradigms are not suitable for investigating the learning-related

dynamics of neural coding. In these learning paradigms, the

subject is exposed to the task for only a few trials per day, and the

behavior can be highly variable from trial to trial [40–42]. Because

neurons are stochastic, accurate characterization of neural coding

requires consistent sampling of behavior and spiking over many

trials. As a result, it is difficult to characterize the relationship

between neural activity and behavior in these classic learning

paradigms. To overcome the disadvantages of undersampling and

variability, investigators have designed hippocampally-dependent

learning paradigms in which the behavior is carefully sampled

over many repeated trials [43–50]. These recording-friendly

learning paradigms are very useful, but learning of these tasks

typically requires at least 6–7 days of training with 30–40 trials per

day, depending on the exact learning criterion. Single-unit

recording quality and yield tend to diminish over time, and it is
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difficult to maintain stable recordings of the same individual

neurons across days. As a result, while these other established

learning paradigms could potentially be used to study learning, it is

not yet clear whether one could track neural dynamics within a

single subject throughout the entire learning process.

We previously developed a W-track continuous alternation task

that rats can learn quickly [17]. Using this task paradigm, we

found that neurons in area CA1 of the hippocampus and in the

entorhinal cortex exhibit task-relevant spatiotemporal coding,

which (we speculate) could be used by other brain regions to guide

task behavior. More recently, we found neural changes in the

population-level distribution of firing rates in hippocampal area

CA1 that paralleled behavioral changes in task performance [51].

At the same time, other investigators, using a similar but not

identical maze-based continuous alternation task, observed that

hippocampal neurons code for task-relevant spatiotemporal

information even during performance of a task which can be

accurately performed by rats with complete lesions of the

hippocampus [52,53]. This surprising observation suggests that

the sensitivity of a task to hippocampal function is not necessarily

correlated with task-relevant neural coding in the hippocampus.

Here we investigated whether the learning of our W-track

alternation task really depends on the hippocampal formation.

We found that rats with extensive excitotoxic lesions of the

hippocampal formation showed a dramatic deficit in acquisition of

this task, whereas intact rats were able to learn this task in a few

days. Thus, the W-track continuous alternation task may be a

useful learning paradigm for investigating changes in neural

representations that underlie memory formation and retrieval.

Results

Lesion evaluation
We tested 14 rats, of which 10 received hippocampal lesions and

4 underwent sham surgeries. We infused NMDA into the dentate

gyrus, CA3, CA2, CA1, and subiculum (Table 1) to produce

excitotoxic lesions of the hippocampal formation. At the end of

behavioral testing, we sacrificed the rats and processed sections for

Nissl staining and histological evaluation. Figure 1 shows the

extent and location of damage for the subjects that were included

in the final data analyses.

All rats in the hippocampal lesion group sustained extensive loss

of neurons in areas CA1, CA2, CA3, and the dentate gyrus (DG)

throughout the entire longitudinal axis of the hippocampal

formation. The neuropil was shrunken in these regions, and the

ventricles had correspondingly expanded to fill the space. The

alveus, fimbria, and hippocampal commissures were spared to

various degrees in the lesioned rats. Hippocampally-lesioned rats

also had variable damage to the subiculum, postsubiculum,

presubiculum, parasubiculum and entorhinal cortex. Of the 10

rats with hippocampal lesions that we tested, 4 had extensive

damage to regions outside of the hippocampal formation. These

rats were removed from consideration, leaving 6 rats in the

hippocampal lesion group (see Figure 1A for illustrations of lesion

extent). We did include rats that had either (1) circumscribed

damage to the white matter and visual/parietal cortex dorsal to

the hippocampus, or (2) circumscribed damage to thalamic nuclei

adjacent to the hippocampus. To quantify the lesions, we

measured the total volume of remaining tissue within the dentate

gyrus and CA fields (including the adjacent fimbria), as well as the

total volume of remaining tissue in retrohippocampal structures

(subiculum, presubiculum and parasubiculum and entorhinal

cortex). These reconstructed volumes, normalized with respect to

the mean of the control group, are plotted in Figure 1B. Note that

these total tissue volumes underrepresent the true loss of

hippocampal neurons, because they include intact white matter

and partially-damaged areas in which the density of neurons was

severely reduced.

In all of the behavioral results that we report below, we found

no obvious correlation between lesion extent and variability of task

behavior. Subjects in the sham-surgery control group (4 rats)

sustained variable amounts of damage to the visual/parietal

neocortex and to the white matter overlying the hippocampus.

The hippocampal formation was intact in all of these rats.

Linear-track running task
Before surgery, we trained rats to shuttle back and forth

between food wells located at the two ends of a linear track

(Figure 2A,B). Rats had to run the entire length of the track to

receive food reward; no reward was given for consecutive repeat

visits to the same food well. All rats were trained to the same

performance criterion. After recovery from surgery, we tested the

rats again on the same linear track. We compared task

performance on the last day of pre-surgery training and at the

post-surgery test so that we could account for possible confounding

effects of hippocampal lesion on locomotion or food-seeking.

To quantify performance on the linear track, we parsed the

running behavior into a sequence of ‘‘trials’’. Note that during the

actual task behavior, rats transitioned between successive trials

without interruption, and no trial-timing cues were provided. We

defined the start of a trial by the rat’s departure from a food well,

and likewise we defined the end of trial by the rat’s next arrival at a

food well. A correct trial started with departure from one food well

and ended with arrival at the opposite food well, whereas an

incorrect trial was one on which the rat prematurely returned to

Table 1. Stereotaxic coordinates of NMDA infusions to
produce complete lesions of the hippocampal formation.

AP (mm) ML (mm) DV (mm)

22.8 61.4 23.0

23.3 62.4 23.0

24.1 61.8 22.8

24.1 63.4 22.8

24.8 62.0 22.8

24.8 64.2 27.4

24.8 64.2 23.1

24.8 65.0 26.5

25.5 62.6 23.0

25.5 63.6 22.9

25.5 65.0 27.0

25.5 65.0 25.5

25.5 65.0 23.5

26.2 64.0 26.8

26.2 64.0 23.4

26.2 65.4 24.4

26.8 65.4 24.0

The coordinates are given for a Long-Evans rat skull which is leveled so that
bregma and dura lie in the same horizontal plane. AP, anteroposterior; ML,
mediolateral; DV, dorsoventral. The anteroposterior and mediolateral
coordinates are referenced to the skull at bregma, while the dorsoventral
coordinates are distances below the dural surface.
doi:10.1371/journal.pone.0005494.t001
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the same food well from whence it had departed. For each rat, we

computed the proportion of trials that were correct; the total

number of trials completed; mean running speed while in transit

between food wells; and the median duration of the end-of-trial

food-well visit. We used nonparametric repeated-measures tests

[54] for statistical comparisons between the hippocampal lesion

group and the control group.

There were no significant between-group differences in the

proportion of trials performed correctly, the total number of trials

completed, or the median food-well visit duration (Figure 3A–C).

However, running speed (Figure 3D) showed a significant main

effect of group (p = 0.0092) as well as a significant group6day

interaction (p = 0.012). To examine the temporal pattern of this

effect, we did within-day pairwise post hoc comparisons using the

Wilcoxon rank-sum test. The difference in running speed between

the two groups did not reach statistical significance on the last day

of pre-surgery training (p = 0.76), but was significant for the post-

surgery test (p = 0.0095). Thus, hippocampal lesions caused an

increase in running speed but did not disrupt the fluency of task

performance on the linear track.

W-track continuous spatial alternation task
We introduced the rats to the W-track continuous spatial

alternation task on the day after the post-surgery test on the linear

track (Figure 2B,C). We tested the rats on this task for 10

consecutive days. Rats had no prior experience with the W track.

At the beginning of each session, each rat was simply placed on the

center arm of the W track and allowed to explore uninterruptedly.

The food wells at the ends of the three arms dispensed fixed

reward according to the following rules: (1) A visit to the center

food well was rewarded when the rat came from either side food

well. (2) A visit to the left or right food well was rewarded when the

rat came from the center food well after having previously visited

the opposite side food well. (3) Consecutive repeat visits to the

same food well were never rewarded. Together, these rules defined

a correct cyclical sequence of food-well visits (Figure 2C): right,

center, left, center, right, center, left, center, etc.

The correct task sequence on the W track can be decomposed

into two interleaved components. When the rat departed from the

left food well or from the right food well, the correct destination

was always the center food well. We use the term ‘‘inbound’’ to

describe this return-to-center component of the task. In contrast,

when the rat departed from the center food well, it needed to

remember which side of the W track it had last come from,

because the correct destination was the opposite-side food well.

We use the term ‘‘outbound’’ to describe this side-alternation

component of the task. Note that the inbound and outbound task

components correspond respectively to ‘‘reference’’ and ‘‘work-

ing’’ memory, as classically defined [55].

To quantify performance of the W-track continuous alternation

task, we parsed the running behavior into trials and classified the

trials as inbound or outbound according to their point of origin on

the W track. All trials in which the rat departed either from the left

food well or from the right food well were classified as inbound

trials, and all trials in which the rat departed from the center food

well were classified as outbound trials. Examples of 10-trial moving

averages of task performance, separated by inbound versus

outbound trials, are shown for one control subject and one

hippocampal lesion subject in Figure 4A and B. (Moving-average

plots for all subjects are shown in Figure S1 and Figure S2.) While

this sort of moving average is frequently used to evaluate

behavioral performance, it is difficult to compute meaningful

confidence bounds for individual animals using this analysis. We

therefore used a state-space model of learning [56] to estimate

Figure 1. Histological reconstruction of hippocampal lesions.
(A) Drawings of coronal sections at different anteroposterior levels
illustrate the extent and location of brain damage, for subjects in the
control group (left) and in the lesion group (right). Damaged areas
within each subject are shaded in light pink; where there is overlap
among subjects, the opacities of the overlapping regions sum to give
darker shading. The darkest shade of red indicates areas that were
consistently damaged in all subjects. The coronal section outlines are
adapted from [76]. (B) Quantification of lesion extent. The horizontal
axis is the estimated volume (combined over both hemispheres) of the
dentate gyrus, CA fields, and fimbria. The vertical axis is the estimated
volume (combined over both hemispheres) of the retrohippocampal
cortex, which we define as the subiculum, presubiculum, parasubicu-
lum, and entorhinal cortex. These volume estimates underrepresent the
true loss of neurons because they include spared hippocampal white
matter and partially-damaged shrunken tissue.
doi:10.1371/journal.pone.0005494.g001
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individual learning curves for each subject on both the inbound

and outbound components of the W-track alternation task (see

Materials and Methods for details). This model uses the observed

data to estimate the subject’s probability of making a correct

choice from trial to trial, along with confidence bounds on that

estimated probability. This state-space model-based analysis has a

number of advantages over moving average or change-point

analyses, including the ability to estimate confidence bounds for

individual subjects and greater sensitivity to changes associated

with learning [56]. Examples of learning curves for one control

subject and one hippocampal lesion subject are shown in Figure 4C

and D. (Learning curves for all subjects are shown in Figure S3

and Figure S4). These learning curves are estimates of the

probability of correct performance, with 95% confidence intervals,

as a function of the number of trials completed by the subject.

We used these smooth estimated learning curves to quantify

how quickly the subjects learned the inbound and outbound

components of the W-track continuous alternation task. Specifi-

cally, we identified the first trial and test day on which the 95%

confidence interval of the estimated probability of correct

performance exceeded and remained above chance throughout

at least two full consecutive days of testing. This learning criterion

has an intuitive interpretation as earliest timepoint at which we

can be reasonably certain that the subject is capable of performing

the task at consistently above-chance level for a sustained duration.

Furthermore, this earliest-timepoint learning criterion is robust to

temporary lapses in task performance which sometimes occur even

after a subject has exhibited fluent task performance. Because the

W-track continuous alternation task is not a forced-choice task

paradigm, it is somewhat debatable what exactly constitutes

‘‘chance’’ performance. However, we reasoned that, starting for

any given food well, the rat could proceed to either of the two

other food wells on the W track, which yields a chance probability

of 1/2. This chance level is indicated by the dashed horizontal

lines in Figure 4C and D. In fact, the rats were free to also revisit

the same food well from whence they had just departed, so we also

performed this analysis with respect to a 1/3 chance probability.

We obtained qualitatively similar results with both chance levels,

but because the 1/2 chance probability corresponds to a more

stringent learning criterion, we chose to present the results using

that criterion.

All control rats reached the learning criterion on both the

inbound and outbound components of the W-track continuous

alternation task within a few days. In contrast, 1 out of 6 lesion

subjects failed to reach the learning criterion on the inbound task

component, and 3 out of 6 lesion subjects failed to reach the

learning criterion on the outbound task component (Figure 5A;

Table S1). We used the Wilcoxon rank-sum test to compare the

number of trials/days to reach learning criterion between groups.

For those subjects that did not reach the learning criterion by the

end of testing, we imputed the learning trial to be the earliest

trial on which performance exceeded chance level and remained

above chance over all remaining observed trials, or if even this

relaxed criterion was not satisfied, we used 1+[total number of

trials completed]. These conservative imputations of the

truncated learning curves allowed us to include all subjects in

the statistical tests. Compared to control rats, rats with

hippocampal lesions required a greater number of inbound trials

to reach learning criterion on the inbound component of the task

(p = 0.019), and they also required a greater number of outbound

trials to reach learning criterion on the outbound component

(p = 0.0095). When we analyzed the number of test days to reach

learning criterion, the learning impairment of the lesion group

was statistically significant on the outbound component of the

task (p = 0.0095), but the trend on the inbound component of the

task did not reach statistical significance (p = 0.095). We also

compared final task performance on day 10 between the two

groups, and found that the groups did not significantly differ on

either inbound or outbound trials, although there appears to be a

trend for the lesion group to be skewed towards poorer task

performance (Figure 5B; Table S1). Together, these results

suggest that hippocampal lesions retard learning of the W-track

continuous alternation task but do not prevent eventual fluent

task performance.

Figure 2. Experimental design and behavioral tasks. (A) Timeline of the experiment. (B) Diagrams of the running tracks used in this
experiment. The red X marks indicate locations of food wells. The gray circle indicates the choice-point intersection on the W track. (C) Sequential
illustration of correct performance of the W-track continuous spatial alternation task. Rats were rewarded for visiting the three food wells of the W
track in the correct repeating sequence.
doi:10.1371/journal.pone.0005494.g002
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We found another difference between the groups on inbound

trials during the first two days of experience on the W track. On

the first day of testing, all six of the lesioned animals performed

well below chance levels on inbound trials, while only 1 out of 4 of

the control animals showed a comparable tendency. The

dramatically below-chance performance of the hippocampal lesion

subjects suggested some initial bias or perseveration. We inspected

the recorded video of the behavior and noticed that some rats had

a tendency to repeatedly run from one side of the W track to the

opposite side, entirely skipping the center arm (Figure 6A). To

quantify this tendency, we classified errors on inbound trials

according to rat’s choice of destination: trials on which the rat ran

from one side food-well to the opposite side (while skipping the

center arm) were classified as side-to-side errors; trials on which

the rat returned to the outside arm food-well from which it had

just departed were classified as turn-around errors. We found that

the control group and the hippocampal group committed these

two types of inbound errors in different proportions (Figure 6B,C).

Specifically, lesioned animals committed a larger proportion of

side-to-side errors on inbound trials on both day 1 and day 2

(Wilcoxon rank sum test: day 1, p,0.01; day 2, p,0.04). Thus,

these animals perseverated in running from one side food well to

the opposite side food well, even though that trajectory was never

rewarded.

This early perseverative behavior appeared to contribute to the

larger number of trials required for the lesioned animals to learn

the inbound component of the task. Indeed, a visual inspection of

Figure 6B and C along with the learning curves in Figure S4,

suggested that once the lesioned animals reduced their persever-

ative, below-chance behavior, their performance rapidly in-

creased. We attempted to measure the slopes of the learning

curves either following that initial perseverative behavior or

around the learning trial, but we were unable to construct a

measure that could be applied consistently and sensibly to all

lesioned animals due to the variability in their performance. Thus,

we did not feel that we could effectively quantify the rate of post-

perseverative learning.

To rule out the possibility that rats with hippocampal lesions

had nonspecific impairments of locomotion or motivation, we

examined the number of trials performed, food-well dwell times

and running speeds for inbound and outbound trials (Figure 7).

We found that lesioned animals tended to perform more inbound

trials than controls (main effect of group, p,0.02). While there was

no significant difference in the number of outbound trials

performed, there was a significant (p,0.005) group6day interac-

tion. This interaction can be seen by the fact that the lesion group

tended to perform fewer outbound trials than the control group

during initial task experience (day 1), but tended to perform more

outbound trials than the control group during later task experience

(days 7–10). The deficit in the number of outbound trials

performed by lesion subjects on day 1 can be ascribed to their

early perseverative failure to visit the center arm on inbound trials,

as previously shown in Figure 6. The poorer overall task

performance of the lesion group was also accompanied by

decrease in food-well dwell times on both inbound (main effect

of group, p,0.005) and outbound (main effect of group, p,0.002)

trials. This difference was directly related to the better perfor-

mance of the control group, as animals paused longer at the wells

when they were rewarded. When we computed food-well visit

duration separately for correct trials and for error trials, the

differences between groups were no longer statistically significant

(data not shown). Running speed was similarly different between

groups, with higher running speeds for the lesioned group on both

inbound (p,0.05) and outbound (p,0.04) trials. The ample

numbers of trials that were completed and the fast running speeds

indicate that rats with hippocampal lesions did not lack motivation

or locomotor drive.

Discussion

We found that rats with lesions of the hippocampal formation

are significantly impaired at learning the W-track continuous

spatial alternation task. Compared to control rats that had

undergone sham surgeries, rats with extensive lesions of the

hippocampal formation made more errors and took longer to

reach learning criterion on both the inbound (reference memory)

and outbound (working memory) components of the task. These

effects could not be attributed to lesion-induced deficits in

locomotion or food-seeking motivation, because rats with

hippocampal lesions successfully performed the linear-track

running task. We did observe that, compared to control rats, rats

with hippocampal lesions ran faster and completed more trials on

Figure 3. Summary of performance on linear track task. Plotted
in each panel is a measure of linear track behavior before surgery (Pre)
and after recovery from surgery (Post). Filled black symbols indicate
values for the control group (4 rats), and open red symbols indicate the
same for the hippocampal lesion group (6 rats). The correspondingly
color-coded heavy lines are group medians. (A) Proportion of correct
trials. (B) Number of trials completed. (C) Mean running speed,
excluding times spent at food wells. (D) Median dwell time at food
wells at the end of trials. Only running speed significantly differed
between the groups (main effect of group, p = 0.0092; group6day
interaction, p = 0.012). Post hoc within-day comparisons revealed that
the difference in running speed between the two groups was not
significant on the last day of pre-surgery training (p = 0.76), but was
significant for the post-surgery test (p = 0.0095). Thus, hippocampal
lesions caused an increase in running speed but did not disrupt task
performance on the linear track.
doi:10.1371/journal.pone.0005494.g003
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the linear track and during the latter days of testing on the W

track. These results are consistent with previous reports that

hippocampal lesions can cause locomotor hyperactivity [57–62].

However, hyperactivity cannot explain why the rats with

hippocampal lesions exhibited such a dramatic pattern of

perseverative errors on inbound trials during initial task experi-

ence.

The W-track continuous alternation task is similar to other

maze-based running tests of hippocampal function, such as the

radial maze working-memory task [13] and the delayed contin-

uous T-maze alternation task [53]. A distinguishing feature of this

task is that working-memory and reference-memory demands are

regularly interleaved between trials, and the time in the center arm

serves as a built-in ‘‘delay’’ period. We found that lesions of the

Figure 4. Examples of learning curves on the W-track continuous alternation task for two subjects. (A) 10-trial moving average of
proportion correct for a control subject. The top plot shows performance on inbound trials, while the bottom plot shows performance on outbound
trials. Trials are counted cumulatively along the horizontal axis, starting with the first trial on day 1 and ending with the last trial on day 10. The
alternating blue and green background shading indicates the number of trials completed on each day. (B) 10-trial moving average of proportion
correct for a lesion subject. (C) Smooth learning curve estimated using the state-space model of learning, for the same subject as in (A). The top plot
shows the estimated learning curve for the inbound component of the task, while the bottom plot shows the estimated learning curve for the
outbound component of the task. Trials are counted cumulatively along the horizontal axis in the same manner as in (A). Black dots indicate
maximum-likelihood estimates of the probability of correct performance, and gray errors bars indicate point-wise 95% confidence intervals. Dashed
horizontal lines indicate the chance performance level (1/2) that would be expected if the subject randomly chose the next destination food well. We
defined the learning criterion (highlighted in red) as the earliest trial at which the 95% confidence interval of the learning curve exceeded this chance
level and remained above chance for two full consecutive days. (D) Similar to (C), but for the same hippocampal lesion subject as in (B). The initial low
dip of the inbound learning curve, and the paucity of outbound trials, reflects the many perseverative inbound errors that this subject made during
the first two days of testing. This subject’s peformance on the inbound component of the task regressed transiently on day 8 for unknown reasons.
doi:10.1371/journal.pone.0005494.g004

Lesions Impair Learning
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Figure 5. Effect of hippocampal lesions on learning of the W-track continuous spatial alternation task. (A) Number of days to reach
learning criterion on the inbound (top) and outbound (bottom) components of the task. Compared to the control group, the hippocampal lesion
group exhibited significantly slower learning of the outbound task component (p = 0.0095). (B) Mean estimated probability of correct performance on
day 10 of testing. Although there is an apparent trend for the performance of the hippocampal lesion subjects to be skewed lower, this trend did not
reach significance.
doi:10.1371/journal.pone.0005494.g005

Figure 6. Effect of hippocampal lesions on inbound errors during early task experience. (A) Example of perseverative errors made by a
hippocampal lesion subject during the first session of the W-track continuous alternation task. Path-maps are shown for five consecutive incorrect
inbound trials. The paths are color-coded to indicate the rat’s instantaneous running speed. Arrows indicate the direction of travel. (B) Scatterplots
showing the pattern of inbound errors on on day 1 (left) and day 2 (right) of the W-track continuous alternation task. The plotted symbols show, for
each individual subject, the proportions of errors on inbound trials, classified according to destination: the proportion of inbound trials in which the
subject ran from one side food-well to the opposite side, skipping the center arm (horizontal axis); and the proportion of inbound trials in which the
subject returned to the outside arm food-well from which it had just departed (vertical axis). The dashed diagonal line indicates the maximum
possible values of these error proportions. A larger proportion of lesioned animals’ inbound trials were associated with side-to-side trajectories on
both day 1 and day 2 as compared to controls (day 1, p,0.01; day 2, p,0.04).
doi:10.1371/journal.pone.0005494.g006
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hippocampal formation impaired learning of both mnemonic

components of the task. However, some of the subjects with

hippocampal lesions were able to acquire both the inbound and

outbound components of the task by the end of the 10-day test

sequence. Thus, given enough prolonged experience, other brain

regions can support the learning of this task even in the absence of a

functional hippocampus. The lengths of time required for lesioned

animals to learn the outbound component of the task correspond

reasonably well to the amounts of time required for animals to

switch from a hippocampal to a basal ganglia dependent strategy in

a plus-maze task [63]. Thus, we speculate that plasticity in circuits

associated with the basal ganglia may support the slower learning

seen in the lesioned animals. It is not known whether the transition

from hippocampal control to extra-hippocampal control involves

intrinsic changes within the hippocampal formation, or if

instead it involves some complex gating of hippocampal output in

coordination with other regions. We think that recording

experiments to probe those possibilities would be very informative.

In our experiment, we challenged rats to learn a complex task

sequence through trial-and-error exploration of an unfamiliar

environment. On outbound trials, there was no simple sensory

stimulus that predicted reward. Instead, alternation between side

arms required internal representation of the recent history of trials

to the side arms. Our finding of an effect of hippocampal damage

on this type of learning is consistent with the theory that the

hippocampal formation is important for incremental learning of

the latent structure of the world, such as stimulus regularities and

environmental context [64]. It also agrees with theories that the

hippocampal formation supports reinforcement learning of the

paths that lead to reward. During learning of the alternation task,

the rat must integrate reward information with memory of the

recently-visited sequence of food wells [65–67].

Figure 7. Effect of hippocampal lesions on behavior on the W track. Plotted in each panel is a measure of behavior across all 10 days of
testing on the W track. Filled black symbols indicate values for the control group (4 rats), and open red symbols indicate the same for the
hippocampal lesion group (6 rats). The correspondingly color-coded heavy lines are group medians. (A) Number of inbound (left) and outbound
(right) trials performed on each day of testing. Compared to control subjects, subjects with hippocampal lesions tended to perform more inbound
trials (p,0.02). (B) Average dwell time per food-well visit at the end of inbound (left) and outbound (right) trials. Compared to lesioned subjects,
control subjects tended to dwell at the food well for a longer time after each trial (inbound, p,0.005; outbound, p,0.002), in part because they
completed a greater proportion of trials correctly and thus spent more time consuming food reward. (C) Running speeds on inbound and outbound
trials. Compared to control subjects, lesioned subjects ran at higher speeds on both inbound (p,0.05) and outbound (p,0.04) trials.
doi:10.1371/journal.pone.0005494.g007

Lesions Impair Learning

PLoS ONE | www.plosone.org 8 May 2009 | Volume 4 | Issue 5 | e5494



Our observation that rats with hippocampal lesions perform

perseverative side-to-side errors on inbound trials is reminiscent of

previous reports that hippocampal lesions result in perseverative

failure to suppress conditioned behavioral responses when reward

is diminished or when reward contingencies are switched [68–72].

We speculate that this perseverative tendency may be a

consequence of the pretraining procedure, in which we trained

rats to run from end to end along the entire length of a linear

track. In the pretraining situation, uninterrupted running behavior

led to maximum exploitation of available food rewards. We

speculate that rats with hippocampal lesions transferred their

previously acquired habitual responses to the W track, instead of

exploring and re-optimizing their behavior according to the new

task rules. Thus, the effect of hippocampal lesions on performance

of the inbound, reference memory portion of the task could have

resulted from a requirement for the hippocampus in inhibiting a

previously acquired response. If this explanation is true, then the

prediction is that the perseverative side-to-side errors will be less

severe if rats are not pretrained to shuttle back and forth on a

linear track. This prediction remains to be tested in future studies.

This study enhances the significance of previous recording

studies. In a previous study, we recorded the activity of neurons in

the hippocampus and in the entorhinal cortex while well-trained

rats performed the same W-track alternation task fluently; we

found that neurons in these areas exhibit trial-specific coding for

prospective destinations on outbound trials and retrospective

origins on inbound trials [17]. Thus, there is an intriguing

correspondence between task demands and neural activity. Our

results here indicate that animals can learn this task without the

hippocampus, but that learning is slower in that case. We speculate

that prospective and retrospective coding by hippocampal neurons

may contribute to early, rapid learning but is not necessary for

later fluent performance of the task. This possibility is consistent

with the observation that hippocampal neurons exhibit such

spatiotemporal coding even during task behavior that does not

depend on the hippocampus [53]. Thus, future experiments will

need to determine whether these trial-specific coding emerges in

parallel with time course of learning.

We have also found that changes in the distribution of firing

rates over the population of place cells in hippocampal area CA1

occur on the same timescale as changes in behavioral performance

during learning of the W-track continuous alternation task [51]. In

this study, we found that firing rates and spatial specificity of

neurons in hippocampal area CA1 are plastic across the first 5–6

days of task experience and subsequently stabilize. If this neural

coding plasticity in the hippocampus is required for learning

during the first few days of task experience, we would expect that

rats with hippocampal lesions would be unlikely to learn the entire

task (outbound and inbound) in less than 6 days; indeed, in this

study, we found that the three lesioned animals that managed to

master the outbound portion of the tasks did so on days 6, 7 and 9.

Our demonstration here that learning of this task is sensitive to

hippocampal damage strengthens the hypothesized connection

between changes in hippocampal neural activity and learning in

this task, and provides a foundation for future studies.

Finally, efforts to develop behavioral tasks that are both

dependent on an intact hippocampus and suitable for electro-

physiology may facilitate new studies that link specific patterns of

hippocampal neural activity to behavioral change. We know quite

a lot about neural coding phenomena exhibited by hippocampal

neurons during both waking and sleep [e.g. 73,74,75], but most of

these studies used open field random foraging or linear track

alternation tasks which did not impose demands on hippocam-

pally-dependent learning or memory. Given that an intact

hippocampus is not essential for behavior in these tasks, it remains

possible that these neural coding phenomena are not directly

related to the learning and memory functions of the hippocampus.

Understanding how hippocampal neural activity and plasticity

underlie hippocampally-dependent learning thus requires the use

of tasks that demonstrably engage and require hippocampal

circuitry. In conjunction with targeted manipulations of neural

activity or plasticity at specific timepoints during learning, we

believe that the hippocampally-dependent W-track continuous

alternation task is well suited to help us link neural coding with

behavior.

Materials and Methods

Subjects
We used 26 male Long-Evans rats obtained from a commercial

breeder (Taconic Farms). Rats were singly housed in polycarbon-

ate cages (42621621 cm) with recycled paper pellet bedding and

ad libitum access to drinking water. Temperature, humidity and

illumination (12:12-hour light/dark cycle) in the housing facility

were artificially controlled. Behavioral testing occurred during the

lights-on phase. All procedures were approved by the Institutional

Animal Care and Use Committee at the University of California,

San Francisco.

Training before surgery
Upon arrival in the housing facility, rats had ad libitum access to

standard laboratory rat chow pellets. We gradually habituated the

rats to daily human handling over several weeks. After every

handling session, each rat was given access to a licking spout in his

home cage that delivered evaporated milk (Carnation brand,

Nestlé) sweetened with 0.2% saccharin (Smoky Mountain

Sweetener). This procedure guaranteed that the rats overcame

their food neophobia to recognize the palatability of this liquid

food reward.

After habituation, feeding was restricted to maintain the rats at

85–88% of their baseline free-feeding body mass, as verified by

daily weighings. We trained the rats to run back and forth along

an elevated linear track (150 cm long, 6 cm wide). Rats were

motivated with droplets of sweetened milk, which were automat-

ically dispensed in food wells located at the two ends of the track.

Rats received a fixed amount of food reward on every visit to a

food well, except that no reward was given for any consecutive

repeat visits to the same food well. A monochrome CCD camera

mounted above the linear track captured video of the rat’s

behavior (30 frames per second at 3206240 resolution), which was

streamed to the NSpike data acquisition system (L.M. Frank,

J.MacArthur) and processed for automated delivery of food

reward. The linear track and the floor were colored bright white,

so that the dark pigmented hood and stripe of the Long-Evans rats

could be identified in video images simply by luminance contrast.

Rats were trained on the linear track for two 15-minute sessions

per day. Each rat finished training and underwent surgery after he

performed at least 30 correct food-well visits per session, in all four

sessions over two consecutive days. We removed 3 rats from the

cohort of subjects before surgery because they failed to reach this

performance criterion after 7 days of training.

Surgery
Rats were 3–5 months old at the time of surgery. Each rat was

randomly assigned to either the control group or the hippocampal

lesion group; this group assignment was blind to individual

performance on the linear track. General anesthesia was induced

with 5% isoflurane in oxygen and maintained with 1–5%
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isoflurane. We administered atropine (0.04 mg/kg, i.p.) to reduce

airway secretions and buprenorphine (0.04 mg/kg, i.p.) for

analgesia. We secured the anesthetized rat in a stereotaxic head

frame (David Kopf Instruments) with a thermostat-regulated

heating pad (37uC) to prevent hypothermia. After exposing the

skull, we adjusted the height of the incisor bar so that bregma and

lambda were in the same horizontal plane and then drilled

craniotomy in the skull overlying the hippocampus. We made

bilateral excitotoxic lesions of the hippocampal formation by

infusing NMDA (Sigma) dissolved in artificial CSF (20 mg/mL) at

17 sites in each hemisphere (listed in Table 1), with the intention of

targeting the dentate gyrus, CA fields, and subiculum. We made

the infusions with a 26 ga microliter syringe-needle (Hamilton)

mounted in a motorized syringe driver (KD Scientific), which was

attached to an arm of the stereotaxic frame. At each site, we

infused 0.08 mL of NMDA solution at a rate of 0.10 mL/min, and

then waited 2 minutes after the end of infusion before retracting

the needle. During sham surgeries, we filled the Hamilton syringe

with the NMDA solution and positioned the needle in the brain at

the same locations for the same durations, but the syringe plunger

was not driven to effect infusion. This sham procedure was

intended to control for extraneous damage during passage of the

NMDA-loaded needle on the way to the hippocampus. We

administered diazepam (10 mg/kg) intraperitoneally before the

cessation of general anesthesia as a prophylactic against seizures;

subjects in the control group also received diazepam. After

surgery, we administered meloxicam (0.4 mg/kg) subcutaneously

every 18 hours for analgesia until full healthy recovery from

surgery. Nine rats died during surgery or were euthanized because

of poor recovery after surgery. We believe that this high mortality

rate was due to our relative inexperience with these techniques,

combined with our efforts to produce complete lesions.

Testing after surgery
After 2–6 weeks of recovery from surgery, restricted feeding was

resumed. The rats were tested again on the familiar linear track for

two 15-minute sessions, to control for any possible effects of

surgery on food-seeking motivation or locomotion. Next, they

were tested on the W-track continuous spatial alternation task for

10 days, in two 15-minute sessions per day. We did not give the

rats any prior habituation or shaping on the W track. Sweetened

milk was automatically dispensed in food wells located at the three

ends of the track, according to the following rules: (1) A visit to the

center food well was rewarded when the rat came from either side

food well. (2) A visit to the left or right food well was rewarded

when the rat came from the center food well after having

previously visited the opposite side food well. (3) Consecutive

repeat visits to the same food well were never rewarded. The rats

were free to choose any of 32 = 9 possible combinations of start/

end points for their journeys on the W track. At the beginning of

each session, the experimenter placed the rat on the center arm

facing the center food well, which was pre-baited with sweetened

milk. Because of this initial task state, scoring of the first outbound

trial (i.e., following departure from the center food well) was

ambiguous with respect to the left/right alternation rule. To avoid

confusing the rats, we always rewarded the first visit to a side food

well within a session, but we did not include this first outbound

trial when analyzing task performance.

Histology
At the end of behavioral testing, we killed the rats with an

overdose of Euthasol (Virbac) and perfused transcardially with

isotonic sucrose followed by 4% formaldehyde in phosphate-

buffered buffered saline. After overnight post-fixation in 4%

formaldehyde, the brains were stored in a cryoprotectant solution

(20% glycerol/2% DMSO). Frozen brains were sectioned

coronally (50 mm) on a cryostat microtome, starting from the

caudal pole of the cortex and continuing rostrally throughout the

entire extent of the hippocampal formation. Every other section

was mounted on a gelatin-coated glass slide and stained with cresyl

violet to visualize Nissl substance. We captured brightfield

photomicrographs at 206 magnification, using a Photometric

Coolsnap HQ2 camera attached to a Nikon TE2000E micro-

scope. Photomicrographs were merged into whole-section mon-

tage images using Nikon NIS-Elements software. We examined

the pattern of Nissl staining with reference to published anatomical

guides [1,76] in order to evaluate the lesions. We quantified lesion

extent with the Cavalieri method [77]. We measured the volume

of intact hippocampal tissue within both hemispheres from cross-

sectional outlines taken at every 200 mm throughout the

anteroposterior extent of the hippocampal formation.

Analysis of behavior
We processed the video data to estimate the rats’ movement

trajectories along the two running tracks. In each video frame, we

identified pixels whose grayscale luminance values were less than a

certain threshold. The largest contiguous cluster of these dark

pixels corresponded to the pigmented fur (‘‘hood’’) of the rat,

which was clearly visible against the white background surfaces.

We tracked the centroid of this pixel cluster in every video frame,

and then applied nonlinear smoothing (denoising) to the sequence

of centroids [78] to estimate the position of the rat. To estimate

instantaneous velocity, we took first-order differences of the

position estimate and multiplied by the video frame rate. We

converted pixel distances to physical distances (centimeters) for

these measures.

Next, we marked the locations of food wells in the video images

and defined corresponding regions of interest (2 ROIs on the

linear track, 3 ROIs on the W track) centered on these locations.

Each ROI was a circle with a 15-cm radius. Using the estimated

movement trajectories, we determined the times when the rat

entered or exited the ROIs. These transition times were used to

reconstruct the sequence of food-well visits and the durations of

those visits. Inbound and outbound trials were automatically

scored according to the rules for the task.

Estimation of learning curves
We used a state-space model of learning [56] to estimate

individual learning curves on the W-track continuous alternation

task. This model describes an animal’s choice behavior as a

evolving process. At each trial, the model estimates the value of a

hidden (e.g. not directly observable) ‘‘state’’ variable that

represents the probability of making a correct choice. The model

simultaneously estimates confidence bounds for the state variable,

representing the level of uncertainty about the probability of a

correct choice. We used the expectation maximization algorithm

to find the set of values that best describe the animal’s choice

behavior across time. The result is a more accurate estimate of

learning-related changes in choice behavior than arises from

standard moving average or choice-point measures of learning

[56].

Mathematically, the observed task responses are treated as

outcomes of a Bernoulli process whose success rate (i.e., the

probability of correct performance on each trial) is linked to a

hidden learning state. The evolution of the hidden learning state is

modeled as a Gaussian random walk of unknown variance. Given

the observed outcomes of an experiment, the hidden learning state

can be estimated with some uncertainty; the principled treatment
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of uncertainty in the state-space model provides advantages over

alternative constructions of learning curves (e.g., moving average).

For simplicity, we estimated separate learning curves for the

inbound and outbound components of the W-track continuous

alternation task. We chose this simplification because we could not

parsimoniously model the statistical dependence between the two

task components. To estimate a learning curve for the inbound

component of the task, we considered the outcomes (correct versus

incorrect) of all trials that departed from either the left food well or

the right food well. These outcomes were concatenated into a

single long sequence that spanned the subject’s entire task

experience on the W track. Similarly, we concatenated the

outcomes of all trials that departed from the center food well to

estimate a learning curve for the outbound component of the task.

As described in [56], we then estimated (with confidence intervals)

the evolution of the hidden learning state from the sequence of

observed outcomes. This algorithm required an initial proposal for

the baseline probability of correct performance. We set this chance

probability at 1/2, reasoning that the subjects would initially

choose randomly one of the two other food wells as a destination

when departing from a food well. To confirm that the results were

not overly sensitive to this initial proposal probability, we also

estimated the learning curves with the chance probability set to 1/

3, which corresponds to random equiprobable choice from among

all three food wells on the W track.

Supporting Information

Table S1 Summary statistics for individual subjects on the W-

track continuous alternation task. Each column corresponds to an

individual subject; C1-C4 are control subjects, and L1-L6 are

hippocampal lesion subjects. The p-value column shows the result

of the Wilcoxon rank-sum comparison between the two groups.

Note that the p-values for the comparisons of the cumulative total

number of inbound and outbound trials are larger than those

derived from the non-parametric repeated measures test presented

in the main text, because the repeated measures test takes into

account the day-by-day trend for each individual subject.

Found at: doi:10.1371/journal.pone.0005494.s001 (0.02 MB

PDF)

Figure S1 Moving-average learning curves for individual control

subjects on the W-track continuous alternation task. Each panel

shows 10-trial moving averages of task performance for one

control animal. The top plot in each panel shows performance on

inbound trials, while the bottom plot shows performance on

outbound trials. Trials are counted cumulatively along the

horizontal axis, starting with the 10th trial on day 1 and ending

with the last trial on day 10. The alternating blue and green

background shading indicates the number of trials completed on

each day.

Found at: doi:10.1371/journal.pone.0005494.s002 (0.86 MB TIF)

Figure S2 Moving-average learning curves for individual

hippocampal lesion subjects on the W-track continuous alternation

task. Each panel shows 10-trial moving averages of task

performance for one lesion animal. The top plot in each panel

shows performance on inbound trials, while the bottom plot shows

performance on outbound trials. Trials are counted cumulatively

along the horizontal axis, starting with the 10th trial on day 1 and

ending with the last trial on day 10. The alternating blue and

green background shading indicates the number of trials

completed on each day.

Found at: doi:10.1371/journal.pone.0005494.s003 (1.54 MB TIF)

Figure S3 Smooth learning curves for individual control subjects

on the W-track continuous alternation task. Each panel shows the

estimated probability of correct performance for one control

animal. The top plot in each panel shows the estimated learning

curve for the inbound component of the task, while the bottom

plot shows the estimated learning curve for the outbound

component of the task. Trials are counted cumulatively along

the horizontal axis, starting with the first trial on day 1 and ending

with the last trial on day 10. The alternating blue and green

background shading indicates the number of trials completed on

each day. Black dots indicate maximum-likelihood estimates of the

probability of correct performance, and gray errors bars indicate

point-wise 95% confidence intervals. Dashed horizontal lines

indicate the chance performance level (1/2) that would be

expected if subjects randomly chose the destination food well on

each trial. We defined the learning criterion (highlighted in red) as

the trial on which the 95% confidence interval of the learning

curve exceeded this chance level and thereafter remained above

chance throughout two full consecutive days of testing.

Found at: doi:10.1371/journal.pone.0005494.s004 (0.67 MB TIF)

Figure S4 Smooth learning curves for individual hippocampal

lesion subjects on the W-track continuous alternation task. Each

panel shows the estimated probability of correct performance for

one lesion animal. For explanation, see the legend for Figure S3.

Lesioned subjects were much more variable in their task

performance than subjects in the control group. They often

performed below chance level on the inbound component of the

task during the first few days, reflecting perseverative errors (see

Figure 6). By our learning criterion, three of the six lesion subjects

failed to learn the outbound component of the task by the end of

testing.

Found at: doi:10.1371/journal.pone.0005494.s005 (1.14 MB TIF)
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