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Historically proteins that form highly polymeric and filamentous assemblies have been
notoriously difficult to study using high resolution structural techniques. This has been due
to several factors that include structural heterogeneity, their large molecular mass, and
available yields. However, over the past decade we are now seeing a major shift towards
atomic resolution insight and the study of more complex heterogenous samples and in
situ/ex vivo examination of multi-subunit complexes. Although supported by
developments in solid state nuclear magnetic resonance spectroscopy (ssNMR) and
computational approaches, this has primarily been due to advances in cryogenic electron
microscopy (cryo-EM). The study of eukaryotic microtubules and bacterial pili are good
examples, and in this review, we will give an overview of the technical innovations that have
enabled this transition and highlight the advancements that have been made for these two
systems. Looking to the future we will also describe systems that remain difficult to study
and where further technical breakthroughs are required.
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INTRODUCTION

In the 1930s-1950s, X-ray fibre diffraction studies of filamentous proteins by pioneers such as
William Astbury, Francis Crick and Linus Pauling, laid the foundation for modern structural biology
(Astbury and Street, 1932; Pauling and Corey, 1951a; Pauling and Corey, 1951b; Crick, 1952). These
early studies provided new insights into the structural properties of fibrous substances such as keratin
and collagen, however, they could only offer global information. With the advent of single crystal
X-ray diffraction (Kendrew et al., 1958), from the 1960s structural studies of soluble proteins became
the principal focus due to the delivery of atomic/subatomic resolutions. In the 1980s the first soluble
protein was determined by solution state nuclear magnetic resonance (NMR) spectroscopy
(Williamson et al., 1985) and with the development of recombinant protein expression systems
(Itakura et al., 1977; Smith et al., 1983; Cregg et al., 1993), by the mid-1990s there became a clear
exponential rise in soluble/globular macromolecular structures being deposited in the protein data
bank (Berman et al., 2000). Likewise, new methods for isolating and reconstituting membrane
proteins has led to significant numbers of these structures (Vinothkumar and Henderson, 2010),
primarily elucidated by crystallographic methods, being deposited in the PDB since the 2000s.

Using solution NMR and X-ray crystallography we have gained significant understanding of
filamentous systems through studying their lower-order subunits, however, due to technical
limitations of these techniques, there has been a lack in our understanding of how these
components interact and how this relates to their function. For example, there is a requirement
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for sample homogeneity (purity and molecular mass), high
amounts of material, and for crystallography the sample must
form highly ordered and relatively large crystals (generally
>20–50 μm3). Early advancements in the determination of
high-resolution filamentous protein structures include the
crystal structure of a synthetic peptide based collagen-like
fragment with a defined length, published in 1994 (Bella et al.,
1994). In the late 1990s the first proteinaceous structures were
determined using solid state NMR (ssNMR) spectroscopy: the
helical antibiotic peptide gramicidin, integrated within a lipid
bilayer (Ketchem et al., 1996), and a peptide-based pentameric
transmembrane helical bundle of the acetyl choline receptor
(Opella et al., 1999). This ushered in a new direction for
studying highly polymeric solids and by 2003 ssNMR had
been successfully implemented to determine the structure of
the fd filamentous bacteriophage particle coat protein (Zeri
et al., 2003). Since then, the development of smaller magic
angle spinning (MAS) sample rotors that spin at higher
frequencies and require less sample, advances in isotopic
labelling and partial deuteration of samples, and general
enhancements of signal sensitivity (Ashbrook and
Hodgkinson, 2018), has led to ∼140 ssNMR-derived models
being deposited in the PDB (Berman et al., 2000). Of these,
∼20% are of filamentous proteins. Furthermore, in the last

10 years, hybrid approaches incorporating ssNMR, Rosetta-
based in silico modelling and/or electron microscopy has
provided atomic structures for the bacterial type III secretion
system needle (Loquet et al., 2012; Demers et al., 2014), the M13
bacteriophage capsid (Morag et al., 2015) and Aβ amyloid fibrils
(Sgourakis et al., 2015). However, over the past decade, cryo-
electron microscopy (cryo-EM) has transformed all aspects of
structural biology and has become the primary driving force in
providing major advancements towards routine structure
determination of filamentous protein assemblies (Figure 1).

The Cryo-EM Revolution
Pre-revolution, cryo-EM produced near-atomic resolutions only
in ideal sample cases; usually large macromolecules with high
symmetry such as particular viral capsids. In additional preferable
cases, sub-nanometer resolutions allowing secondary structure
visualisation were possible, but for most targets, particularly those
of low symmetry and/or small size (<200 kDa), cryo-EM was
most-often limited to nm resolutions. Now, cryo-EM can
routinely produce near-atomic resolution structures of even
asymmetrical macromolecules of small size (currently down to
around ∼50 kDa in ideal cases without a scaffold (Fan et al., 2019;
Herzik et al., 2019)), with the first true atomic resolutions being
reached in the last few years (Nakane et al., 2020; Yip et al., 2020).

FIGURE 1 | A revolution in cryo-electron microscopy of MTs and pili. Graph showing the cumulative number of electron microscopy database (EMDB) depositions
over time at different resolution levels as indicated; SP, single-particle cryo-EM, STA, sub-tomogram averaging. The emergence of new general hardware and software
behind the revolution in cryo-EM is shown below the MT timeline, along with black arrows indicating the introduction of several image-processing pipelines for pseudo-
helical single MTs in the top graph. Included data was based on the query title:MT AND status:REL or title:pilus AND status:REL at www.emdatasource.org.
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Furthermore, a significant amount of sample heterogeneity can
also now be tolerated and even utilised, with snapshots of
different conformational states and multimeric arrangements
revealing the dynamics of macromolecular machines. Whilst
remaining more challenging than single-particle cryo-EM, in
the last 5 years or so cryo-electron tomography (cryo-ET) with
sub-tomogram averaging has become more capable of achieving
sub-nanometer resolutions in situ and near-atomic resolutions
with purified macromolecular preparations (Schur, 2019; Turk
and Baumeister, 2020; Pyle and Zanetti, 2021).

Core to cryo-EM’s transformation has been the introduction
of direct electron detectors to replace charge-coupled devices and
film, improving how faithfully transmitted electrons are recorded
and allowing correction of global sample drift and local beam-
induced motion (Li et al., 2013; Kuhlbrandt, 2014).
Improvements to electron microscope hardware (including
electron sources, stability, and energy filtration) and software
(particularly increased automation in data collection) but also
data processing hardware (increased computing power and
improved storage) and software (in particular new Bayesian
and artificial intelligence-based approaches) have also made
significant contributions. The bottleneck to high-resolution
cryo-EM is most often now the sample itself or the way it
behaves during vitrification, however, innovation in sample
preparation and data collection techniques are addressing
these challenges.

In this review, we provide several examples of filamentous
systems and show how our understanding has developed over the
past decade due to these advances in structural biology
techniques. We first discuss advancements in our
understanding of microtubules (MTs) and MT complexes and
then describe bacterial pili, primarily involved in adhesion.
Looking to the future, we also highlight aspects that remain
difficult to study and suggest where further advancements may
be made.

Microtubules and Associated Proteins
MTs are tubular polymers of around 25 nm diameter built from
longitudinally and laterally associated αβ-tubulin heterodimers
and are a key component of the eukaryotic cytoskeleton. MTs
display dynamic instability, in that they switch between
polymerisation and depolymerisation phases modulated by β-
tubulin’s GTPase activity, post-translational modifications and
the interaction of microtubule-binding proteins. MT dynamics
generate forces vital to cell division, serve as intracellular
signalling platforms and provide the tracks for intracellular
transport and force generation by kinesin and dynein family
motor proteins (Vale, 2003; Goodson and Jonasson, 2018). While
MTs can form into a number of different architectures built from
10–16 protofilaments, 3-start 13-protofilament pseudo-helices
are the most commonly observed in nature (Tilney et al.,
1973; Pierson et al., 1978; Wade et al., 1990). Pseudo-helical
MTs are those with a discontinuity in the helical lattice known as
the seam that has heterotypic (α to β-tubulin) rather than
homotypic (α to α/β to β) lateral interactions between tubulin
dimers.

High-Resolution Studies of MTs Using
Cryo-EM
MTs were amongst the first targets to be studied by cryo-EM
(Mandelkow and Mandelkow, 1985) following its development
(Lepault et al., 1983; McDowall et al., 1983). Cryo-EM at this early
stage already provided key advantages over EM with heavy metal
stains, enabled by rapid sample vitrification in near-native
conditions, yet was chiefly limited to theoretical extrapolation
of 3D MT lattice architectures via analysis of real and reciprocal
space patterns from 2D projections (Chretien and Wade, 1991).
In the late 90s and early 2000s, 3D reconstructions of MTs with or
without associated motor proteins via helical and pseudo-
tomographic back-projection methods were limited to
nanometre resolutions (e.g. (Arnal et al., 1996; Hoenger et al.,
1998; Kikkawa et al., 2000; Kikkawa et al., 2001; Metoz et al., 1997;
Nogales et al., 1999; Sosa et al., 1997a; Sosa et al., 1997b))
(Figure 1). This work gave information on the MT polymer
not available from emerging crystallographic structures of αβ-
tubulin or protofilament subunits (Nogales et al., 1995; Nogales
et al., 1998; Lowe et al., 2001). An important and lasting shift was
treating MT segments as single-particles in reference-matching
approaches (Li et al., 2002). This, often combined with refinement
of helical symmetrisation parameters during iterative rounds of
reference-based alignment (Egelman, 2000), helped move some
MT reconstructions into the sub-nanometre range allowing
secondary structure identifications (Bodey et al., 2009; Sui and
Downing, 2010; Alushin et al., 2012) (Figure 1).

A major challenge is differentiating between highly similar α
and β-tubulin monomers during MT image processing, resulting
in significant blurring of α and β-tubulin and a failure to resolve
the seam in more physiologically relevant pseudo-symmetric
MTs (Figure 2A). This issue was particularly prominent in
studies of MTs alone, while the presence of MT-bound
proteins demarcating tubulin dimers would act as fiducials
during processing, alleviating the severity of the artefact,
particularly for pseudo-symmetric MT architectures.
Combining statistical methods for seam-finding with pseudo-
symmetrical averaging approaches efficiently identified α and β-
tubulin register and seam-location with MT-binding proteins
acting as fiducials (Sindelar and Downing, 2007). Nevertheless,
CCD and film-derived reconstructions of pseudo-helical MTs
and associated proteins could not break the ∼4.5 Å resolution
barrier required for visualisation of the peptide backbone and side
chains (Alushin et al., 2014; Atherton et al., 2014; Fourniol et al.,
2010; Maurer et al., 2012; Redwine et al., 2012; Sindelar and
Downing, 2010). The introduction of direct electron detectors
was central to MT reconstructions achieving near-atomic
resolutions (<4.5 Å) (Figure 1). Ground-breaking work from
the Nogales group, combining direct electron detector data
with refined pseudo-helical processing methods achieved
resolutions around 3.4 Å, allowing the authors to propose that
small local nucleotide-dependent conformational changes
leading to global changes in lattice compaction and twist
govern dynamic instability (Zhang et al., 2015; Zhang and
Nogales, 2015). This and later work to near-atomic resolutions
continued to use MT binding proteins as fiducials for
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differentiation of α and β-tubulin in processing when working on
tubulin isoforms or nucleotide or drug-induced conformational
changes in the MT lattice; (Howes et al., 2018; Kellogg et al., 2017;
Manka and Moores, 2018; Vemu et al., 2017; Vemu et al., 2016).
However, this need for fiducials was overcome with additional
image processing techniques, when near-atomic structural
determination of pseudo-symmetric MTs without binding
proteins in different nucleotide states was demonstrated

(Zhang et al., 2018) (Figure 2A). Nevertheless, in many cases
the MT-binding protein itself was the subject of structural
interest, with notable examples solved near-atomic resolutions
including the MT-binding regions of disease-related proteins tau
(Kellogg et al., 2018) and doublecortin (Manka and Moores,
2020), minus-end binding CAMSAP (Atherton et al., 2019), MT-
nucleator TPX2 (Zhang et al., 2017) and the MT-depolymerising
kinesin-13 (Benoit et al., 2018) (Figure 2A).

FIGURE 2 |Cryo-electronmicroscopy of MTs (A) Images of the lumenal face of undecoratedMTs, centred on an inter-dimer interface, but also showing intra-dimer
interfaces and lateral interfaces between protofilaments. Grey density is shown for reconstructions of the MT alone; top, EMDB:5193 at ∼8 Å resolution (Sui and
Downing, 2010); and bottom; EMDB:7973 at 3.1 Å resolution (Zhang et al., 2018), with the atomic model for the undecorated GMPCPP MT PDB:6dpu (Zhang et al.,
2018) fitted into each reconstruction (α-tubulin light blue, β-tubulin dark blue). Failure to resolve differences between α and β-tubulin is a symptom of the earlier study
(top), but not the more recent study (bottom), as illustrated by poor (top) or good (top) density differentiation between α and β-tubulin’s S9-S10 loop (within red dashed
oval) (B) Left; exemplar cryo-EM structures from single MTs. Coloured cryo-EM densities for MT-binding proteins are shown as indicated on the single MT alone cryo-EM
density map EMDB:7973 (Zhang et al., 2018) coloured grey; CAMSAP1 CKK domain (Atherton et al., 2019), MT-binding repeat (MTBR) of Tau (Kellogg et al., 2018) and
the motor domain (MD) of kinesin-13 (Benoit et al., 2018). Right; exemplar cryo-EM structures from axonemal doublet MTs. Coloured cryo-EM density for MT-binding
proteins are shown as indicated on the bovine tracheal cilia doublet-MT cryo-EM density map EMDB:24664 (Gui et al., 2021); bovine tracheal cilia MT inner proteins
(MIPs), surface and innter junction proteins and outer-dynein arm docking complex EMDB:24664 (Gui et al., 2021) and outer-arm dynein from Tetrahymena thermophila
EMDB:22677 (Rao et al., 2021).
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In recent years, cryo-EM of MTs and binding partners has
continued to develop (Figure 1). Near-atomic resolutions are
being more readily achieved with accelerated automated and
semi-automated data collection approaches (Tan et al., 2016)
being adopted, allowing large amounts of data to be collected.
Pipelines and methods for image processing of pseudo-
symmetric MTs with or without MT-binding protein
fiducials in the popular GUI-based program RELION have
been introduced (Adib et al., 2019; Lacey et al., 2019; Cook
et al., 2020). One challenge has been MT surface-binding
proteins commonly being resolved at lower resolutions than
the MT scaffold because heterogeneity in MT shape is
generally amplified away from the centre of reconstructions,
but also because of sample-dependent sub-stoichiometric
occupancies and flexibility in the binder. In response to
these challenges, new techniques have been developed to
essentially subdivide MTs and bound proteins into sub-
regions during processing, for example by using symmetry
expansion and/or focused classification and refinement of
individual MT subunits or binder sites to improve their
quality (Liu et al., 2017; Debs et al., 2020; Cook et al.,
2021). A recent stand-out study used focused classification
methods to resolve MT inner proteins (MIPs) in the lumen of
MTs extracted from Toxoplasma gondii to near-atomic
resolution (Wang et al., 2021).

Although generally lagging-behind single-particle cryo-EM in
resolution (Figure 1), cryo-ET can reveal 3D information on
structurally heterogenous MT regions, such as lattice breaks and
MT ends (Guesdon et al., 2016; Atherton et al., 2017; Gudimchuk
et al., 2020). Furthermore, cryo-ET can be used to study MT
architecture and organisation either in situ or in isolated ex-vivo
preparations, where crowded overlapping environments render
single-particle cryo-EM unsuitable (Atherton et al., 2018;
McIntosh et al., 2018; Chakraborty et al., 2020). In particular
cases where there are suitable repeating MT-associated sub-
structures, sub-tomogram averaging (STA) can be employed to
yield isotropic 3D reconstructions and improve resolution. For
example, recently cryo-ET has resolved ex-vivo cytoplasmic
dynein-dynactin transport teams on MTs (Chowdhury et al.,
2015; Grotjahn et al., 2018), Parkinson’s disease related LRRK2-
decorated MTs in cells (Watanabe et al., 2020), EB-decorated
singlet MTs inside primary cilia (Kiesel et al., 2020) and revealed
MT intra-lumenal F-actin in kinesore-induced cell projections
(Paul et al., 2020).

Finally, alongside work on single MTs and their binding
proteins, there has been a recent flurry of exciting cryo-ET/
STA (Jordan et al., 2018; Zabeo et al., 2018; Owa et al., 2019;
Greenan et al., 2020) and single-particle cryo-EM (Ma et al., 2019;
Khalifa et al., 2020; Gui et al., 2021; Rao et al., 2021; Walton et al.,
2021) work on the axonemal MT doublet structures of primary
and motile cilia (Figure 2B). These studies have utilised both
intact in situ and reduced membranated or de-membranated ex
vivo preparations and have revealed a wealth of information on
gross cilia architecture and the organisation, identities, and
structure of axonemal MIPs, dynein complexes and
intraflagellar transport trains (IFTs).

Studying Dynamic Interactions of
Microtubules and Associated Proteins
Prior to cryo-EM’s revolution, ssNMR had provided a method of
obtaining high-resolution information on drug-binding to MTs
(Kumar et al., 2010). Nowadays, cryo-EM has become the tool of
choice for studying the rigid interactions between MTs and their
binding partners including small-molecules. However, cryo-EM
struggles to resolve significant dynamics and flexible interactions
due to the requirement for particle averaging and therefore
ssNMR provides an ideal high-resolution method for studying
the nature of these more dynamic interactions. Recent studies
with labelled MT-binding domains of CAMSAPs, dynactin CAP-
Gly, tau and plant companion of cellulose synthase 1 (CC1) have
revealed atomic-level information on the dynamicity of their MT
interfaces (Yan et al., 2015; Kadavath et al., 2018; Atherton et al.,
2019; Kesten et al., 2019).

An exciting new development has been the purification of
suitable amounts of isotopically labelled tubulin to produce MTs
suitable for NMR studies, allowing labelled MTs andMT-binding
proteins to be studied in parallel (Luo et al., 2021). In particular,
this has enabled the study of the flexible and isoform-variable
C-terminal tails of α and β tubulin involved in a plethora of
interactions with MT-binding proteins within intact MTs (Janke,
2014; Roll-Mecak, 2020). This technical advance has now
revealed the dynamic involvement of these C-terminal tails in
CAMSAP-CKK domain andMAP7MT binding at both slow and
fast timescales (Luo et al., 2020) and has opened the door to
further studies with a range of binding proteins.

Adhesive Bacterial Pili
The extracellular surfaces of bacteria are decorated with hair-like
projections called pili or fimbriae, that are composed of smaller
pilin subunits (Thanassi et al., 2012; Hospenthal et al., 2017a).
Different types of pili range in their length and thickness and
often have dedicated export and assembly systems that allow
them to form on the bacterial surface. These include type IV-like
and type V, chaperone-usher, amyloid-based, conjugative, type
IV secretion, and sortase-mediated pili (Lukaszczyk et al., 2019).
These pili have diverse functions including interacting with host
cells during colonisation, promoting bacterial aggregation in
biofilm formation, motility, conjugation, and secretion of
proteins (Garnett and Matthews, 2012; Thanassi et al., 2012;
Arutyunov and Frost, 2013; Berry and Pelicic, 2015). As such,
these filamentous structures are often major virulence factors that
drive the establishment of bacterial infection and the progression
of disease. A decade ago, our primary understanding of pilus
architectures was through crystallographic and solution NMR
studies of monomeric pilin domains and the modelling of intact
pili using low resolution (>10 Å) negative-stain and cryo-EM
data (Craig et al., 2006; Salih et al., 2008; Garnett et al., 2012;
Galkin et al., 2013). However, in the past 5 years ∼15 intact pilus
structures have now been deposited in the PDB derived using
cryo-EM data at near near-atomic resolutions (<4.5 Å) (Costa
et al., 2016; Hospenthal et al., 2016; Hospenthal et al., 2017b;
Spaulding et al., 2018; Filman et al., 2019; Wang et al., 2019;
Zheng et al., 2019; Neuhaus et al., 2020; Shibata et al., 2020; Zheng
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et al., 2020; Gu et al., 2021; Pradhan et al., 2021). There has been a
clear advancement in our ability to resolve high-resolution
features of intact bacterial pili and this is well aligned with the
introduction of direct electron detectors and processing
techniques developed for filamentous helices (Figure 1). Here
we will now discuss progress made in our understanding of two
major classes of adhesive pili.

Type IV-like Pili
The first pilin structure was published in 1995 by John Tainer’s
group; the crystal structure of an intact type IV pilus (T4P) major
subunit, PilE, from Neisseria gonorrhoeae (Parge et al., 1995). In
N. gonorrhea this pilus is the only known virulence factor
required for infection (Kellogg et al., 1963; Swanson et al.,
1987) and is important for binding host cells, other bacteria
and delivering antigenic variation (Quillin and Seifert, 2018).
Furthermore, the ability of the T4P to both extend and retract,
coupled with its adhesive properties, provide bacteria with

twitching motility and the ability to conjugate genomic
material (Pelicic, 2008). The structure of PilE indicated that a
long N-terminal helix could mediate pilus assembly, and the
globular C-terminal region may decorate the pilus and provide
specific function. In 2006 this was realised using 12.5 Å cryo-EM
data to model the intact pilus (Craig et al., 2006) which displayed
a tight helical packing of N-terminal helices and with a width of
∼6 nm (Figure 3). Then in 2015, cryo-ET was used to resolve the
overall features of the PilA5 T4P isolated from Thermus
thermophilus at 32 Å by STA (Figure 3). Strikingly, this pilus
displayed a pronounced groove running along the fibre length
and was much thinner at ∼3 nm (Gold et al., 2015). Over the past
5 years we have seen significant improvements in resolution first
with the Neisseria meningitidis T4P using cryo-EM maps
reconstructed at 6 Å (Kolappan et al., 2016) and then several
other T4P models published guided by sub-nanometre resolution
data from Escherichia coli, N. gonorrhoeae and Pseudomonas
aeruginosa PAK (Bardiaux et al., 2019; Wang et al., 2017)

FIGURE 3 | Cryo-electron microscopy of type IV pili. Images of T4P models derived from different resolutions of SP data STA data. Structures providing resolution
breakthroughs are shown as example. SP Cryo-EM density and models of “thick” pili (N. meningitidis T4P at 12.5 Å (EMDB 1236; PDBID 2hil) (Craig et al., 2006), T.
gonorrhoeae T4P at 6.0 Å (EMDB 8287; PDBID 5kua) (Kolappan et al., 2016) and the T. thermophilus PilA4 T4P at 3.2 Å (EMDB 10647; PDBID 6xxd) (Neuhaus et al.,
2020)) and a thin “pilus” (T. thermophilus PilA5 T4P at 3.5 Å (EMDB 10648; PDBID 6xxe) (Neuhaus et al., 2020)) are shown. Cryo-EM density for the thinner T.
thermophilus PilA5 T4P derived by STA at 32 Å is also presented (EMDB 3024) (Gold et al., 2015). Cartoon representation of the T. thermophilus PilA4 and PilA5 are also
given as the first Cryo-EM backbone/sidechain resolved T4P structures (Neuhaus et al., 2020).
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(Figure 3). All these pili formed structures with widths of
∼5–6 nm. However, in the last year Vicki Gold’s group has
now broken the ∼4.5 Å barrier, with cryo-EM maps for the
Thermus thermophilus PilA4 and PilA5 pili at 3.2 Å and
3.5 Å, respectively, allowing backbone and sidechain details to
be resolved as well as sites of glycosylation (Neuhaus et al., 2020)
(Figure 3). Similar to the Neisseria-like pili, the PilA4 pilus has a
width of ∼6 nm, while PilA5 is in line with the previous cryo-ET
study with a width of ∼4 nm. This study has provided a clear
atomic rational for the differences in overall appearance of these
two classes of pili, which likely reflects their specific functions in
natural transformation and twitchingmotility, respectively, and is
based on unique inter-subunit interactions, helical parameters,
and surface charge.

Related to the T4P, pseudo-pili have similar structures but
different functions. For example, components that form the T4P
system and are essential for pilus assembly are related to the type
II secretion system (T2SS) which transport substrates and
effectors, many of which are virulence factors, from the Gram-
negative bacterial periplasm into the extracellular space (Gu et al.,
2017). While the T4P system utilise ATPases that can both drive
the formation and retraction of the pilus, the T2SS only contains
expresses the extension ATPase, which it uses to push cargo
across the bacterial outer membrane via polymerisation of the
pilus via a syringe-like mechanism. In 2017 the structure of the
Klebsiella oxytoca T2SS pseudo-pilus, PulG, was resolved using
solution NMR and cryo-EM maps at 5.0 Å resolution, and this
study has revealed that this pilus is stabilised by calcium ions and
disassembles in their absence (Lopez-Castilla et al., 2017; Naskar
et al., 2021). Geobacter sulfurreducens is a Gram-negative
bacterium that uses surface nanowires for extracellular
electron transfer. A recent cryo-EM structure of the
copolymerised PilA-N/C pseudo-pilus at 3.8 Å now indicates
that like the T2SS, this structure is used to push nanowires
out of the bacterium (Gu et al., 2021). Furthermore, cryo-EM
structures of the OmcS nanowire at 3.7 Å and 3.4 Å has
uncovered a new pilus type formed through the
polymerisation of OmcS hexaheme cytochromes, with hemes
packed within 3.5–6.0 Å of each other to allow electron
transport (Filman et al., 2019; Wang et al., 2019).

Donor-Strand Exchanged Pili
The chaperone-usher (CU) pilus assembly pathway is another
well characterised system in Gram-negative bacteria with the first
structure, the uropathogenic E. coli (UPEC) type 1 pilus minor
FimC-FimH chaperone-adhesin complex, published at the end of
the 1990s by Stefan Knight’s group. In CU systems, pilin domains
consist of an incomplete Ig-like fold which lack the C-terminal
strand, forming an acceptor groove, but have an additional
unstructured extension at their N-terminus (Hospenthal et al.,
2017a). Polymerisation proceeds through this N-terminal
extension packing along the acceptor groove of an adjacent
pilin subunit, which then stabilises and completes the Ig-like
fold; a process called donor strand exchange. CU pili are highly
variable but many consist of a major pilin subunit that makes up
the majority of the fibre and then a minor pilin subunit (one or a
few) at the tip, which is often an adhesin that binds carbohydrates

or other receptors on the surface of host cells (e.g. E. coli type 1, P
and common pili) (Garnett et al., 2012; Hospenthal et al., 2017a).
However, in other CU systems, the major pilin domains that form
the fibre shaft instead act as adhesive elements while the minor tip
domain functions as an invasin that mediates invasion of host
cells (e.g. E. coli AAF pili) (Berry et al., 2014); other arrangements
also exist. Additionally, some CU pili are relatively thin
(∼2–3 nm) and exist with an extended ‘beads on a string’
architecture that are relatively dynamic, with others being
much thicker (∼10 nm) and forming rigid and more
compacted helical arrangements.

A decade ago our understanding of CU pilus structures was
primarily driven by crystallographic and NMR studies of
generally monomeric or small engineered tandem subunits,
however, again due to advances in cryo-EM we are now able
to appreciate the functions of pilus packing through near-atomic
resolution insights (Hospenthal et al., 2016; Hospenthal et al.,
2017b; Spaulding et al., 2018; Zheng et al., 2019). In 2013 Lisa
Craig’s group determined the global features of the
enterotoxigenic E. coli (ETEC) CS1 pilus at 20 Å resolution by
cryo-EM and the major CS1 pilin subunit CooA by
crystallography at 1.6 Å resolution (Galkin et al., 2013).
Modelling the CooA subunits into different cryo-EM maps
revealed that pilins could adopt multiple orientations and
structural states, resulting in different pilin packing and a
dynamic pilus structure. They proposed that CS1 and other
thicker class of pili may stretch in response to shear forces
that they experience during colonisation. In 2015 Adam
Lange’s group combined solution state NMR, ssNMR and
scanning transmission electron microscopy (STEM) and
determined the first atomic model of an intact UPEC type 1
pilus (Habenstein et al., 2015) while the following year, Gabriel
Waksman’s group published the first near-atomic resolution
structure of an intact UPEC P-pilus by cryo-EM at 3.8 Å
(Hospenthal et al., 2016). This structure along with a
subsequent structure of the UPEC type 1 pilus by cryo-EM at
4.2 Å was able to explain precisely how changing inter-subunit
interactions within these pili can mediate spring-like properties
(Hospenthal et al., 2017b; Spaulding et al., 2018). Another recent
study of the ETEC CFA/I pilus by cryo-EM at 4 Å has again
shown that the helical quaternary structure of the pilus is
influenced by shear forces and this is likely a common
function of wound CU pili (Miller et al., 2006; Zheng et al., 2019).

Within the past 5 years a new type of adhesive fibre has also
been discovered in Bacteroidales, named the type V pilus (T5P)
(Xu et al., 2016). These are composed of an anchor, a stalk, an
adapter and a tip pilin (Hospenthal et al., 2017a). Last year the
first structure of an intact T5P was determined by cryo-EM at
3.6 Å, which consisted of the polymerised FimA pilin stalk
subunit from the bacterium Porphromonas gingivalis (Shibata
et al., 2020). This has revealed not just a new pilus architecture but
also a new mode of pilus formation. Unlike the CU pathway, T5P
pilin domains contain a C-terminal extended region and when
they are exported to the bacterial surface, the N-terminal strand is
cleaved by the protease RgpB and released. This forms an
acceptor groove that can then accept a C-terminal extension
via strand exchange with an adjacent pilin subunit.
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CONCLUSIONS AND PERSPECTIVES

As has been discussed, structural biology of MTs and their
binding proteins has advanced dramatically over the last
decade, yet a number of samples and technical goals remain
challenging, representing frontiers in the field. In single-particle
cryo-EM of single MTs, an intriguing question is whether atomic
resolutions are achievable. MTs include some intrinsic flexibility
and heterogeneity, including bending and in some cases lattice
breaks and even multiple seams (Cross, 2019; Debs et al., 2020).
Future sample preparation, data collection and processing
methods will have to reduce these variances, whilst essentially
eliminating blurring of α and β-tubulin register (particularly
challenging in the absence of fiducial binding proteins) in
order to reach atomic resolutions. Resolving MT binding
proteins with partial occupancy on the MT, or those adopting
a mix of conformers remains difficult, although processing
strategies including symmetry expansion, focused
classifications and refinements and signal subtraction are
proving fruitful (Liu et al., 2017; Debs et al., 2020; Cook et al.,
2021). In some cases, rather than using the standard heterogenous
tubulin purified from the brains of livestock, more homogenous
sources such as purified single-isoform tubulins or tubulin from
particular cell types can help improve resolve regions of tubulin
isoform heterogeneity, such as the C-terminal tails and their
interactions (Atherton et al., 2019; Li et al., 2020). Additionally,
ssNMR is becoming a useful tool for particular cases where
flexible interactions between MT-binding proteins and the MT
are to be investigated.

As discussed, exciting recent data has also emerged from
studies of cilia MTs that demonstrates the ability of cryo-EM
to identify macromolecules de novo within in situ or ex vivo
preparations (Gui et al., 2021; Kiesel et al., 2020; Wang et al.,
2021). The ability to faithfully localise and identify
macromolecules on MTs in situ is likely to be a prominent
target in the future direction of the field. With the advent of a
revolution in macromolecular structure prediction (Jumper et al.,
2021) combined with expanding dataset sizes and increasing sub-
tomogram averaging resolutions due to steady improvements in
cryo-ET sample preparation (FIB), data-collection and image
processing (Figure 1) (Turk and Baumeister, 2020; Hylton and
Swulius, 2021; Pyle and Zanetti, 2021), this goal is looking more
and more plausible.

On the back of cryo-EM method developments, primarily
through the study of other filamentous systems such as MTs,
there has also been a substantial increase in our understanding
of bacterial pilus structures in recent years. This is highlighted
by work shown here on type IV-like pili, CU pili and the newly

characterised T5P, however, we still lack high-resolution
insight of other types of pili, such as those formed from
amyloids (Van Gerven et al., 2018), and lack an
understanding of how minor pilin components interact
within intact pilus assemblies. In many type IV pili,
incorporation of minor pilins is required for pilus assembly
and/or specific functions (Jacobsen et al., 2020) but it is
unclear how these are distributed across the fibre or what
effect these minor components have on the local pilus
structure. Crystallographic and more recently cryo-EM
studies have provided great insight into the atomic
mechanisms of pilus biogenesis (Hospenthal et al., 2017a),
however, pili often remain tethered to their secretion
machinery, and there is a shortage of high-resolution
observations in these states. The UPEC type 1 and P pili
have become model systems to study CU pilus biogenesis and
several groups have now provided snapshots of the initiation
of pilus assembly at the outer membrane usher pore and the
initial stages of adhesin exit into the extracellular space (Phan
et al., 2011; Geibel et al., 2013; Du et al., 2018; Omattage et al.,
2018; Du et al., 2021). With cryo-EM now leading the way
here, the next leap will likely come once a defined number of
major pilin subunits can be incorporated into these systems
and then the maturation of the pilus can then be visualized in
the context of secretion.

Although cryo-ET has not been used to study the CU
pathway, it has been successfully implemented to elucidate
the low-resolution features of T4P and T2SS pseudo-pilus
assembly devices (Gold et al., 2015; Chang et al., 2016;
Ghosal et al., 2019). Work on the T4P systems has revealed
pilus structures emanating into the extracellular space (Gold
et al., 2015; Chang et al., 2016) and with the expected future
increases in cryo-ET resolution, as discussed above, in the
future cryo-ET may be able to provide greater detail of how
these pili form at the membrane and the role of pilus-specific
assembly factors in their biogenesis (Hu et al., 2020). Cryo-EM
has had a major impact on the of study filamentous systems
over the past decade and it will be interesting to see how EM
and its incorporation with other approaches (e.g. in silico
prediction, solution/ssNMR, crystallography) will be able
tackle more dynamic and heterogenous filamentous systems
in the future.
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