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Recently, we introduced a mathematical toolkit called selected correlation analysis (sca) that reliably detects negative and
positive correlations between arterial blood pressure (ABP) and intracranial pressure (ICP) data, recorded during mul-
timodal monitoring, in a time-resolved way. As has been shown with the aid of a mathematical model of cerebral perfusion,
such correlations reflect impaired autoregulation and reduced intracranial compliance in patients with critical neurological
diseases. Sca calculates a Fourier transform-based index called selected correlation (sc) that reflects the strength of cor-
relation between the input data and simultaneously an index called mean Hilbert phase difference (mhpd) that reflects the
phasing between the data. To reliably detect pathophysiological conditions during multimodal monitoring, some thresholds
for the abovementioned indexes sc and mhpd have to be established that assign predefined significance levels to that
thresholds. In this paper, we will present a method that determines the rate of false positives for fixed pairs of thresholds (lsc,
lmhpd). We calculate these error rates as a function of the predefined thresholds for each individual out of a patient cohort of
52 patients in a retrospective way. Based on the deviation of the individual error rates, we subsequently determine a globally
valid upper limit of the error rate by calculating the predictive interval. From this predictive interval, we deduce a globally
valid significance level for appropriate pairs of thresholds that allows the application of sca to every future patient in
a prospective, bedside fashion.

1. Introduction

In critical neurological pathologies such as subarachnoid
hemorrhage (SAH) or traumatic brain injury (TBI), two
major mechanisms of neuronal damage have been iden-
tified [1–3]. 'e primary injury consists of direct tissue
damage due to contusion, laceration, or intracranial
hemorrhage, which can only be influenced therapeutically
to a limited degree. In contrast, secondary injury is caused
by a self-propagating biochemical cascade leading to
neuronal dysfunction and death over hours and weeks after
the initial insult, which could be a potential treatment
target. However, despite promising results of translational

research in this field, the clinical studies applying neuro-
protective compounds have been uniformly disappointing
[4]. Due to the lack of causative treatment, the primary
focus of neurointensive care therefore provides the optimal
physiological environment in order to minimize secondary
injury and foster early regenerative processes [5]. To
achieve this goal, it is mandatory to detect pathophysio-
logical conditions such as impaired cerebral autoregulation
and reduced intracranial compliance prior to irreversible
neuronal damage [6, 7]. Consequently, multimodal brain
monitoring has been established to obtain a robust bio-
physical signature and to tailor an individualized therapy
for each patient [8, 9].
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In an earlier study, we could demonstrate with the aid
of a mathematical model of cerebral perfusion and ox-
ygen supply that severely reduced cerebral compliance in
combination with a defective autoregulation leads to
a positive correlation between ABP and ICP data, whereas
a severely reduced cerebral compliance in combination
with an intact cerebral autoregulation leads to a negative
correlation between the abovementioned signals [10, 11].
'erefore, we have developed a mathematical toolkit
called selected correlation analysis (sca) that reliably
detects positive and negative correlations in ABP and ICP
data recorded during multimodal monitoring at an in-
tensive care unit.

'is method calculates two indices, the selected cor-
relation (sc) and the mean Hilbert phase difference
(mhpd) of two isochronous data windows of ABP and ICP
data, whereby the sc value serves as a measure for the
strength of correlation between the data windows and
mhpd reflects the phasing between the data windows. 'e
medical relevance of positive correlations detected by
calculation of sc and mhpd values was demonstrated in
previous studies including a comparison with the well-
established PRx calculations as an index for autor-
egulation failure [12]. 'e goal of this work is to assign
significance levels to specified pairs of thresholds (lsc,
lmhpd) to reliably detect the abovementioned patho-
physiological conditions. Furthermore, to make this
computerized analysis method available as a point of care
tool to support goal-directed clinical decision making, we
attempted to establish patient-independent significance
levels for these pairs of thresholds which would allow to
apply sca prospectively to every future patient in a pro-
spective, bedside fashion.

2. Methods

2.1. Patient Population. To determine the significance of
different threshold settings (lsc, lmhpd) and test the resulting
error rates for normal distribution, we analyzed continuous
measurements of ABP and ICP data of a patient cohort of 52
patients (32 female; 20 male) with a mean age of 50.4 years.
'e patients received multimodal brain monitoring either for
the treatment of subarachnoid hemorrhage (n � 43; 82.7%) or
traumatic brain injury (n � 9; 17.3%). A detailed description
of the baseline characteristics is provided in Table 1.'e study
was performed in accordance to the Declaration of Helsinki
and was approved by the local ethics review boards. 'e
patients were treated either at the University Regensburg
Medical Center (n � 25; 48.1%) or at the University Hospital
Charite, Berlin (n � 27; 51.9%). 'e baseline parameters
between the two patient subcohorts were balanced except for
the diagnosis, which showed significantly more patients with
SAH in the Berlin subcohort (p � 0.001). Informed consent
was obtained from the patients or their relatives; the data were
stored and analyzed after anonymization according to the
study protocol. Intracranial pressure (ICP) monitoring was
carried out either via an external ventricular drain (EVD) or a
parenchymal ICP probe (Raumedic, Helmbrechts, Germany).
Follow-up was completed up to March 2017, the mean

follow-up time was 53.8 months, and no patient was lost for
follow-up. 'e neurological outcome was measured by the
Glasgow Outcome Scale at the last follow-up, and the
median score was 3 (range: 1–5, Table 1).

2.2. Mathematical Framework of Selected Correlation
Analysis. Selected correlation analysis (sca) is a method to
detect correlations between two data windows of fixed
length. 'e different elements of this analysis method are
illustrated in Figure 1. 'ereby, information about corre-
lation is gained by fast Fourier transform of the data and
subsequent analysis in frequency space. 'is approach
permits the detection of correlation in a specific frequency
band, allowing a differentiation between the correlation of
fast or slow components of the signals. Additionally, the
whole spectral information about correlation is condensed
to a simple value, called sc, which serves as a measure for the
degree of correlation between two data windows in a specific
frequency range [13, 14].

Let X: � x1, . . . , xN􏼈 􏼉 be a time series of ABP or ICP
data of length N. A fixed segment or window Xs, k(t) of such
a time series can be represented as a function in time. An
individual window is defined by its starting point k and its
length s:

X
s, k

(t) ≔ xk+t−1 ∈ X ∣ 1≤ t≤ s; k + s− 1≤N; s ≡ 2u∈N
􏽮 􏽯.

(1)

In the following, we will use such windows of ABP and
ICP data as input for multitaper power spectrum (mtms)
analysis andmultitaper coherence spectrum (mtmc) analysis
[15]. 'is spectral analysis will transform the discrete time
domain of the windows, indexed by t, into the discrete
frequency domain of the spectra, indexed by f with range
1≤f≤ s/2:

S
s
(k, f) ≔ mtms of X

s,k
(t),

C
s
(k, l, f) ≔ tmc of X

s,k
(t) andY

s,l
(t).

(2)

'e multitaper method comes along with a built-in
statistical test for the significance of each single frequency f.
Using this significance test for each individual frequency,
we define the so-called pointwise selected correlation
(PSC):

PSCs
(k, l) ≔ psc1, . . . , pscs/2( 􏼁with

pscf ≔
1, if Ss(k, f)∧ Ss(l, f)∧Cs(k, l, f) significant,

0, otherwise.
􏼨

(3)

'e above-defined PSC tuple contains information
whether a frequency is significant in all three spectra,
or not. Being significant in both power spectra assures
that the specific frequency contributes essentially to
the original signals. If this frequency is additionally sig-
nificant in the coherence spectrum, a strong correlation
between the input signals for this frequency is implied.
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Using N successive pairs of isochronous windows as input
for the above-described PSC calculations produces a time-
resolved sequence of PSC tuples. From this sequence, we
can deduce a measure for the average activity of the fre-
quencies by calculating the mean pointwise selected cor-
relation (MPSC):

MPSCs
(f) ≔

1
N

􏼒 􏼓∗ 􏽘

j�N

j�1
PSCs

f(j, j). (4)

'eMPSC tuple is used to potentially identify frequency
intervals, which basically carry information about correla-
tions between the input data. Having found such a frequency
interval U � (m, . . . , n), the next step is to determine time
sequences in the data sets, where strong correlations occur
with respect to U. A simple measure for the strength of
correlation of a pair of windows with respect to U is gained
by summing up all elements of the appropriate PSC tuple
belonging toU and dividing this sum by the length ofU.'is
measure is called selected correlation (sc):

scs,m,n
(k, l) ≔

1
n−m + 1

􏽘

f�n

f�m

PSCs
f(k, l),

with 1≤m< n≤
s

2
.

(5)

Predefining a threshold lsc, a pair of windows will be
called selected correlated if sc> lsc. Using isochronous
windows as input while shifting the starting points 􏽥t along
the time axis produces time-resolved information about the
degree of correlation:

scs,m,n
(􏽥t) ≔

1
n−m + 1

􏽘

f�n

f�m

PSCs
f(􏽥t, 􏽥t). (6)

2.2.1. Hilbert Phase Differences. With the abovementioned
sc index, we can identify windows exhibiting a strong
correlation between the input data. In order to assign the
model predicted pathophysiological conditions, identified
by positive and negative correlations, we also have to de-
termine the phasing of the input data. 'e phasing of the

data can be determined by using the so-called Hilbert
transform, a mathematical approach to transform a real-
valued function s(t) into the complex plain:

sanalytic(t) ≔ s(t) + i∗􏽥s(t) � A(t)∗ e
i∗φ(t)

,

with 􏽥s(t) ≔ π−1P · V · 􏽚
∞

−∞

s(τ)

t− τ
dτ.

(7)

By calculating the Hilbert transformation of two win-
dows Xs, k(t), Ys, l(t), we are able to determine the associ-
ated phases φX(t), φY(t) of the data and the Hilbert phase
difference hpd(t):

hpd(t) ≔ φX(t)−φY(t)

� arctan
􏽥X

s, k
(t)Ys, l(t)−Xs, k(t)􏽥Y

s, l
(t)

Xs, k(t)Ys, l(t)− 􏽥X
s, k

(t)􏽥Y
s, l

(t)

⎛⎝ ⎞⎠.

(8)

As a simple measure for the phasing of two windows, we
will use the mean value mhpd of hpd(t):

mhpds
(k, l) ≔

1
s
∗􏽘

t

hpd(t). (9)

Analogous to the sc value, a pair of windows is called
positively correlated (scp) if sc> lsc and mhpd< lmhpdpos. If
sc> lsc and mhpd> lmhpdneg, the data windows will be
called negatively correlated (scn).

2.3. Construction of Patient-Independent Significance Levels

2.3.1. Statistical Test. With the aid of sc andmhpd values, we
are able to identify positively and negatively correlated
sections of the input data, but up to now, we do not know the
specificity of such correlations. 'erefore, we will establish
a statistical test, which allows us to relate a significance to
individual pairs of the thresholds (lsc, lmhpdpos) and (lsc,
lmhpdneg) in a patient-independent fashion, so that the
resulting threshold pairs can be used for prospective studies.
'is statistical test uses the fact that the mathematical model
predicts isochronous correlations between ABP and ICP.
Consequently, two segments of ABP and ICP with starting
points far apart from each other should not correlate. If, for
example, we use data windows containing one hour of data
and a starting point of the ICP data, that is, five hours later
than the starting point of the ABP data, then there should be
no casual link between these data windows and therefore no
correlation. But, due to measurement noise, a few of the
frequencies included in the sc analysis may exhibit a sig-
nificant correlation.

Using this observation, we can count how often such
separated windows produce, for example, values (sc,
mhpdpos) higher than a predefined pair of threshold levels
(lsc, lmhpdpos). 'e resulting error rate for this fixed pair of
thresholds then determines the significance for this specific
pair of thresholds. Clearly, this only applies to cases where
the offset between the input data windows is big enough to
avoid autocorrelation effects. Such effects can be estimated
using the so-called mean windowed autocorrelation (mwa):

TABLE 1: Baseline characteristics of the retrospective patient cohort
treated for subarachnoid hemorrhage (SAH) or traumatic brain
injury (TBI).

Parameter Number (%)
N 52
Gender (f/m) 32/20 (61.5/38.5)
Age (mean) 50.4 (range: 16.4–72.4)
Diagnosis (SAH/TBI) 43/9 (82.7/17.3)
GCS at admission (median) 7 (range: 3–14)
GOS at last follow-up (median) 3 (range: 1–5)
Note. 'e retrospective patient cohort was analyzed for false-positive
readings of the sca method. To illustrate the initial clinical condition and
patient outcome, the Glasgow Coma Scale (GCS) rates at admission and the
Glasgow Outcome Score (GOS) value at last follow-up are reported.
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mwas,R,m,n
(o) ≔

1
R

􏼒 􏼓 􏽘

i�R

i�1
scs,m,n

ki, ki + o( 􏼁,

with ki random.

(10)

For offset o big enough to avoid autocorrelation, the
values of mwa should become small and stable. With the
knowledge of an appropriate offset o, we are able to calculate
the error indices eis,m,n(k, l, lsc, lmhpdpos/neg), for a pre-
defined pair of thresholds (lsc, lmhpdpos/neg) and a fixed pair
of input windows with starting points k and l satisfying
l> k + o:

ei
s,m,n

k, l, lsc, lmhpdpos􏼐 􏼑

≔
1, if scs,m,n(k, l)> lsc∧mhpd(k, l)< lmhpdpos,

0, otherwise,
􏼨

ei
s,m,n

k, l, lsc, lmhpdneg􏼐 􏼑

≔
1, if scs,m,n(k, l)> lsc∧mhpd(k, l)> lmhpdneg,

0, otherwise.
􏼨

(11)

Repeating this R times for different starting points leads
to the error rate asc:

Mean Hilbert phase difference
between ABP and ICP data

Input to SCA:
ABP data window and ICP data window

Hilbert transform:

mhpd

A: coherence spectrum (ABP, ICP)
B: power spectrum (ABP)
C: power spectrum (ICP)

Mtm spectral analysis:

(sc, mhpd):

A set of values describing
the strength of correlation

and the phasing
between two data windows

Pointwise selected correlation (PSC):

If power of fk is significant in A, B, and C, PSC(fk) = 1

If not, PSC(fk) = 0

Example for PSC:

PSC(f ) = [1,0,0,1,1,…,0,0,1]

Selected correlation (sc):

�e mean value of selected
elements of PSC

sc = mean [PSC(fa),…,PSC(fb)]

For each above occurring frequency fk:

Figure 1: Selected correlation analysis (sca) illustrated as flowchart depicting the different elements of the method.
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ascs,R,m,n,o lsc, lmhpdpos/neg􏼐 􏼑

≔
1
R

􏼒 􏼓 􏽘

i�R

i�1
ei

s,m,n
ki, li, lsc, lmhpdpos/neg􏼐 􏼑,

with ki random: li > ki + o,

(12)

which indicates the percentage of obviously uncorrelated
input windows that induce (sc, mhpdpos/neg) values higher
than some predefined thresholds (lsc, lmhpdpos/neg). In other
words, the error rate asc represents the percentage of false
positives. 'erefore, for a particular pair of thresholds
(lsc, lmhpdpos/neg), we are now able to assign a significance to
the detection of windows labeled scp or labeled scn:

sigscp/scn lsc, lmhpdpos/neg􏼐 􏼑

� 1− ascs,R,m,n,o lsc, lmhpdpos/neg􏼐 􏼑􏼐 􏼑∗ 100.
(13)

2.3.2. Patient-Independent Statistics. Now, we can use the
above-described method to calculate the significance for
a specific pair of thresholds (lsc, lmhpdpos/neg) for a specific
patient using the patient’s ABP and ICP time series as input
selecting an offset o big enough to avoid autocorrelation
effects. However, if we apply the same approach to a different

patient, the result for the identical thresholds may slightly
vary, due to the individual conditions of measurement setup
and noise components. In order to determine a significance
level for a specific pair of thresholds that is universally valid,
we use the following approach.

For a fixed pair of thresholds (lsc, lmhpdpos/neg), we first
calculate the appropriate error rates asc(lsc, lmhpdpos/neg)
for each patient included in the study. 'en, we check
whether the distribution of the resulting error rate values is
normal or not. In case of a normal distribution, we are able
to deduce an upper limit lascupscp/scn � μ + z · σ from the one-
sided prediction interval [−∞, μ + z · σ] for different
probability levels c(z) ∈ [0, 1] defined by the above-
mentioned standard score z [16]. 'e upper limit of the one-
sided prediction interval represents a value that assures that
all future measurements will produce error rates lower than
this value with a probability of c(z). 'us, the patient-in-
dependent significance for this specific pair of thresholds
could be defined as follows:

sigindepscp/scn � c(z)∗ 1− lascupscp/scn􏼐 􏼑∗ 100. (14)

2.3.3. Statistics of the Individual Error Rates. For each set of
error rates asc(lsc, lmhpdpos/neg), we computed mean,
median, maximal/minimal values, standard deviation and
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Figure 2: Frequency histograms illustrating the specific error rates for (a) scp lsc 0.056/lmhpd, (b) scp lsc 0.056/lmhpd 60, (c) scn lsc
0.056/lmhpd 110, and (d) scn lsc 0.056/lmhpd 120. 'e resulting error rates from all four parameter settings were defined to be normally
distributed (modified Jarque–Bera test).
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error as well as variance, and 90–99% one-sided prediction
intervals as population parameters. Subsequently, the
error test results derived from different parameter settings
of sca were analyzed for normal distribution using
skewness–kurtosis testing (modified Jarque–Bera test).
Differences in rates and proportions were analyzed by
contingency tables and chi-square testing. Two-group
comparisons were performed by computing Wilcoxon
rank-sum tests.

3. Results

For the subsequent analysis, we used ABP and ICP data with
sample frequency of 0.2Hz and a window size s of 1024
points. 'e frequency band was set to f≤ 0.00684Hz, an
offset o of 5000 points was used, and R was set to one million
[14]. With this, we calculated the error rates asc for different
pairs of thresholds (lsc, lmhpdpos/neg) consisting of the first 5
possible lsc values (0.000, 0.028, 0.056, 0.083, and 0.111)
combined with lmhpd values from 50–80 degrees with
a one-degree step size, for each patient separately.

'e resulting error rate means for scp per parameter set
ranged from 0.0033 to 0.205 and for scn from 0.0027 to
0.198. 'e scp-specific error rates were found to be normally
distributed in a range of parameter settings from lsc

0.000/lmhpd 51 to lsc 0.111/lmhpd 50; in contrast, the scn-
specific error rates were normally distributed from lsc
0.000/lmhpd 54 to lsc 0.083/lmhpd 66. Interestingly, the
parameter settings, previously defined to be optimal for the
clinical application of scp (lsc 0.056/lmhpd 70) [14], were
found to be normally distributed for both scp- and scn-
specific error test rates (Figure 2). To evaluate a threshold
value, which would encompass any future patients for the
error test result, we calculated the one-sided predictive
intervals for 90–99% probability levels utilizing the error test
results of our retrospective patient cohort [16]. 'e pre-
dictive intervals for both scp and scn analysis are listed in
Table 2. Utilizing the upper limit of the 99% prediction
interval would allow us to extrapolate that the error test
result of any future patient will be within the determined
interval with a probability of 99%. In addition, we calculated
the resulting patient-independent significances according to
the abovementioned formula. 'e results of this calculation
are illustrated in Figure 3.

4. Discussion

'e implementation of multimodal brain monitoring into
neurointensive care management has two primary goals:
(a) to detect reduced intracranial compliance due to brain
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Figure 3: Relationship between patient-independent significance and mean Hilbert phase difference for scp (a) and scn (b).

Table 2: One-sided prediction intervals with upper limits of error rates for 90%, 95%, and 99% probability levels.

Analysis type Prediction interval Patient-independent significance
Scp
lsc 0.056/lsc 60
lsc 0.056/lmhpd 70

90%
0.0294
0.0506

95%
0.0316
0.0541

99%
0.0357
0.0606

95.41
93.07

Scn
lsc 0.056/lmhpd 120
lsc 0.056/lmhpd 110

0.0264
0.0459

0.0285
0.0490

0.0324
0.0550

96.65
93.57

Note. 'e resulting patient-independent significance values for scp and scn are listed in the last column.
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edema, hydrocephalus, stroke, or intracranial hemorrhage
[17] and (b) to uncover failure of the cerebral autor-
egulation [18, 19]. Since both aspects critically determine
the therapeutic regimen, it would be ideal to have an
integrative, computerized platform available, which un-
masks these critical events in a timely fashion. Several
indices focusing exclusively on autoregulation failure have
been evaluated primarily to allow a more precise prog-
nosis regarding mortality and functional outcome in
patients with TBI and SAH [20]. Our approach, termed
“selected correlation analysis” (sca) provides a mathe-
matical tool set which allows the detection of both
mechanisms, autoregulation failure and impaired in-
tracranial compliance [13]. Regarding reduced in-
tracranial compliance, we have validated our method
utilizing a serial CT imaging approach [21]. In contrast,
the sensitivity and specificity of autoregulation failure
detection was substantiated by the comparison of our
approach with the pressure reactivity index (PRx) as an
established marker [12, 19]. One of the most significant
drawbacks in time series analysis is type one error induced
by autocorrelation effects, leading to potentially in-
adequate clinical treatment decisions [22, 23]. To ensure
the exclusion of false-positive readings due to potential
autocorrelation [24], we have implemented an error test
into our method, which was hitherto calculated utilizing
a retrospective patient cohort. However, for the bedside
application of a sca monitor, it was mandatory to establish
patient-independent significance levels for scp and scn.
Statistically, this can be achieved by computing the pre-
diction intervals of the 52 analyzed patients which would
serve as a learning cohort. 'e upper patient-independent
significance for the detection of scp deduced from the
learning cohort does not profoundly differ from the values
calculated for the sca parameter set optimization utilizing
that cohort [14]. Additionally, the corresponding results
for scn show very similar properties, and the applied
statistical framework is capable of improving the resulting
patient-independent significances with new patients
added to the analysis and therefore enhancing the sample
size. As a limitation of our study, the results of our error
test calculation are based on a limited number of patients.
It is conceivable that with increasing case numbers, the
significances will be adjusted with the consequence of
a higher sensitivity. In conclusion, our results provide
a patient-independent pairs of threshold values for both
scp and scn. Following the development of this patient-
independent significance test for false-positive readings,
we are now able to apply our method as a point of care
system in a prospective fashion.
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