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Abstract

Background

Vector-borne pathogens are a significant public health concern worldwide. Infections with

these pathogens, some of which are emerging, are likely under-recognized due to the lack

of widely-available laboratory tests. There is an urgent need for further advancement in

diagnostic modalities to detect new and known vector-borne pathogens. We evaluated the

utility of metagenomic shotgun sequencing (MGS) as a pathogen agnostic approach for

detecting vector-borne pathogens from human blood samples.

Methods

Residual whole blood samples from patients with known infection with Babesia microti, Bor-

relia hermsii, Plasmodium falciparum, Mansonella perstans, Anaplasma phagocytophilum

or Ehrlichia chaffeensis were studied. Samples underwent DNA extraction, removal of

human DNA, whole genome amplification, and paired-end library preparation, followed by

sequencing on Illumina HiSeq 2500. Bioinformatic analysis was performed using the Liver-

more Metagenomics Analysis Toolkit (LMAT), Metagenomic Phylogenetic Analysis

(MetaPhlAn2), Genomic Origin Through Taxonomic CHAllenge (GOTTCHA) and Kraken 2.

Results

Eight samples were included in the study (2 samples each for P. falciparum and A. phagocy-

tophilum). An average of 27.5 million read pairs was generated per sample (range, 18.3–

38.8 million) prior to removal of human reads. At least one of the analytic tools was able to

detect four of six organisms at the genus level, and the organism present in five of eight

specimens at the species level. Mansonella and Ehrlichia species were not detected by any

of the tools; however, mitochondrial cytochrome c oxidase subunit I amino acid sequence

analysis suggested the presence of M. perstans genetic material.
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Conclusions

MGS is a promising tool with the potential to evolve as a non-hypothesis driven diagnostic

test to detect vector-borne pathogens, including protozoa and helminths.

Introduction

Vector-borne pathogens constitute a significant public health concern, comprising more than

17% of infections globally and causing an estimated 700,000 deaths annually [1]. They are also

a major contributor to emerging infections, with nine new mosquito- or tick-borne diseases

having been introduced or discovered in the United States since 2004 [2]. Infections with these

emerging pathogens are likely under-recognized due to the lack of widely-available laboratory

tests. There is an urgent need for advancement in diagnostic modalities to detect new and

known vector-borne pathogens.

Metagenomic shotgun sequencing (MGS) is a pathogen agnostic approach with the poten-

tial to revolutionize microbial diagnostics, as it allows detection of diverse microorganisms

and associated virulence and antimicrobial resistance genes, as well as discovery of novel path-

ogens. The utility of MGS in clinical practice, and details surrounding its ideal performance,

are being established. Compared to single gene amplification approaches, such as 16S rRNA

gene PCR/sequencing, which can only detect a specific group of organisms, MGS provides the

possibility of detecting bacteria, viruses, fungi, protozoa and helminths in a single test. Instead

of clinical suspicion- or hypothesis-driven testing which relies on competency and experience

of the healthcare provider, a clinical test utilizing MGS can allow unbiased detection of micro-

organisms. This capability has been evaluated in clinical studies to detect pathogens from a

variety of clinical specimens, including blood (whole blood, buffy coat, serum, and plasma),

urine, stool, respiratory secretions, and synovial and spinal fluid [3–8]. Most of these studies

have focused on detection of bacteria, viruses or fungi, but not protozoa or helminths. For the

true potential of MGS as an inclusive pathogen agnostic test to be realized, it should be opti-

mized to detect all potential prokaryotic and eukaryotic pathogens, including those that are

fastidious or non-culturable.

A challenge in achieving this goal is the development and optimization of sample prepara-

tion methods that effectively decrease the amount of host nucleic acids, lyse host cells to release

intracellular organisms and lyse microbial cells to release nucleic acids, without negatively

affecting the quantity of targeted nucleic acid in the sample. Another hurdle is effectually pars-

ing and analyzing the millions of sequenced reads to identify known pathogens. The success of

accurately identifying detected sequences is limited by the presence of a matching sequence in

the database of the analytic tool(s) being applied, and therefore, it is important to select the

ideal tool(s) to use. Studies comparing the results of different metagenomic pipelines for vec-

tor-borne pathogens are lacking in the literature.

To evaluate the potential of MGS to detect vector-borne organisms in blood, we studied

specimens containing three eukaryotic pathogens (Babesia microti, Plasmodium falciparum,

andMansonella perstans), two rickettsiales (Ehrlichia chaffeensis and Anaplasma phagocytophi-
lum) and one spirochete (Borrelia hermsii). Out of these, four are intracellular pathogens

(Babesia, Plasmodium, Ehrlichia and Anaplasma species) and two extracellular pathogens

(M. perstans and B. hermsii). We analyzed the sequenced nucleic acids from these samples

using four analytical tools–Livermore Metagenomics Analysis Toolkit (LMAT), Metagenomic

Phylogenetic Analysis (MetaPhlAn2), Genomic Origin Through Taxonomic CHAllenge

(GOTTCHA) and Kraken 2.
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Methods

This study was approved by Mayo Clinic Institutional Review Boards (ID: 16–005221). The

Institutional Review Board waived the requirement to obtain consent.

Specimens

Residual whole blood samples (0.5–1 ml), collected and stored in EDTA tubes from patients

with known infection with B.microti (BM), B. hermsii (BH), P. falciparum (PF-1 and PF-2),M.

perstans (MP), A. phagocytophilum (AP-1 and AP-2), and E. chaffeensis (EC) were studied.

The original diagnoses were made using conventional microscopy and/or PCR-based meth-

ods.M. perstans was identified using Knott’s concentration, with P. falciparum identified

using thin blood films. The remaining organisms were identified using laboratory-developed,

clinically-validated PCR assays [9, 10], with B. hermsii identification confirmed by Sanger

sequencing of a fragment of glpQ following PCR amplification. All samples had been stored at

4˚C, with nucleic acid extracted within 4 days of collection, except for theM. perstans sample

which had been frozen at -80˚C for 13 years.

Sample preparation

Sample preparation was performed in a laminar flow hood. The MolYsis Complete5 kit (Mol-

zym, Bremen, Germany) was used for DNA extraction and removal of host DNA. Due to the

low sample volume, the “small size sample protocol” was used per the manufacturer’s recom-

mendation, with the exception that elution was performed with 70 μl of deionized water. TE

buffer and Corynebacterium glutamicum (CG) ATCC 13032 suspended in TE buffer (105

CFU/ml) were extracted alongside the test specimens as external negative and positive controls

(NC and PC-CG), respectively.

Whole genome amplification was performed using the REPLI-g Single Cell Kit (Qiagen,

Hilden, Germany) in a separate room from sample preparation. Amplified DNA was purified

using Agencourt AMPure XP beads (Beckman Coulter, Brea, CA) with bead volume of 1.5X

sample volume. Purified DNA was diluted to a concentration of 2 ng/μl by adding molecular

grade water (DNase/RNase free). A final 50 μl sample volume was submitted for sequencing.

Sequencing

Library preparation and massive parallel sequencing were performed in a physically separate

location by the Clinical Genome Sequencing Laboratory, Division of Biochemical Genetics,

Department of Laboratory Medicine and Pathology (Mayo Clinic Rochester, MN). The sam-

ples were sheared to 550 base pairs (bp) using a LE220 Sonicator (Covaris, Woburn, MA).

Paired-end libraries were prepared with the TruSeq Nano library preparation kit (Illumina,

San Diego, CA) on a BioMek FX liquid handling station (Beckman Coulter, Brea, CA) fol-

lowed by sequencing on HiSeq 2500 in rapid run mode (Illumina) resulting in paired reads of

150 bp in length.

Bioinformatics analysis

Raw reads from the sequencer were inspected for residual adapters using Atropos v1.1.19 [11].

Putative human reads were removed using BioBloom Tools v2.1.1 [12] prior to analysis by

GOTTCHA, LMAT and MetaPhlAn2. Low-complexity reads were masked from analysis

using VSEARCH v2.8.4 [13]. The following tools were used for taxonomy calling: LMAT

v1.2.6 [14] using database kML+H.noprune.4-14.2025, MetaPhlAn2 v2.7.0 [15], GOTTCHA

v2.1 beta with databases based on RefSeq release 75 [16], and Kraken2 v2.0.7beta [17] with

Metagenomic shotgun sequencing for vector-borne pathogens
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bacterial, archaeal, fungal, viral and protozoan databases created in October 2018. An average

of 27.5 million read pairs was generated per sample (range, 18.3–38.8 million) prior to removal

of human reads. Statistical analysis of results generated between the different databases was

not performed because of small sample size.

Publication of sequences

Human reads were removed, and the raw sequence data for each sample were deposited in the

Sequence Read Archive (SRA) database at the National Center for Biotechnology Information

(NCBI) under BioProject accession number PRJNA518922.

Results

Analysis at the genus level

Comparison of the four tools vis-à-vis genus-level identification is shown in Table 1. Interpre-

tation from GOTTCHA was split into bacteria and protozoa as different datasets were applied

for the two analyses. Four of six pathogens (Babesia, Borrelia, Anaplasma and Plasmodium
species) were detected by at least one of the analytic tools at the genus level. However, a differ-

ence was noted in sensitivity of detection between the different analytic tools. For PF-1, 92,711

reads were attributed to Plasmodium by Kraken 2 but only 17,849 reads by GOTTCHA-Proto-

zoa. Similarly, for PF-2, higher reads matches were reported by Kraken 2 than LMAT or

GOTTCHA. Babesia had over 2.5M and 1.5M reads assigned by GOTTCHA-Protozoa and

Kraken 2, respectively, but only 733 reads assigned by LMAT. NeitherMansonella nor Ehrli-
chia was detected by any of the tools.

The read score for the second Anaplasma sample was low, likely because of a low load of

microorganism in the sample (crossing point >40 cycles by real-time PCR). Of the two Plas-
modium samples, one had higher read scores and read counts compared to the other. MetaPh-

lAn2 was able to detect only one of the Plasmodium samples, PF-1, which had higher read

counts than PF-2 by other tools. All four tools detected the positive control. The negative con-

trol had reads that matched C. glutamicum, suggesting cross-contamination between positive

and negative controls.

Table 1. Analysis at the genus level.

Specimen GOTTCHA-Bacteria GOTTCHA-Protozoa LMAT MetaPhlAn2 Kraken 2

Read count Relative abundance� Read count Relative abundance� Read count Relative abundance� Reads

BH 5,397,402 99.7 0 0 5,155,036 99.989 6,908,083

PF-1 0 0 17,848 72.6 73,803 73.245 92,711

BM 0 0 2,191,962 100 733 0 1,588,363

MP 0 0 0 0 0 0 0

PF-2 0 0 12,772 100 55,402 0 176,571

EC 0 0 0 0 0 0 0

AP-1 2,542 12.7 0 0 1,812 77.060 1,890

AP-2 5 11 0 0 5 0 4

PC-CG 19,833,473 99.5 0 0 36,980,606 99.997 38,562,714

�Relative abundance is expressed as percentage. Relative abundance estimated by GOTTCHA was read-based and used rolled up depth of coverage for calculation.

MetaPhlAn2 provided organismal relative abundance (in terms of number of cells rather than fraction of reads). Relative abundance by GOTTCHA and MetaPhlAn2

are not directly comparable. BH, B. hermsii; PF, P. falciparum; BM, B.microti;MP,M. perstans; AP, A. phagocytophilum; EC, E. chaffeensis; PC-CG, Positive control—C.

glutamicum.

https://doi.org/10.1371/journal.pone.0222915.t001
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Analysis at the species level

The species-level analysis is shown in Table 2. Most reads that matched to the pathogens at

genus levels also matched at species level with few exceptions. B.microti was not identified by

LMAT at the species level, with the 733 reads assigned to the genus Babesia split between B.

equi (472) and B. bovis (217). There was a lower level of confidence at the species level for P.

falciparum. For sample PF-2, out of 171,946 reads at the Plasmodium genus level, only 29,981

corresponded to P. falciparum, with more reads assigned to P. vivax (38,302) than P.

falciparum.

Complete details of the results from all four analytic tools are available as supporting infor-

mation (S1 Table).

Sankey interpretation

Pavian is an online interactive browser that provides a visual report from Kraken, MetaPhlAn2

and Centrifuge [18, 19]. Sankey diagrams obtained from the Kraken 2 reports from the eight

samples and two controls are as shown in Fig 1.

Identification by mitochondrial gene sequence matching

The filarial wormM. perstans was missed by all analytic tools studied. However, the presence

of filarial DNA was suggested by reads assigned to other nematodes. GOTTCHA invertebrates

matched 16,873 reads to phylum Nematoda and 16,871 reads to order Spirurida. Based on k-

mers, LMAT assigned 3,295 reads to genus Brugia and 2,173 reads to Onchocerca.Wolbachia
species, a Gram-negative bacterium which can be an endosymbiont of filarial worms, includ-

ingM. perstans, also generated 10,967 and 1,941 reads with LMAT and Kraken 2, respectively

[20]. None of the other samples had reads originating from a nematode orWolbachia species.

The genome ofM. perstans has not been sequenced as of January 2019 which likely explains

the inability of these analytic tools to accurately identify the organism. There is, however, a

protein sequence of theM. perstansmitochondrial cytochrome c oxidase subunit I (Cox1)

gene publicly available (UniProt accession A0A1M4NFV5). This sequence was matched

against the sequence data obtained from the sample that was positive forM. perstans by PCR.

Table 2. Analysis at the species level.

Specimen GOTTCHA-Bacteria GOTTCHA-Protozoa LMAT MetaPhlAn2 Kraken 2

Read count Relative abundance� Read count Relative abundance� Read count Relative abundance� Reads

BH 5,393,026 71 0 0 4,997,666 99.977 6,885,897

PF-1 0 0 17,230 46.0 72,490 73.245 79,934

BM 0 0 2,191,962 100 0 0 1,570,492

MP 0 0 0 0 0 0 0

PF-2 0 0 12,334 37.4 35,874 0 29,647

EC 0 0 0 0 0 0 0

AP-1 2,542 12.7 0 0 1,810 77.060 1,876

AP-2 5 12.4 0 0 5 0 4

PC-CG 19,832,203 98.7 0 0 29,169,927 99.997 29,349,222

�Relative abundance is expressed as percentage. Relative abundance estimated by GOTTCHA was read-based and used rolled up depth of coverage for calculation.

MetaPhlAn2 provided organismal relative abundance (in terms of number of cells rather than fraction of reads). Relative abundance by GOTTCHA and MetaPhlAn2

are not directly comparable. BH, B. hermsii; PF, P. falciparum; BM, B.microti;MP,M. perstans; AP, A. phagocytophilum; EC, E. chaffeensis; PC-CG, Positive control

with C. glutamicum.

https://doi.org/10.1371/journal.pone.0222915.t002
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Using DIAMOND v0.9.22 [21], we searched the raw reads against theM. perstans Cox1 amino

acid sequence. We also included Cox1 sequences for B.microti (accession A0A0K3API2) and

P. falciparum (accession Q02766). Results expressed as reads per kilobase per million (RPKM)

mapped from this analysis are shown in Table 3. 574,807 RPKM belonged toM. perstans
Cox1, with four other samples having low levels of RPKM forM. perstans Cox1 (6–24), likely

as a result of cross-contamination. Similarly, the cytochrome c oxidase subunit I gene for Babe-
sia and Plasmodium species were matched against all the samples and generated 1,146, 3,426

and 163,400 RPKMs of the relevant organisms for BM, PF-1 and PF-2, respectively, with 31 P.

falciparum Cox1 RPKMs noted in theM. perstans sample.

Discussion

Our study findings suggest that MGS can successfully detect a wide variety of vector-borne

human pathogens, including protozoa and one helminth. We also report novel strategies to

optimize MGS results for detecting eukaryotic organisms in cases where sufficient genomic

sequencing information is not available. These observations support the evolving role of MGS

as a potential pathogen agnostic clinical test where diagnostic evaluation is not hampered by

clinical suspicion for a particular infection by the ordering clinician.

Because of the large size of the sequenced data, MGS dictates the use of computational tools

to analyze the fragmented sequences, measure the length of the covered genome and provide a

taxonomical assignment. Previously, NCBI BLAST was used to perform this task but as the

size of the sequencing dataset increased over time, other tools that are faster and more efficient

than BLAST were developed. Many of these tools are publically available for use. Broadly,

these tools can be divided in those that use all available sequences (e.g., GOTTCHA [16],

LMAT [14], Kraken [17, 22]) and those that utilize a set of marker genes (e.g., MetaPhlAn2

[15]). GOTTCHA is a gene-independent and signature-based method which employs a data-

base of unique 24 base pair (bp) fragments for generating a taxonomic profile. In contrast,

LMAT and Kraken rely on exact k-mer (sequence fragments of length “k”) matches, instead of

alignments. Kraken uses a default k of 31 whereas LMAT has a default k of 20. This difference

in k-mer length is significant since in general, long k-mers may be more specific and short k-

mers more sensitive. Also, Kraken assigns the matched k-mer to the lowest common ancestor

Fig 1. Sankey diagrams of Kraken 2 report from eight clinical samples and two controls. A) B. hermsii, B) P. falciparum (PF-1), C) B.microti, D)

M. perstans, E) P. falciparum (PF-2), F) E. chaffeensis, G) A. phagocytophilum (AP-1), H) A. phagocytophilum (AP-2), I) Positive control–C.

glutamicum, J) Negative control.

https://doi.org/10.1371/journal.pone.0222915.g001

Table 3. Abundance of Cox1 amino acid sequences for M. perstans, B. microti and P. falciparum against all the samples with counts normalized to RPKM.

Gene Family

Blood Sample Mansonella perstans Cox1 Babesia microti Cox1 Plasmodium falciparum Cox1

B. hermsii 0 0 0

P. falciparum -1 0 0 3,426

B.microti 0 1,146 0

M. perstans 574,807 0 31

P. falciparum -2 24 0 163,400

E. chaffeensis 6 0 0

A. phagocytophilum -1 12 0 0

A. phagocytophilum -2 6 0 0

https://doi.org/10.1371/journal.pone.0222915.t003
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(LCA), while LMAT stores the source genome instead of LCA. Therefore k-mers assigned to a

particular taxon may vary depending on the tool used. Kraken 2 is a newer version of Kraken

(default k of 35) with faster database build times, smaller database sizes, and faster classifica-

tion speeds. MetaPhlAn2 uses clade-specific marker genes for taxonomical profiling. Since

only genes are assigned, the process is faster than mapping reads to an entire genome [23]. The

unique characteristics of these computational tools make it necessary to use multiple methods

when analyzing samples for uncommon organisms.

As we demonstrate in this study, organisms that have whole genome sequences available

from multiple strains are likely to be picked up by most analytic tools, whereas uncommon

microbes that are yet to be fully sequenced render analysis more challenging. At the species

level, GOTTCHA, LMAT, MetaPhlAn2 and Kraken 2 were able to detect 5, 4 (missed B.

microti), 3 (missed B.microti, P. falciparum-2) and 5 organisms out of the 8 samples, respec-

tively. Notable is the discrepancy between the reads attributed to P. falciparum by Kraken 2

(n = 92,711) versus 17,849 read by GOTTCHA-Protozoa. GOTTCHA, which is alignment

based, generally returns fewer hits than kmer based tools like Kraken 2.M. perstans, E. chaf-
feensis and one sample with A. phagocytophilum were missed by all four tools. Besides lack of

sequence data in the databases (theM. perstans sample), other reasons why organisms were

missed could be low load of the pathogen (the A. phagocytophilum sample had a crossing point

of>40 cycles and the E. chaffeensis sample had a crossing point of 35 cycles), loss of DNA as a

result of prolonged storage (theM. perstans sample) or loss of DNA during processing (enrich-

ment and/or extraction).

AlthoughM. perstans was not detected by any of the analytic tools initially, analysis of the

cytochrome c oxidase subunit I amino acid sequence suggested that the genetic material of the

filarial worm was in fact present in the final analyzed sequence but was not detected due to the

absence ofM. perstans genomic sequence in the databases utilized. To further test this hypoth-

esis, we queried the cytochrome c oxidase sequences of Babesia and Plasmodium species

against all our samples and found that we were able to match sequences to the specimens har-

boring these species, with little cross-detection (Table 3). Targeting mitochondrial genes is a

potential method to detect eukaryotic organisms in cases where insufficient whole genomic

sequence information is available.

Depending on the enrichment method used, eukaryotic pathogen nucleic acid may be inad-

vertently removed from the sample, alongside host DNA, prior to sequencing. In this study,

we used MolYsis™ Complete5 for removal of host DNA as well as extraction of microbial

nucleic acid. This step utilizes a chaotropic buffer that selectively lyses human/animal cells fol-

lowed by degradation of the free nucleic acid by chaotrope-resistant MolDNase B. This chao-

tropic buffer could potentially lyse a eukaryotic pathogen in the sample along with human/

animal cells, leading to loss of the eukaryotic pathogen’s nucleic acid. An alternative might be

the use of NEBNext1microbiome DNA enrichment kit which selectively binds and removes

the CpG-methylated host DNA. However, a head to head comparison of MolYsis™ and NEB-

Next1 suggested that NEBNext1 does not enrich bacterial DNA to the extent that MolYsis™
does [24]. Others have evaluated the nonionic detergent saponin for selective lysis of human

cells and release intracellular bacteria for improved detection [25, 26]. However, saponin may

also lead to unbiased lysis of eukaryotic cells, including pathogen cells. Cell-free DNA sequenc-

ing has been used successfully to detect pathogens from plasma and thereby eliminate the need

for host cell lysis [27]. On the other hand, this approach may theoretically miss intracellular

pathogens. Bioinformatics tools may be employed to improve pathogen to human read ratios

by removing reads matched to human k-mers. We used BioBloom Tools v2.1.1 to filter out

human and PhiX sequences prior to analysis by LMAT, GOTTCHA and MetaPhlan2. How-

ever, bioinformatic tools can also potentially remove reads from pathogens. Alternatively,

Metagenomic shotgun sequencing for vector-borne pathogens
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sequencing may be performed without biochemical and bioinformatic enrichment but this

requires deeper sequencing which increases cost. Further research is warranted to develop and

optimize a sample preparation approach to improve universal detection of intracellular and

eukaryotic pathogens of different types.

The primary limitation of this study is its small sample size, which precluded statistical anal-

ysis. To more fully understand the limitations of the methods and analytic tools studied, a

larger study, adding a focus on pathogens with unknown or draft genome sequences, including

intracellular and eukaryotic organisms, is needed. In addition, we only studied whole blood

and not other blood components (plasma, serum, buffy coat). Also, we did not sequence RNA,

which would be needed to identify RNA viruses. Finally, we found evidence of cross-contami-

nation, a challenge especially germane to clinical implementation.

That each sample sequenced with MGS generated a number of reads attributable to multi-

ple organisms would obviously render it challenging to differentiate between true pathogens

and contaminants were this approach to be used clinically; contaminants may derive from

reagents or cross-contamination between samples at any one (or more) of multiple steps.

Therefore, if this approach is to be applied clinically, it will be critically important to incorpo-

rate methods to prevent and detect cross-contamination so as not to issue false positive results.

Cross-contamination may be minimized by performance of individual steps in separate, pur-

pose-build facilities used solely for MGS; utilization of microfluidics or automated sample

preparation methods may help abrogate contamination. Clinical utilization will require MGS-

specific quality assurance and quality control process, including incorporation of both internal

and external controls. Internal controls should be included in amounts that do not interfere

with detection of varying amounts of diverse pathogens in patient samples, all the while maxi-

mizing their ability to detect interfering substances in individual samples and address cross-

contamination, ideally by incorporating unique internal controls into each patient sample.

Use of artificial sequences can potentially fulfill the need for unique internal controls that

would not interfere with pathogen interpretation [28, 29]. Likewise, external positive controls

should consist of mixtures of organisms unlikely to be observed in humans, but able to quality

control the process for detection of diverse organism-types while simultaneously revealing any

cross-contamination present. Negative controls also help address cross-contamination—in the

current study, we detected C. glutamicum in the negative control -; negative controls can also

help define background deriving from reagents used, which may vary over time and should

therefore be tracked within and between runs. Potential solutions for index mis-assignment

from multiplexing, another source of false-positive results, include use of the Free Adapter

Blocking Reagent and of Unique Dual Indexes (Illumina).

For clinical application of MGS, rigorous interpretive thresholds will need to be established

for interpretation of sequence data, based, for example, on read counts, relative abundance,

read scores, depths of coverage and results of sequencing of external controls and clinical sam-

ples (alongside their internal controls) on the same run and historically [4, 8]. To the extent

that it is likely to be impossible to mitigate all background microbial reads, clinical application

of MGS may be limited in its ability to detect pathogens present at low abundance.

In conclusion, MGS is a promising tool with the potential to evolve as a non-hypothesis

driven diagnostic test. However, further work needs to be done to optimize sample preparation

methods and expand the reach of analytic tools, especially for vector-borne pathogens, includ-

ing protozoa and helminths. The absence of whole genome sequence ofM. perstans in publi-

cally-available databases limits the power of MGS for detection of this organism, a situation

that likely applies to other organisms. Efforts should be made to generate good quality whole

genome sequence data for poorly-represented organisms, such asM. perstans.

Metagenomic shotgun sequencing for vector-borne pathogens

PLOS ONE | https://doi.org/10.1371/journal.pone.0222915 October 2, 2019 9 / 12

https://doi.org/10.1371/journal.pone.0222915


Supporting information

S1 Table. Analysis of data by all four databases.

(XLSX)

Acknowledgments

We thank Scott A. Cunningham, M.S. (Development Technologist, Mayo Clinic Rochester,

MN) for assistance with the development of methods and review of the manuscript.

Author Contributions

Conceptualization: Prakhar Vijayvargiya, Zerelda Esquer Garrigos, Bobbi S. Pritt, Robin

Patel.

Data curation: Prakhar Vijayvargiya.

Formal analysis: Prakhar Vijayvargiya, Patricio R. Jeraldo, M. Rizwan Sohail, Nicholas Chia.

Methodology: Prakhar Vijayvargiya, Kerryl E. Greenwood-Quaintance, Zerelda Esquer Garri-

gos, M. Rizwan Sohail, Bobbi S. Pritt, Robin Patel.

Resources: Robin Patel.

Supervision: Robin Patel.

Validation: Prakhar Vijayvargiya.

Writing – original draft: Prakhar Vijayvargiya.

Writing – review & editing: Patricio R. Jeraldo, Matthew J. Thoendel, Kerryl E. Greenwood-

Quaintance, Zerelda Esquer Garrigos, M. Rizwan Sohail, Nicholas Chia, Bobbi S. Pritt,

Robin Patel.

References
1. Vector-borne diseases 2017 [cited 2019 January 7, 2019]. Available from: https://www.who.int/news-

room/fact-sheets/detail/vector-borne-diseases.

2. Illnesses on the rise [updated May 1, 2018; cited 2019 January 7, 2019]. Available from: https://www.

cdc.gov/vitalsigns/vector-borne/index.html.

3. Parize P, Muth E, Richaud C, Gratigny M, Pilmis B, Lamamy A, et al. Untargeted next-generation

sequencing-based first-line diagnosis of infection in immunocompromised adults: A multicentre,

blinded, prospective study. Clin Microbiol Infect. 2017; 23(8):574 e1– e6. Epub 2017/02/14. https://doi.

org/10.1016/j.cmi.2017.02.006 PMID: 28192237.

4. Ivy MI, Thoendel MJ, Jeraldo PR, Greenwood-Quaintance KE, Hanssen AD, Abdel MP, et al. Direct

detection and identification of prosthetic joint infection pathogens in synovial fluid by metagenomic shot-

gun sequencing. J Clin Microbiol. 2018; 56(9). Epub 2018/06/01. https://doi.org/10.1128/JCM.00402-18

PMID: 29848568; PubMed Central PMCID: PMC6113468.

5. Gyarmati P, Kjellander C, Aust C, Song Y, Ohrmalm L, Giske CG. Metagenomic analysis of blood-

stream infections in patients with acute leukemia and therapy-induced neutropenia. Sci Rep. 2016;

6:23532. https://doi.org/10.1038/srep23532 PMID: 26996149; PubMed Central PMCID: PMC4800731.

6. Lim YW, Evangelista JS 3rd, Schmieder R, Bailey B, Haynes M, Furlan M, et al. Clinical insights from

metagenomic analysis of sputum samples from patients with cystic fibrosis. J Clin Microbiol. 2014; 52

(2):425–37. Epub 2014/01/31. https://doi.org/10.1128/JCM.02204-13 PMID: 24478471; PubMed Cen-

tral PMCID: PMC3911355.

7. Schmidt K, Mwaigwisya S, Crossman LC, Doumith M, Munroe D, Pires C, et al. Identification of bacterial

pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic

sequencing. J Antimicrob Chemother. 2017; 72(1):104–14. Epub 2016/09/27. https://doi.org/10.1093/

jac/dkw397 PMID: 27667325.

Metagenomic shotgun sequencing for vector-borne pathogens

PLOS ONE | https://doi.org/10.1371/journal.pone.0222915 October 2, 2019 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0222915.s001
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
https://www.cdc.gov/vitalsigns/vector-borne/index.html
https://www.cdc.gov/vitalsigns/vector-borne/index.html
https://doi.org/10.1016/j.cmi.2017.02.006
https://doi.org/10.1016/j.cmi.2017.02.006
http://www.ncbi.nlm.nih.gov/pubmed/28192237
https://doi.org/10.1128/JCM.00402-18
http://www.ncbi.nlm.nih.gov/pubmed/29848568
https://doi.org/10.1038/srep23532
http://www.ncbi.nlm.nih.gov/pubmed/26996149
https://doi.org/10.1128/JCM.02204-13
http://www.ncbi.nlm.nih.gov/pubmed/24478471
https://doi.org/10.1093/jac/dkw397
https://doi.org/10.1093/jac/dkw397
http://www.ncbi.nlm.nih.gov/pubmed/27667325
https://doi.org/10.1371/journal.pone.0222915


8. Thoendel M, Jeraldo P, Greenwood-Quaintance KE, Yao J, Chia N, Hanssen AD, et al. Identification of

prosthetic joint infection pathogens using a shotgun metagenomics approach. Clin Infect Dis. 2018.

Epub 2018/04/13. https://doi.org/10.1093/cid/ciy303 PMID: 29648630.

9. Babady NE, Sloan LM, Rosenblatt JE, Pritt BS. Detection of Plasmodium knowlesi by real-time poly-

merase chain reaction. Am J Trop Med Hyg. 2009; 81(3):516–8. Epub 2009/08/27. PMID: 19706924.

10. Pritt BS, Sloan LM, Johnson DK, Munderloh UG, Paskewitz SM, McElroy KM, et al. Emergence of a

new pathogenic Ehrlichia species, Wisconsin and Minnesota, 2009. N Engl J Med. 2011; 365(5):422–9.

Epub 2011/08/05. https://doi.org/10.1056/NEJMoa1010493 PMID: 21812671; PubMed Central

PMCID: PMC3319926.

11. Didion JP, Martin M, Collins FS. Atropos: specific, sensitive, and speedy trimming of sequencing reads.

PeerJ. 2017; 5:e3720. Epub 2017/09/07. https://doi.org/10.7717/peerj.3720 PMID: 28875074; PubMed

Central PMCID: PMC5581536.

12. Chu J, Sadeghi S, Raymond A, Jackman SD, Nip KM, Mar R, et al. BioBloom tools: Fast, accurate and

memory-efficient host species sequence screening using bloom filters. Bioinformatics. 2014; 30

(23):3402–4. Epub 2014/08/22. https://doi.org/10.1093/bioinformatics/btu558 PMID: 25143290;

PubMed Central PMCID: PMC4816029.

13. Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metage-

nomics. PeerJ. 2016; 4:e2584. Epub 2016/10/27. https://doi.org/10.7717/peerj.2584 PMID: 27781170;

PubMed Central PMCID: PMC5075697.

14. Ames SK, Hysom DA, Gardner SN, Lloyd GS, Gokhale MB, Allen JE. Scalable metagenomic taxonomy

classification using a reference genome database. Bioinformatics. 2013; 29(18):2253–60. Epub 2013/

07/06. https://doi.org/10.1093/bioinformatics/btt389 PMID: 23828782; PubMed Central PMCID:

PMC3753567.

15. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced

metagenomic taxonomic profiling. Nat Methods. 2015; 12(10):902–3. Epub 2015/09/30. https://doi.org/

10.1038/nmeth.3589 PMID: 26418763.

16. Freitas TA, Li PE, Scholz MB, Chain PS. Accurate read-based metagenome characterization using a

hierarchical suite of unique signatures. Nucleic Acids Res. 2015; 43(10):e69. Epub 2015/03/15. https://

doi.org/10.1093/nar/gkv180 PMID: 25765641; PubMed Central PMCID: PMC4446416.

17. Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence classification using exact align-

ments. Genome Biol. 2014; 15(3):R46. Epub 2014/03/04. https://doi.org/10.1186/gb-2014-15-3-r46

PMID: 24580807; PubMed Central PMCID: PMC4053813.

18. Breitwieser FP, Salzberg SL. Pavian: Interactive analysis of metagenomics data for microbiomics and

pathogen identification. bioRxiv. 2016:084715. https://doi.org/10.1101/084715

19. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: Rapid and sensitive classification of metage-

nomic sequences. Genome Res. 2016; 26(12):1721–9. Epub 2016/11/18. https://doi.org/10.1101/gr.

210641.116 PMID: 27852649; PubMed Central PMCID: PMC5131823.

20. Gehringer C, Kreidenweiss A, Flamen A, Antony JS, Grobusch MP, Belard S. Molecular evidence of

Wolbachia endosymbiosis in Mansonella perstans in Gabon, Central Africa. J Infect Dis. 2014; 210

(10):1633–8. Epub 2014/06/07. https://doi.org/10.1093/infdis/jiu320 PMID: 24903665.

21. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods.

2015; 12(1):59–60. Epub 2014/11/18. https://doi.org/10.1038/nmeth.3176 PMID: 25402007.

22. Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast metagenomics classification

using unique k-mer counts. Genome Biol. 2018; 19(1):198. Epub 2018/11/18. https://doi.org/10.1186/

s13059-018-1568-0 PMID: 30445993; PubMed Central PMCID: PMC6238331.

23. Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification

and assembly. Brief Bioinform. 2017. Epub 2017/10/14. https://doi.org/10.1093/bib/bbx120 PMID:

29028872.

24. Thoendel M, Jeraldo PR, Greenwood-Quaintance KE, Yao JZ, Chia N, Hanssen AD, et al. Comparison

of microbial DNA enrichment tools for metagenomic whole genome sequencing. J Microbiol Methods.

2016; 127:141–5. https://doi.org/10.1016/j.mimet.2016.05.022 PMID: 27237775.

25. Gould FK, Freeman R, Law D, Moriarty T. Lysis in detection of intracellular organisms. Lancet. 1988; 2

(8608):461. Epub 1988/08/20. https://doi.org/10.1016/s0140-6736(88)90459-x PMID: 2900397.

26. Hsiao LL, Howard RJ, Aikawa M, Taraschi TF. Modification of host cell membrane lipid composition by

the intra-erythrocytic human malaria parasite Plasmodium falciparum. Biochem J. 1991; 274 (Pt

1):121–32. Epub 1991/02/15. https://doi.org/10.1042/bj2740121 PMID: 2001227; PubMed Central

PMCID: PMC1149929.

27. Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, et al. Analytical and clinical validation

of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol. 2019; 4(4):663–74.

Epub 2019/02/12. https://doi.org/10.1038/s41564-018-0349-6 PMID: 30742071.

Metagenomic shotgun sequencing for vector-borne pathogens

PLOS ONE | https://doi.org/10.1371/journal.pone.0222915 October 2, 2019 11 / 12

https://doi.org/10.1093/cid/ciy303
http://www.ncbi.nlm.nih.gov/pubmed/29648630
http://www.ncbi.nlm.nih.gov/pubmed/19706924
https://doi.org/10.1056/NEJMoa1010493
http://www.ncbi.nlm.nih.gov/pubmed/21812671
https://doi.org/10.7717/peerj.3720
http://www.ncbi.nlm.nih.gov/pubmed/28875074
https://doi.org/10.1093/bioinformatics/btu558
http://www.ncbi.nlm.nih.gov/pubmed/25143290
https://doi.org/10.7717/peerj.2584
http://www.ncbi.nlm.nih.gov/pubmed/27781170
https://doi.org/10.1093/bioinformatics/btt389
http://www.ncbi.nlm.nih.gov/pubmed/23828782
https://doi.org/10.1038/nmeth.3589
https://doi.org/10.1038/nmeth.3589
http://www.ncbi.nlm.nih.gov/pubmed/26418763
https://doi.org/10.1093/nar/gkv180
https://doi.org/10.1093/nar/gkv180
http://www.ncbi.nlm.nih.gov/pubmed/25765641
https://doi.org/10.1186/gb-2014-15-3-r46
http://www.ncbi.nlm.nih.gov/pubmed/24580807
https://doi.org/10.1101/084715
https://doi.org/10.1101/gr.210641.116
https://doi.org/10.1101/gr.210641.116
http://www.ncbi.nlm.nih.gov/pubmed/27852649
https://doi.org/10.1093/infdis/jiu320
http://www.ncbi.nlm.nih.gov/pubmed/24903665
https://doi.org/10.1038/nmeth.3176
http://www.ncbi.nlm.nih.gov/pubmed/25402007
https://doi.org/10.1186/s13059-018-1568-0
https://doi.org/10.1186/s13059-018-1568-0
http://www.ncbi.nlm.nih.gov/pubmed/30445993
https://doi.org/10.1093/bib/bbx120
http://www.ncbi.nlm.nih.gov/pubmed/29028872
https://doi.org/10.1016/j.mimet.2016.05.022
http://www.ncbi.nlm.nih.gov/pubmed/27237775
https://doi.org/10.1016/s0140-6736(88)90459-x
http://www.ncbi.nlm.nih.gov/pubmed/2900397
https://doi.org/10.1042/bj2740121
http://www.ncbi.nlm.nih.gov/pubmed/2001227
https://doi.org/10.1038/s41564-018-0349-6
http://www.ncbi.nlm.nih.gov/pubmed/30742071
https://doi.org/10.1371/journal.pone.0222915


28. Hardwick SA, Chen WY, Wong T, Kanakamedala BS, Deveson IW, Ongley SE, et al. Synthetic microbe

communities provide internal reference standards for metagenome sequencing and analysis. Nat Com-

mun. 2018; 9(1):3096. Epub 2018/08/08. https://doi.org/10.1038/s41467-018-05555-0 PMID:

30082706; PubMed Central PMCID: PMC6078961.

29. Hornung BVH, Zwittink RD, Kuijper EJ. Issues and current standards of controls in microbiome

research. FEMS Microbiol Ecol. 2019; 95(5). Epub 2019/04/19. https://doi.org/10.1093/femsec/fiz045

PMID: 30997495; PubMed Central PMCID: PMC6469980.

Metagenomic shotgun sequencing for vector-borne pathogens

PLOS ONE | https://doi.org/10.1371/journal.pone.0222915 October 2, 2019 12 / 12

https://doi.org/10.1038/s41467-018-05555-0
http://www.ncbi.nlm.nih.gov/pubmed/30082706
https://doi.org/10.1093/femsec/fiz045
http://www.ncbi.nlm.nih.gov/pubmed/30997495
https://doi.org/10.1371/journal.pone.0222915

