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Abstract. Cancer is the leading cause of death worldwide. 
The absence of obvious symptoms and insufficiently sensitive 
biomarkers in early stages of carcinoma limits early diagnosis. 
Cancer therapy agents and targeted therapy have been used 
extensively against tissues or organs of specific cancers. 
However, the intrinsic and/or acquired resistance to the agents 
or targeted drugs as well as the serious toxic side effects 
of the drugs would limit their use. Therefore, identifying 
biomarkers involved in tumorigenesis and progression repre‑
sents a challenge for cancer diagnosis and therapeutic strategy 
development. The eukaryotic translation factor 5A (eIF5A), 
originally identified as an initiation factor, was later shown to 
promote translation elongation of iterated proline sequences. 
There are two eIF5A isoforms (eIF5A1 and eIF5A2). eIF5A2 
protein consists of 153 residues, and shares 84% amino acid 
identity with eIF5A1. However, the biological functions of 
these two isoforms may be significantly different. Recently, 
it was demonstrated that eIF5Ais widely involved in the 
pathogenesis of a number of diseases, including cancers. In 
particular, eIF5A plays an important role in regulating tumor 
growth, invasion, metastasis and tumor microenvironment. It 
was also shown to serve as a potential biomarker and target 
for the diagnosis and treatment of cancers. The present review 
briefly discusses the latest findings of eIF5A in the patho‑
genesis of certain malignant cancers and evolving clinical 
applications.

Contents

1. Introduction
2. Role of eIF5A in malignant tumors
3. Conclusion

1. Introduction

It was estimated that there will be an ~18.1 million new 
cancer cases and 9.6 million cancer deaths in 2018 world‑
wide (1). Lung cancer is a major global health problem, with 
a poor 5‑year survival of ~15% and is the major cause of 
cancer‑related deaths (2). Diagnosis at an advanced stage is 
the major reason for this low survival rate (2). Chemotherapy 
and epidermal growth factor receptor (EGFR) tyrosine kinase 
inhibitors (TKIs) are used for advanced or recurrent disease, 
whose efficacy has been limited by emergence of resistance 
mechanisms (3). Breast, prostate and colorectal cancers are the 
second, third, and fourth cancers with the highest incidence 
worldwide, respectively. Colorectal cancer, gastric cancer 
and hepatocellular carcinoma are the three cancers with the 
highest mortality rate beyond lung cancer (1). Pancreatic 
cancer is the seventh leading cause of cancer‑related deaths 
worldwide due to lack of appropriate diagnosis, treatment and 
cataloging of cancer cases (4). Despite advances in prevention 
techniques, screening and new technologies in both diagnosis 
and treatment, incidence and mortality rates continue to rise. 
Due to the lack of sensitive and specific biomarkers for early 
cancer detection and proper monitoring of patients' response 
to therapy (5), the therapeutic effects for invasion‑related and 
metastasis‑related cancers are still very poor (6). Therefore, 
improved tools for diagnosis, treatment and prognosis of 
cancers are crucial for improving patient outcomes.

The eukaryotic translation initiation factor 5A (eIF5A), 
the only known protein containing a spermidine derivative, 
such as hypusine, functions at the level of translation (7). 
Hypusine is formed by conjugation of the aminobutyl moiety 
of spermidine to a specific lysine residue of this protein (8). 
Modification with hypusine is critical requirement for eIF5A 
activity (9). The post‑translational synthesis of hypusine 
involves two enzymatic steps, catalyzed by deoxyhypusine 
synthase (DHPS) and deoxyhypusine hydroxylase (DOHH), 
which selectively uses the polyamine spermidine as a 
substrate to generate hypusinated eIF5A (10). Two eIF5A 
isoforms, eIF5A1 and eIF5A2, are generated from distinct 
but related genes, which in humans contain 84% amino acid 
sequence identity (11). eIF5A1 is abundantly expressed in 
most cells and functions as a translation elongation factor. It 
was also shown that eIF5A1 is implicated in certain human 
diseases, including diabetes, several human cancer types, viral 
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infections and diseases of the nervous system (12). Meanwhile, 
eIF5A2 is overexpressed in numerous cancers, expressed few 
normal tissues, is a candidate oncogene and plays an impor‑
tant role in the development and progression of cancers (13). 
eIF5A1 does not only act as an oncogene but also functions 
as a tumor suppressor (14). eIF5A2 acts as an oncogene in 
several cancers (13). Both eIF5A1 and eIF5A2 are involved 
in cancer development and progression and can be a useful 
marker for diagnosis and prognosis (14). eIF5A1 and eF5A2 
exert their roles in promoting cancer cell growth, invasion 
and metastasis ability via a variety of cellular processes (15). 
The exact molecular mechanisms of these two proteins in 
cancer development and progression still remain unclear. 
One potential mechanism may be implicated in translational 
control of specific mRNAs, since more reports disclosed that 
eIF5A1 can promote the translation elongation of mRNA with 
ribosome stalling motifs (16‑18), and it was also revealed that 
eIF5A1 can promote the translation of mRNA by promoting 
its nuclear export (19). Another potential mechanism is as a 
transcription factor in the nucleus, eIF5A2 was observed to 
bind to the promoter region of hypoxia‑inducible factor (HIF) 
1α and regulate HIF1α transcription in esophageal squamous 
cell carcinoma (ESCC) cell lines (20).

Inhibition of DHS and DOHH activity also provides the 
possibility of pharmacological control of eIF5A activity and 
expression of eIF5A‑dependent genes (21‑23). These findings 
suggested that eIF5A is a potential target and biomarker for 
the diagnosis and prediction of prognosis of malignant tumors. 
In the present review, the role of eIF5A in tumorigenesis and 
mechanisms in the pathogenesis of malignancy was evaluated 
and the specific functions of eIF5A are also briefly discussed. 
eIF5A is suggested to be a high priority target for cancer 
therapeutics.

2. Role of eIF5A in malignant tumors

Cancerous nervous system diseases. Glioblastoma (GBM). 
GBM is the most frequently occurring and invariably fatal 
primary brain tumor in adults (24). Despite a broad range 
of new and more specific treatment strategies, therapy of 
glioblastomas remains challenging and tumors relapse in all 
cases (25). The current treatment strategy for patients with 
GBM consists of surgery, radiotherapy and chemotherapy, 
but <3‑5% of patients survive >5 years post‑diagnosis (26). 
Thus, novel therapeutic and diagnostic approaches for GBMs 
are urgently needed. In an effort to find novel approaches to 
GBM treatment, recent studies have focused on molecular 
phenotyping of GBM subtypes to identify new targets for 
biomarkers and therapeutics (24,27‑30).

Altered activities ofeIF5A have been associated with 
cancer development. eIF5A, as well as the DHS and DOHH, 
were reported to be highly overexpressed in GBM patient 
samples, and the majority of the normal/healthy glia cells 
did not express eIF5A (21), suggesting that eIF5A might 
be a potential biomarker for GBM. Using an in vitro assay, 
Preukschas et al (21) found that targeting eIF5A and its 
hypusine modification with N1‑guanyl‑1,7‑diaminoheptane 
(GC7) showed a strong antiproliferative effect in GBM cell 
lines. Although delivery of small interfering RNA (siRNA) to 
suppress GBM growth is a hurdle due to the critical obstacles 

of the blood‑brain barrier, combined treatment with clinically 
relevant alkylating agents and GC7 had an additive anti‑prolif‑
erative effect in GBM cell lines (21). This suggested that 
pharmacological inhibition of eIF5A may represent a novel 
concept to treat GBM and may help to substantially improve 
the clinical course of this tumor.

The protein forkhead box D1 (FOXD1) is an oncogene. 
Short hairpin RNA‑mediated attenuation ofFOXD1 in glioma 
stem‑like cells reduces their clonogenicity in vitro and in vivo (31). 
The long non‑coding RNA FOXD1‑AS1 (FOXD1‑AS1) is 
the antisense transcript of the gene encoding for FOXD1. 
FOXD1‑AS1 silencing caused glioma cells to exert suppressive 
effects in vitro and in vivo via targeting eIF5A, a direct target 
of FOXD1‑AS1 (32). The data further indicated that eIF5A may 
be a target for glioma treatment.

Neuroblastoma (NB). NB is the most common extracranial solid 
tumor of childhood that affects the age group <15 years (33). 
Despite intensive multi‑modal treatment, NB can spontaneously 
regress without treatment or actively give rise to metastases, and 
the 5‑year survival rate remains <50% among high‑risk patients, 
characterized by certain features, such as metastasis, >1 year of 
age and amplified MYCN oncogene (40‑50%), despite intensive 
treatment protocols (34,35). Chimeric monoclonal GD2‑specific 
antibodies, the targeted immunotherapy for NB, is clinically 
used today. However, acute pain side effect and application 
limit for large doses limit its clinical application (36). Hence, 
the search for novel therapeutic targets is crucial. Studies have 
demonstrated that elevated mRNA levels of the two target 
enzymes deoxyhypusine synthase (DHPS) and ornithine 
decarboxylase (ODC) correlate with poor prognosis in patients 
with NB (37). Targeting eIF5A expression using the DHPS 
inhibitor GC7 and the ODC inhibitor difluoromethylornithine 
induced p21/retinoblastoma (Rb) or p27/Rb‑mediated G1 cell 
cycle arrest and activated caspase‑3/7/9‑mediated apoptosis in 
NB cells (38), suggesting that eIF5A is an effective target for 
improved NB drug therapy.

Digestive system neoplasms. Pancreatic cancer. Pancreatic 
ductal adenocarcinoma (PDAC) is the fourth‑leading cause of 
cancer‑related deaths, with an overall survival rate of <5% due 
to its difficulties in early diagnosis and metastasis (39). PDAC 
is one of the most chemoresistant cancers, and most available 
treatments are palliative (40). Therefore, identification of novel 
diagnostic and prognostic biomarkers and exploring corre‑
sponding targeted therapeutic strategies are needed.

Preukschas et al (21) investigated how eIF5A regulated 
PDAC pathogenesis and found that eIF5A was overexpressed 
in human PDAC tissues compared with corresponding normal 
pancreatic duct tissues. The study also found that activated 
eIF5A1 was upregulated during early stages of PDAC 
progression in response to KRas activation (21). Furthermore, 
targeting eIF5A by siRNA or pharmacological inhibition 
reduces PDAC cell proliferation, migration, invasion, metas‑
tasis and orthotopic tumor growth in vitro and in vivo (23,41). 
Mechanistically, eIF5A mediates PDAC cell migration 
and invasion by regulating RhoA/Rho‑associated protein 
kinase (ROCK) signaling (23), and by regulating eIF5A‑inac‑
tive tyrosine‑protein kinase PEAK1 (PEAK1)‑YAP (Yes‑asso
ciated protein) signaling to mediate tumorigenicity (42).
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Gemcitabine is the standard chemotherapeutic drug for 
PDAC treatment, either alone or in combination with other 
chemotherapeutics (43). However, resistance to gemcitabine is 
inevitable during the initial phase or during the treatment (43). 
Wang et al (44) reported that eIF5A2 overexpression is 
involved in chemoresistance to gemcitabine in PDAC cells and 
targeting eIF5A2 enhances the sensitivity of PDAC cells to 
gemcitabine in vitro and in vivo. Moreover, eIF5A‑mediated 
PEAK1 expression enhanced gemcitabine sensitivity in PDAC 
cells (45). These data indicated that targeting eIF5A2 could 
provide a unique mechanism for PDAC therapy in the clinic.

Hepatocellular carcinoma (HCC). (HCC) is the fifth most 
common cancer and one of the top causes of cancer mortality 
worldwide (46). Treatment options for advanced HCC remain 
limited and unsuccessful due to the high incidence and 
metastasis, resulting in poor prognosis (47). Therefore, precise 
and effective biomarkers are needed for early diagnosis and 
prognostic estimation.

Lee et al (48) reported that the two isoforms (eIF5A1 and 
eIF5A2) were expressed in HCC tissues; eIF5A1 overexpression 
was related with higher numbers of tumor nodules and eIF5A2 
overexpression was related with tumor venous infiltration in 
HCC. Tang et al (49) reported that EIF5A2 mRNA expression 
was significantly increased in HCC tissues compared with nontu‑
morous tissues; furthermore, metastatic or venous infiltrated 
HCC tissues showed significantly increased eIF5A2 expression 
compared with the HCC tissues without metastasis or venous 
infiltration. In addition, eIF5A2 overexpression was significantly 
associated with shorter survival time in patients with HCC (15,50). 
Although eIF5A1 mRNA was expressed in HCC and non‑tumor 
tissues, eIF5A1 expression is positively correlated to the number of 
metastatic nodules in HCC (51). Thus, eIF5A1/2 may be potential 
prognostic and diagnostic markers for HCC. In addition, enforced 
eIF5A2 expression promoted HCC cell growth and accelerated 
glucose utilization and lipogenesis rates (47). Enforced eIF5A2 
expression also promoted HCC cell metastasis and angiogenesis 
in vivo via the c‑Myc/microRNA (miR/miRNA)‑29b axis (52). 
While targeting eIF5A2 by siRNA decreased cell motility and 
reduced cell migration via reactive oxygen species (ROS)‑related 
pathways (15), miR‑125b can reverse the effect of eIF5A2 in HCC 
cells (53).

Functional studies found that enforced eIF5A2 expres‑
sion induced epithelial‑mesenchymal transition (EMT) and 
enhanced the migrative and invasive ability of HCC cells 
in vitro and tumor metastasis in vivo in an experimental 
mouse model, while targeting eIF5A2 alleviates the tumori‑
genic properties of HCC cells in vitro and in vivo by inhibiting 
EMT (20,49,51). Therefore, eIF5A2 may be a potential thera‑
peutic target for HCC. Wang et al (54) reported that targeting 
eIF5A2 enhanced the chemosensitivity of HCC cells to 5‑fluo‑
rouracil (5‑FU) by blocking p38 mitogen‑activated protein 
kinase and JNK/c‑Jun/matrix metalloproteinase (MMP)‑2 
signaling.

GC7 is a novel inhibitor of DHS, which is the key enzyme 
eIF5A2 activation and contributes to eIF5A2 inhibition (55). 
Accumulating evidence indicated that targeting eIF5A2 with 
GC7 significantly inhibited cell proliferation and promoted 
the cytotoxicity of cetuximab and doxorubicin in HCC 
cells (56,57). This data indicated that targeting eIF5A2 may be 
a chemotherapeutic strategy for the treatment of HCC.

miRNAs play a vital role in tumor chemoresistance via regu‑
lating eIF5A2 expression. Using an miRNA target prediction 
website, Xue et al (58) reported that the 3'‑untranslated region 
of eIF5A2 was a potential target of miR‑9. The study found 
that miR‑9 enhanced the sensitivity of HCC cells to cetuximab 
via targeting eIF5A2. miR‑9 can also enhance the sensitivity 
of HCC cells to cisplatin by targeting eIF5A2, resulting in 
inhibition of EMT signaling (59). Moreover, miR‑383 underex‑
pression‑mediated doxorubicin resistance in HCC cells could be 
reversed by silencing eIF5A2 (60). The long non‑coding RNA 
termed GAS6 antisense RNA 1 (GAS6‑AS1)/miR‑585/eIF5A2 
pathway plays an important role in HCC progression and could 
be considered as a potential target for therapeutic approaches in 
HCC (61). These data indicated that targeting eIF5A2 directly 
or indirectly may serve as a potential therapeutic approach for 
HCC in the future.

Gastric cancer (GC). (GC) is one of the most common cancers 
with relatively poor prognosis and remains the second leading 
cause of cancer‑related deaths worldwide (62). Abnormal gene 
or molecule expression is closely related to the occurrence 
and development of GC (63). Therefore, specific inhibitors or 
overexpression of these genes or molecules may be promising 
anticancer drugs for GC.

eIF5A2 was found to be overexpressed in human GC 
tissues and cell lines using immunohistochemical staining and 
western blot assays (64‑67). Higher eIF5A2 expression was 
correlated with high pT/pN stage and lymphovascular invasion 
and poor overall survival in these patients with GC (64,65). 
Moreover, downregulation of eIF5A2 by siRNA was shown 
to inhibit GC cell proliferation and invasion via upregulating 
E‑cadherin expression and downregulation of vimentin, 
cyclin D1, cyclin D3, c‑Myc and metastasis‑associated 
protein1 (MTA1) expression (65). These data indicated that 
eIF5A2 may be a prognostic marker and therapeutic target 
gene for GC.

It has been demonstrated that human miRNA expres‑
sion contributed to the initiation and progression of GC. 
Tian et al (68) reported that miR‑30b induced cell apoptosis 
and reduced cell migration and invasion in vitro via targeting 
eIF5A2 expression in GC cells. Sun et al (69) reported that 
miR‑599 inhibited EMT and metastasis of GC cells in vitro 
and in vivo via targeting eIF5A2. Zhu et al (70) reported that 
eIF5A2 regulated cisplatin sensitivity in GC cells in vitro via 
eIF5A2‑mediated EMT, suggesting that eIF5A2 may be a 
molecular target for anti‑tumor therapy.

Colorectal cancer (CRC). CRC is the third leading cause of 
cancer‑related deaths worldwide (71). Despite recent improve‑
ments in screening strategies and the development of more 
effective treatments for CRC, the prognosis of advanced CRC 
is still poor (72). Therefore, novel methods that would allow 
early detection and diagnosis of colorectal cancer are required.

eIF5A2 was found to be overexpressed in CRC tissues using 
an immunohistochemical assay, and higher eIF5A2 expression 
was correlated with CRC metastasis and short median survival 
time (73‑76).Therefore, eIF5A2 could be as a novel prognostic 
marker for patients with CRC. eIF5A2 was also overexpressed 
in CRC cell lines (77), and enforced eIF5A2 expression induced 
EMT and enhanced cell motility and invasion in CRC cells 
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in vitro and lung metastasis in vivo (73). Another study showed 
that restoration of eIF5A2 in miR‑203‑overexpressing CRC 
cells reversed the suppressive effects of miR‑203, indicating 
that eIF5A2 is a direct and functional target of miR‑203 (75). 
Therefore, eIF5A2 could be an effective therapeutic target for 
CRC.

Esophageal cancer (EC). EC ranks as the sixth most common 
cause of cancer‑related deaths worldwide (78). There are two 
major histological forms for EC, adenocarcinoma (EAC) and 
ESCC, the latter of which comprises up to 90% of EC, and 
is a common type of EC in developing countries, including 
China (79). The five‑year survival rate for ESCC is 15‑25%, 
mainly due to late diagnosis and propensity for metastasis (20). 
Therefore, understanding of the molecular mechanisms 
underlying ESCC progression could improve early diagnosis, 
treatment strategy and overall prognosis of ESCC.

Reverse transcription‑quantitative PCR (RT‑qPCR) 
and immunohistochemical analyses showed that >40% of 
ESCC tissues showed increased eIF5A2 mRNA and protein 
expression compared with matched nontumor tissues (80). 
Furthermore, eIF5A2 overexpression was significantly asso‑
ciated with tumor invasion and lymph node metastasis and 
shorter survival times for patients with ESCC (80). In ESCC 
cells in vitro and in vivo, enforced eIF5A2 expression induced 
EMT and enhanced cell migratory and invasive abilities 
via HIF1α‑mediated signaling pathway (20). Yang et al (80) 
reported that enforced eIF5A2 expression induced chemore‑
sistance of ESCC cells to 5‑FU, docetaxel and taxol in vitro, 
while targeting eIF5A2 could reverse the effect. In addition, 
eIF5A2 overexpression was related with shorter survival for 
patients with ESCC who underwent taxane‑based chemo‑
therapy after esophagectomy (80). These data indicated that 
eIF5A2 maybe as an effective biomarker for predicting prog‑
nosis and chemotherapy response for patients with ESCC. In 
addition, based on GSE6188, GSE13937 and GSE43732 micro‑
array assays obtained from the Gene Expression Omnibus 
database (http://www.ncbi.nlm.nih.gov/geo/), eIF5A2 
was overexpressed in EC tissues compared with matched 
nontumor tissues, suggesting that eIF5A2 could be as a prom‑
ising biomarker for the diagnosis of esophageal cancer (81). 
Moghanibashi et al (82) reported that eIF5A1 participated in 
nucleocytoplasmic transport, which plays a role in esophageal 
carcinogenesis. However, whether eIF5A1 could be a diag‑
nostic and therapeutic target needs further investigation. In 
addition, no related research has been found investigating the 
association between EAC and in the literature.

Breast cancer. Breast cancer is a strong heterogeneous disease, 
and its pathogenesis remains unclear in most cases (83). More 
than 90% of breast cancer‑related deaths are associated with 
metastasis, however, the critical molecular controls underlying 
tumor metastasis are poorly understood (84). Current treat‑
ments for metastatic breast cancer are based on a strategy 
of systemic chemotherapy and endocrine therapies, but the 
intrinsic resistance and acquired resistance to chemotherapy 
and endocrine therapies are inevitable, of which the molecular 
resistance mechanisms are still unknown (85). Therefore, the 
identification of metastasis‑related factors and molecular resis‑
tance mechanisms warrants further investigation.

Liu et al (86) reported that higher eIF5A2 expression 
correlated with doxorubicin resistance in breast cancer cells 
and targeting eIF5A2 could effectively restore the sensitivity 
of breast cancer cells to doxorubicin treatment in breast cancer 
cells in vitro and in vivo. Sirtuin 2 (SIRT2) is a cytoplasmic 
protein in the family of sirtuins that are NAD+‑dependent 
class III histone deacetylases (87). Increasing evidence 
implied the dynamic role of SIRT2 in regulating tumorigen‑
esis (88‑91). Shah et al (92) reported that targeting eIF5A2 
using the small molecule inhibitor of SIRT2 reduced cell 
viability by inhibiting c‑Myc expression in human breast 
cancer cells in vitro. These data indicated that eIF5A could 
be an effective target for breast cancer therapy. Liu et al (93) 
reported that eIF5A2 was identified as a candidate target 
gene of miR‑375, which was suggested to serve as a tumor 
suppressor in breast cancer. However, to the best of our 
knowledge, the expression of eIF5A in breast cancer tissues 
and its association with the clinicopathology of patients with 
breast cancer have not been reported.

Ovarian cancer. The most extensively investigated biomarker 
for screening of epithelial ovarian cancer (EOC) is serum 
CA‑125, reported to distinguish malignant from benign pelvic 
masses, monitor therapeutic response and detect recurrent 
disease (94,95). However, serum CA‑125 has only a modest 
ability to detect early stage ovarian cancer (96). Moreover, 
CA‑125 screening is not reliable enough for routine moni‑
toring (97). In addition, serum CA‑125 has very low predictive 
value and a high false‑positive rate in EOC diagnosis (96,98). 
Therefore, development of improved diagnostic tools for the 
early detection of ovarian cancer is urgently needed.

eIF5A2 was found to be overexpressed in EOC tissues, 
especially in the advanced stage of EOC, using tissue micro‑
array and immunohistochemical assays (99,100), suggesting 
that eIF5A can be useful as stage‑specific tissue biomarker 
for EOC. In addition, patients with EOC with higher eIF5A2 
expression has short survival time compared to the EOC 
patients with lower IF5A2 expression (101), indicating that 
eIF5A2 could be a prognostic marker for EOC.

Experimental research found that targeting eIF5A2 inhib‑
ited cell growth in the ovarian cancer UACC‑1598 cell line 
in vitro and in vivo (100). Furthermore, targeting eIF5A2 
using siRNA increased the chemosensitivity of UACC‑1598 
cells to gemcitabine treatment (102). Further evidence showed 
that eIF5A also enhanced chemotherapeutic drug‑ and XPO1 
inhibitor‑induced ovarian cancer cell apoptosis in vitro and 
in vivo (103). Using immunohistochemical assays, eIF5A1 was 
also found to be overexpressed in EOC tissues, and higher 
eIF5A1 expression was associated with poor survival of 
EOC patients (104). In addition, enforced eIF5A1 expression 
enhanced cell proliferative and invasive capabilities in EOC 
cells, while targeting eIF5A1 could reverse the effect, implying 
that eIF5A1 is a potential therapeutic target for EOC (105).

Cervical cancer. Cervical cancer is the second most common 
cancer among females worldwide (106). Patients with 
advanced or recurrent cervical cancer have poor prognosis, 
and their 1‑year survival of only 10‑20% (107). Platinum‑based 
chemotherapy in metastatic cervical cancer is palliative and 
associated with median overall survival of 9 months (108). 
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Therefore, it is crucial to explore the molecular mechanism 
of cervical cancer metastasis and to identify new therapeutic 
targets.

RT‑qPCR assay showed that eIF5A2 mRNA levels were 
significantly higher in cervical cancer tissues compared with 
paired paratumor tissues (109). Targeting eIF5A2 inhibited cell 
proliferation and migration, and induced G1 phase cell cycle 
arrest in HeLa cells in vitro by targeting the RhoA/ROCK 
pathway (110). Mémin et al (23) reported that silencing of 
eIF5A2 inhibited proliferation and induced apoptosis in 
cervical cancer cell in vitro and in vivo, indicating that eIF5A2 
is a potential therapeutic target for cervical cancer. eIF5A1 was 
also upregulated in human cervical cancer tissues compared 
with adjacent non‑cancerous cervix samples (111). Silencing 
eIF5A1 or DOHH induced apoptosis of human papilloma 
virus 16 E6‑infected cervical cancer cells in vitro (111). 
Therefore, targeting eIF5A1 may also provide a new approach 
for preventing and treating cervical cancer.

Yang et al (109) reported that eIF5A2 overexpression was 
related with higher Fédération Internationale de Gynécologie 
et d'Obstétrique staging, lymph node metastasis, postoperative 
recurrence and poor survival in patients with cervical cancer, 
suggesting that eIF5A2 is a potential prognosis biomarker for 
cervical cancer.

Lung cancer. Lung cancer is the leading cause of cancer‑related 
deaths worldwide, and non‑small cell lung cancer (NSCLC) 
constitutes >80‑90% of all lung malignancies (112). Despite 
advances in treatment options including surgery, radiation, 
chemotherapy and targeted therapies, the 5‑year overall 
survival rate for patients with metastatic NSCLC is <5% (113). 
In human lung adenocarcinoma, eIF5A2 overexpression was 
related with positive lymphocytic response and relatively 
poorer survival of patients (114). Furthermore, tissues with 
poor differentiation or 12th/13th codon K‑Ras mutations or p53 
nuclear accumulation showed higher eIF5A2 expression (114), 
suggesting that eIF5A2 may be as a prognostic marker for 
lung adenocarcinoma. Jin et al (115) has demonstrated that 
adenovirus‑mediated eIF5A1 overexpression induced apop‑
tosis in A549 cells in vitro and improved the survival time in 
mice bearing A549 xenograft tumors in vivo, possibly modu‑
lated by NF‑κB in a p53‑dependent manner (116). However, 
Taylor et al (117) reported that eIF5A1 induced A549 cell 
apoptosis via a p38 and JNK/MAP‑dependent pathway and 
ap53‑independent pathway,

eIF5A2 was also found to be overexpressed in NSCLC 
tissues (118); furthermore, eIF5A2 overexpression was 
related with advanced T stage and local invasion in patients 
with NSCLC (118), suggesting that eIF5A2 might serve as a 
poor prognostic marker. Xu et al (119) reported that eIF5A2 
expression was upregulated in A549 cells following human 
transforming growth factor (TGF)‑β1 treatment, which 
induced EMT phenotypical changes, resulting in enhanced 
tumor invasion and metastatic capabilities. However, eIF5A2 
downregulation could reverse the effect of TGF‑β1 in A549 
cells (119,120). In addition, targeting eIF5A2 significantly 
inhibited cell proliferation and induced apoptosis, and 
enhanced cisplatin or cetuximab cytotoxicity in NSCLC 
cells (121,122). In NSCLC cells, eIF5A2 was reported to 
control cell growth, apoptosis and chemotherapy sensitivity by 

regulating miR‑9 (123‑125). These data indicated that eIF5A2 
may serve as a therapeutic target for the treatment of NSCLC.

Malignant tumors of the urinary system. Bladder cancer. 
Bladder cancer is the fourth most common cancer in males 
and the ninth most common cancer in females in the Western 
world (126). A total of 70% patients with bladder cancer 
present with superficial tumors, and>30% of patients present 
with muscle‑invasive disease, resulting in metastasis and ulti‑
mately causing death (127). Moreover, 50‑70% of superficial 
tumors will recur, and 10‑20% of superficial tumors will 
progress to muscle‑invasive disease (128,129). It is difficult to 
diagnose bladder cancer accurately and sensitively at an early 
stage due to the lack of disease‑specific symptoms (117). The 
prognosis of muscle‑invasive bladder cancer is poor, and recur‑
rence is common after radical surgery or chemotherapy (130). 
Therefore, the development of molecular assays that could 
diagnose bladder cancer accurately at an early stage would 
be a significant advantage. Numerous reports demonstrated 
that eIF5A2 was overexpressed in bladder cancer tissues by 
immunohistochemical and enzyme‑linked immunosorbent 
assays (131‑135). Bladder cancer tissues with higher eIF5A2 
expression predicted short survival using Kaplan Meier curves, 
recurrence, progression and chemotherapy response n patients 
with bladder cancer (131‑133). Therefore, eIF5A2 may be a 
potential marker of bladder cancer diagnosis or progression. 
Furthermore, eIF5A2 knockdown inhibited cell prolifera‑
tion and invasion both in vitro and in vivo, whereas eIF5A2 
overexpression promoted cell proliferation in vitro (131,135). 
In addition, targeting eIF5A2 with GC7 enhanced the thera‑
peutic efficacy of doxorubicin in bladder cancer via preventing 
EMT (135,136), indicating that eIF5A2 may be a potential 
target for bladder cancer therapy.

Prostate cancer (PCa). PCa is the second most common cancer 
and the fifth most common cause of cancer‑associated mortality 
worldwide in men (137). PCa is asymptomatic in the early stage 
of the disease. However, despite significant improvements in 
early detection due to routine prostate‑specific‑antigen (PSA) 
testing, the diagnostic accuracy is <75% (138). In addition, 
whether PSA testing effectively reduces the risk of death from 
PCa remains controversial. Advocates of testing argue that 
PSA testing may, in some cases, lower the stage and grade of 
cancer at diagnosis, and decrease the risk of being diagnosed 
with metastatic PCa, for which there is no cure (139). However, 
across the population of asymptomatic men, PSA testing does 
not decrease all‑cause mortality, and some men will progress 
and develop metastatic disease despite screening and an earlier 
diagnosis (140). Therefore, it is critical to develop an indi‑
vidualized approach for early detection (141). Anti‑androgen 
therapies are part of the standard of therapeutic regimen 
for advanced or metastatic PCa (142). However, PCa always 
develops resistance to androgen deprivation and progresses to 
castrate‑resistant prostate cancer (143). Lu et al (144) reported 
that eIF5A2 was overexpressed in PCa tissues, and enhanced 
eIF5A2 expression was related with higher tumor stage, recur‑
rence and short survival, indicating that eIF5A2 expression 
could be a candidate biomarker for prognosis assessment in 
prostate cancer. It was found that enforced eIF5A expres‑
sion promoted prostate epithelial cell proliferation via 
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modulation of DOHH expression, which is a specific and 
direct target of the putative tumor suppressor miR‑331‑3p and 
miR‑642‑5p (145,146). However, whether eIF5A1/2 could be a 
target for PCa treatment needs further investigation.

Tumor microenvironment. The tumor microenvironment 
consists of stromal cells, the extracellular matrix and signaling 
molecules that communicate with cancer cells (147). The 
normal cellular microenvironment inhibits tumor cell growth, 
but alterations within the tumor microenvironment affect 
the regulation of both cancer and stromal cells (148). Most 
of the signals are related to the tumor microenvironment, 
such as Notch signaling (149), tumor‑associated macrophages 
and neutrophils (150), CXCL12/CXCR4 (151), tumor‑asso‑
ciated macrophages (152), tumor‑related exosomes (153), 
hypoxia‑/HIF‑1α‑driven factors (154) and MMPs (155). These 
signals have the ability to induce proliferation and inhibit apop‑
tosis, induce angiogenesis and avoid hypoxia to influence the 
invasive phenotype (156). In addition, the tumor microenviron‑
ment is not only influenced by signals from tumor cells, but also 
stromal components, which contribute to tumor progression and 
metastasis by affecting cancer cell function (157,158). Therefore, 
targeting the tumor microenvironment to encapsulate or destroy 
cancer cells in their local environment has become mandatory 
for cancer invasion (159). Hence, identification of therapeutic 
targets and manipulation of the tumor microenvironment could 
be used as an approach to prevent and treat cancer.

Accumulating studies have demonstrated that eIF5A2 
regulated numerous signals related to cell apoptosis, angio‑
genesis, invasion and metastasis, such as Akt/MMP‑2 (160), 
MTA1 (70), ROS‑related pathways (50), HIF1α‑mediated 
signaling pathway (20), (PEAK1) (15) and TGF‑β (161). 
eIF5A2 was able to induce EMT in CRC cells, a key event in 
tumor invasion and metastasis, characterized by downregula‑
tion of epithelial markers such as E‑cadherin and β‑catenin 
and upregulation of mesenchymal markers such as fibronectin, 
N‑cadherin, α‑smooth muscle actin and vimentin (162). In 
addition, eIF5A2 could also activate RhoA/Rac1 to stimulate 
the formation of stress fiber and lamellipodia (17). Therefore, 
targeting eIF5A2 in the tumor microenvironment could be 
useful in the treatment and prevention of cancer.

3. Conclusion

Accumulative clinical and experimental evidence showed 
that eIF5A2 is overexpressed in a number of malignant 
tumor tissues. Upregulation of eIF5A2 is associated with 
poor survival, advanced disease stage, poor response to 
chemotherapeutic drugs and metastasis for patients with 
cancer, suggesting that eIF5A2 might be a potential prognostic 
biomarker for malignancies. Numerous evidence demon‑
strated that enforced eIF5A2 expression enhanced cancer 
cell growth, increased cancer cell metastasis and promoted 
chemotherapy resistance through multiple ways. Furthermore, 
targeting eIF5A2 or inactivating hypusination of eIF5A by 
DHPS and DOHH attenuated tumor growth and metastasis 
and overcomes chemotherapeutic resistance, suggesting that 
targeting eIF5A2 may provide an effective approach for the 
treatment of malignancies. However, the exact mechanism by 
which eIF5A2 regulates its target genes and whether it can 

directly play a biological role as a transcription factor has not 
been elucidated.
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