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Abstract Population forecasts entail a significant amount of uncertainty, espe-

cially for long-range horizons and for places with small or rapidly changing

populations. This uncertainty can be dealt with by presenting a range of projections

or by developing statistical prediction intervals. The latter can be based on models

that incorporate the stochastic nature of the forecasting process, on empirical

analyses of past forecast errors, or on a combination of the two. In this article, we

develop and test prediction intervals based on empirical analyses of past forecast

errors for counties in the United States. Using decennial census data from 1900 to

2000, we apply trend extrapolation techniques to develop a set of county population

forecasts; calculate forecast errors by comparing forecasts to subsequent census

counts; and use the distribution of errors to construct empirical prediction intervals.

We find that empirically-based prediction intervals provide reasonably accurate

predictions of the precision of population forecasts, but provide little guidance

regarding their tendency to be too high or too low. We believe the construction of

empirically-based prediction intervals will help users of small-area population

forecasts measure and evaluate the uncertainty inherent in population forecasts and

plan more effectively for the future.
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Introduction

Population forecasts entail a significant amount of uncertainty, especially for long-

range horizons and for places with small or rapidly changing populations. Almost

40 years ago, Keyfitz (1972) argued that demographers should warn forecast users

about this uncertainty. Warnings have typically been given by presenting a range of

forecasts (e.g., Hollmann et al. 2000), but in recent years demographers have

developed statistical prediction intervals that provide an explicit probability

statement regarding the level of error expected to accompany a population forecast

(e.g., Alho and Spencer 1997; de Beer 2000; Lee 1999; Lutz and Goldstein 2004).

Most of the research on probabilistic population forecasting has focused on large

geographic areas. National-level analyses have been performed for Australia

(Wilson and Bell 2004), Austria (Lutz and Scherbov 1998), Finland (Alho 2002),

the Netherlands (de Beer and Alders 1999), Norway (Keilman et al. 2002), Poland

(Matysiak and Nowok 2007), Sweden (Cohen 1986), and the United States (Lee and

Tuljapurkar 1994). Less research has been performed at the subnational level, but

Miller (2002) produced a series of probabilistic forecasts for California; Rees and

Turton (1998) investigated model input uncertainty for 71 regions in 12 countries in

the European Union; Tayman et al. (2007) evaluated ARIMA models for four states

in the United States; Wilson and Bell (2007) developed probabilistic forecasts for

Queensland and the rest of Australia; and Gullickson and Moen (2001) used a

probabilistic model for forecasting hospital admissions for two regions in

Minnesota. Very little research has been done for small areas such as cities or

counties.

We believe research on probabilistic forecasting methods at the subnational level

is essential because state and local population forecasts are so widely used for

planning, budgeting, and analytical purposes. Examples include planning for future

water consumption in Texas (Texas Water Development Board 1997), choosing

locations for new fire stations in San Diego (Tayman et al. 1994), evaluating the

demand for hospital services in a southern metropolitan area (Thomas 1994),

developing conservation plans for a river basin in Arizona and Mexico (Steinitz

et al. 2003), and projecting future enrollments for public school districts in Indiana

(McKibben 1996). Effective decision making for projects such as these cannot be

accomplished without a clear understanding of the likely level of accuracy of the

underlying population forecasts.

Probabilistic prediction intervals can be based on models that incorporate the

stochastic nature of the forecasting process (e.g., Alho and Spencer 1990; Cohen

1986; Lutz et al. 1999; Pflaumer 1992), on empirical analyses of past forecast errors

(e.g., Bongaarts and Bulatao 2000; Keilman 1997; Keyfitz 1981; Smith and Sincich

1988; Stoto 1983; Tayman et al. 1998), or on a combination of the two (e.g., de Beer

1997). In this study, we focus on prediction intervals based on empirical analyses of

past forecast errors.

The usefulness of the empirical approach rests heavily on the assumption that the

distribution of population forecast errors remains relatively stable over time. Not all

forecasters accept the validity of this assumption (e.g., Alho and Spencer 1997), but

few have tested it empirically. Perhaps the most comprehensive evaluation to date
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was conducted by Smith and Sincich (1988), who examined state-level population

forecasts using data from 1900 to 1980. Following a methodology developed by

Williams and Goodman (1971), they evaluated forecast errors for 10- and 20-year

horizons and found that the means and variances of absolute forecast errors

remained relatively stable over time, especially after 1920, and that the variances of

algebraic forecast errors remained moderately stable over time but their means did

not. They concluded that the study of past forecast errors can be useful for

predicting the level of precision of current population forecasts, but not for

predicting their tendency to be too high or too low.

In this article, we follow the approach described by Smith and Sincich (1988) to

investigate the construction and performance of empirical prediction intervals.

Using 100 years of population data and a large sample of counties in the United

States, we applied trend extrapolation techniques to develop a set of county

population forecasts; calculated forecast errors by comparing forecasts to decennial

census counts; used the distribution of past forecast errors to construct empirical

prediction intervals; and investigated whether those intervals provided accurate

predictions of subsequent forecast errors. We found that those intervals provided

reasonably accurate predictions of the precision of subsequent forecasts, but we did

not test predictions of bias because the evidence showed that past forecast errors

provide little guidance regarding the tendency for subsequent forecasts to be too low

or too high. We believe this and other studies of empirical prediction intervals will

help forecast users measure and evaluate the uncertainty inherent in population

forecasts and plan more effectively for the future.

Data and Forecasting Techniques

We used decennial census data from 1900 to 2000 to construct and analyze

population forecasts for counties (or county equivalents) in the United States. We

restricted our analysis to the 2,482 counties for which no significant boundary

changes occurred between 1900 and 2000; this group accounted for 79% of all

current counties. Forecast errors for this subset were very similar to errors for a

larger group of 2,978 counties whose boundaries did not change significantly after

1930 (not shown here). We used the smaller group with constant boundaries since

1900 because it permitted the analysis of a larger number of launch years and

forecast horizons.

We use the following terminology to describe population forecasts:

(1) Base year: the year of the earliest population size used to make a forecast.

(2) Launch year: the year of the latest population size used to make a forecast.

(3) Target year: the year for which population size is forecasted.

(4) Base period: the interval between the base year and launch year.

(5) Forecast horizon: the interval between the launch year and target year.

For example, if data from 1900 and 1920 were used to forecast population in

1930, then 1900 would be the base year, 1920 the launch year, 1930 the target year,

1900–1920 the base period, and 1920–1930 the forecast horizon.
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We made forecasts of total population for each county using seven trend

extrapolation techniques (see the Appendix for a description of these techniques).

These forecasts were calculated using a 20-year base period, the base period

producing the most accurate forecasts for counties in this data set (not shown here).

The forecasts had launch years ranging from 1920 to 1990 and forecast horizons

ranging from 10 to 30 years. The 21 combinations of launch year and forecast

horizon—and their associated target years—are shown in Table 1.

Trend extrapolation techniques have a number of advantages compared to more

complex forecasting methods. They require less base data, can be employed at lower

cost, and can more easily be applied retrospectively to produce forecasts that are

comparable over time. These characteristics are particularly important when making

forecasts for a large number of geographic areas and historical time periods. Though

simple in design, trend extrapolation techniques have been found to produce

forecasts of total population that are at least as accurate as those produced by more

complex methods (e.g., Ascher 1978; Isserman 1977; Long 1995; Murdock et al.

1984; Rayer 2008; Smith and Sincich 1992; Stoto 1983). Similar evidence has been

reported in other fields as well (e.g., Makridakis 1986; Makridakis and Hibon 1979;

Mahmoud 1984). Given these characteristics, trend extrapolation techniques provide

a useful vehicle for assessing the stability of population forecast errors over time

and for testing the validity of empirical prediction intervals.

We calculated the average of the forecasts from these seven techniques for each

county (AV7) and the average after the highest and lowest forecasts were excluded

(AV5). The latter measure reduces the impact of outliers and is often called a

trimmed mean; we found it produced slightly smaller forecast errors than AV7. A

number of studies have documented the benefits of combining forecasts, both in

demography and other fields (e.g., Armstrong 2001; Makridakis et al. 1998; Rayer

2008; Smith et al. 2001; Webby and O’Connor 1996). We focus primarily on the

results for AV5 in this article; many of the results for AV7 and for individual

techniques were similar to those reported here for AV5. To investigate how

different functional forms affect the performance of empirical prediction intervals,

we conclude the analysis with an evaluation of forecasts based on individual trend

extrapolation techniques.

Table 1 Target years by launch year and forecast horizon

Launch year Forecast horizon (Years)

10 20 30

1920 1930 1940 1950

1930 1940 1950 1960

1940 1950 1960 1970

1950 1960 1970 1980

1960 1970 1980 1990

1970 1980 1990 2000

1980 1990 2000 –

1990 2000 – –
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Analysis of Forecast Errors

Forecasts for each county were made for each of the 21 launch year/forecast horizon

combinations shown in Table 1 and were compared to census counts for each target

year. The resulting differences are called forecast errors, although they may have

been caused partly by errors in the census counts themselves. All errors are reported

as percentages by dividing by census counts and multiplying by 100. We refer to

errors that ignore the direction of error as absolute percent errors (APEs) and errors

that account for the direction of error as algebraic percent errors (ALPEs). The

former reflect the precision of population forecasts and the latter reflect their bias.

Several summary measures were used to provide a general description of forecast

accuracy. For precision, we start with the most commonly used measure in

population forecasting, the mean absolute percent error (MAPE), which shows how

close the forecasts were to population counts regardless of whether they were too

high or too low. We also report the 90th percentile error (90th PE, calculated as the

APE that was larger than exactly 90% of all APEs). The 90th PE provides a

different perspective on precision by reducing the impact of outliers. For bias, we

report the mean algebraic percent error (MALPE), which shows the tendency for

forecasts to be too high or too low. Finally, we report the standard deviation, which

measures the spread of APEs and ALPEs around the mean. These and similar

measures have been used frequently to evaluate the accuracy of population forecasts

(e.g., Isserman 1977; Pflaumer 1992; Rayer 2007; Smith and Sincich 1988; Tayman

et al. 1998).

Table 2 shows county forecast errors for AV5 by target year and forecast

horizon. Three patterns stand out regarding measures of precision. First, errors

increased about linearly with the length of the forecast horizon. For each ten year

increase in the forecast horizon, MAPEs rose by about 10 percentage points and

90th PEs rose by about 20 percentage points.

Second, differences in errors across target years within each forecast horizon

were relatively small. For 10-year horizons, for example, MAPEs between target

years 1930 and 1980 varied only from 9.6 to 13.2, standard deviations varied from

9.7 to 13.9, and 90th PEs varied from 21.0 to 29.1. Forecast precision improved for

target years 1990 and 2000, with all three measures showing lower values than in

earlier years. The smaller errors for 1990 and 2000 can largely be explained by the

greater average population size and more moderate growth rates of counties toward

the end of the 20th century. Averaged across all target years, the MAPE for 10-year

horizons was 10.2, with a standard deviation of only 2.3. A similar degree of

temporal stability can be seen for 20- and 30-year horizons.

Third, ratios of standard deviations to MAPEs were similar for all target years

and forecast horizons, fluctuating in a narrow range around 1.0. For the average

based on all target years within a particular horizon, this ratio was 0.980 for the

10-year horizon, 0.931 for the 20-year horizon, and 0.939 for the 30-year horizon.

Even for target years in which MAPEs were considerably different than for other

target years (e.g., 1990 and 2000 for 10-year horizons and 2000 for 20-year

horizons), the ratios did not diverge substantially from 1.0. This implies that the

distribution of errors around the mean remained fairly constant over time.
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Unlike MAPEs, MALPEs varied considerably from one target year to another.

There was a tendency for MALPEs to be positive for earlier target years and negative

for later target years, but this relationship was fairly weak (except for 30-year forecast

horizons). Standard deviations for ALPEs were much larger than their means and were

consistently larger than standard deviations for APEs. Standard deviations for both

APEs and ALPEs were generally smaller in later target years than in earlier target

years, especially in 1990 and 2000 for 10-year horizons and 2000 for 20-year horizons.

That is, the spread around the mean declined over time for both APEs and ALPEs.

Averaged over all target years, MALPEs were very small for all three forecast

horizons, suggesting that there was little systematic bias in the population forecasts.

We constructed histograms for each target year and forecast horizon to provide a

more detailed look at the distribution of errors. Results for algebraic percent errors

Table 2 Selected measures of forecast error distributions for U.S. counties

Target year Horizon length Absolute % error Algebraic % error

Mean Std. dev. 90th PE Mean Std. dev.

1930 10 12.2 13.9 29.1 2.2 18.3

1940 10 11.2 12.4 23.3 0.4 16.7

1950 10 11.2 11.1 24.9 2.9 15.5

1960 10 10.3 9.9 23.2 0.3 14.3

1970 10 9.6 9.7 21.0 -2.4 13.4

1980 10 13.2 10.2 26.3 -9.5 13.7

1990 10 7.8 6.6 15.6 4.0 9.4

2000 10 6.2 6.0 13.9 -3.5 7.9

Average 10 10.2 10.0 22.2 -0.7 13.6

Std. dev. 10 2.3 2.7 5.2 4.4 3.5

1940 20 20.2 22.8 47.2 5.9 29.9

1950 20 19.9 20.0 43.6 3.6 28.0

1960 20 23.0 21.3 50.9 6.4 30.7

1970 20 16.7 16.3 37.3 -0.5 23.3

1980 20 21.4 17.3 45.7 -12.1 24.7

1990 20 19.4 15.0 39.6 -9.3 22.7

2000 20 11.4 10.7 24.6 0.7 15.6

Average 20 18.9 17.6 41.3 -0.8 25.0

Std. dev. 20 3.8 4.1 8.6 7.3 5.2

1950 30 33.1 37.4 78.7 14.0 48.0

1960 30 32.9 34.5 68.1 8.5 47.0

1970 30 31.9 31.1 68.3 9.0 43.6

1980 30 22.1 19.9 49.3 -9.8 28.1

1990 30 29.3 23.0 60.6 -11.9 35.3

2000 30 27.8 20.3 55.3 -14.5 31.2

Average 30 29.5 27.7 63.4 -0.8 38.9

Std. dev. 30 4.2 7.6 10.5 12.6 8.5
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for AV5 for 20-year horizons are shown in Fig. 1. The distributions were roughly

normal for each target year, although earlier years had more outliers than later years.

The spread of errors around the mean declined slowly between 1940 and 1990 but

declined substantially between 1990 and 2000. The center of the distribution

fluctuated considerably over time, sometimes falling above zero and sometimes

falling below zero. Histograms for the other forecast horizons showed similar
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patterns, although distributions were generally more compact for 10-year horizons

and less compact for 30-year horizons (not shown here).

Figure 2 shows the corresponding results for absolute percent errors. The

distributions were asymmetric and truncated at zero. Errors became slightly more

concentrated near zero between 1940 and 1990 but became substantially more

concentrated in 2000, when there were considerably more small errors and fewer

large errors than in previous years. Distributions for 10- and 30- year horizons were
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Fig. 2 Distribution of absolute percent errors by target year, 20 year horizon. Note: Number of counties
on vertical axis, absolute percent errors on horizontal axis
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similar to those shown here, but were concentrated closer to zero for the former than

the latter (not shown here).

The results summarized in Table 2 and Figs. 1 and 2 show that many of the

forecasts analyzed in this study had large errors, especially for long forecast

horizons. The prevalence of large errors may be disappointing news to forecast

users, but it is an accurate reflection of reality and highlights the importance of

developing measures of uncertainty to accompany small-area population forecasts.

This is the topic we turn to next.

Empirical Prediction Intervals

Smith and Sincich (1988) conducted formal statistical tests of the stability of

MAPEs, MALPEs, and their standard deviations over time. We replicated those

tests using our data set and found only weak evidence of stability (not shown here).

We believe our results differed from those reported by Smith and Sincich because

counties exhibit much more variability than states with respect to population size

and growth rates; both of these factors influence forecast errors. Perhaps more

important, Smith and Sincich’s data set had only 50 units of analysis whereas our

data set has almost 2,500. In a large data set, even small differences in means and

variances (e.g., one percentage point) may be statistically significant.

The data shown in Table 2 and Figs. 1 and 2 provide evidence of a fairly high

degree of stability over time in MAPEs and the distribution of APEs. This suggests

that—despite the lack of stability implied by formal statistical tests—past forecast

errors may help us predict the level of precision of current forecasts. However, the

data showed no stability in MALPEs and the center of the distribution of ALPEs,

suggesting that past forecast errors are not likely to help us predict the tendency for

current forecasts to be too high or too low. A number of previous studies have

drawn similar conclusions (e.g., Isserman 1977; Kale et al. 1981; Smith and Sincich

1988; Tayman et al. 1998). We therefore focus on APEs in our efforts to develop

and evaluate empirical prediction intervals.

Smith and Sincich (1988) used information on the distribution of past APEs to

predict the distribution of subsequent APEs. A major advantage of this approach is

that it can accommodate any type of error distribution, including the asymmetric

and truncated distributions characteristic of APEs. It also permits an assessment of

the prediction intervals themselves; that is, we can compare the actual number of

errors falling within the intervals with the predicted number. Following Smith and

Sincich, we use 90th PEs to construct empirical prediction intervals.

Overall Results

We began by ranking APEs for AV5 for each of the 21 sets of forecasts and

selecting the 90th PE, as shown in Table 2. Then, we used the 90th PE from target

year t-n as the forecast of the 90th PE in target year t, where n is the length of the

forecast horizon. For example, if 1950 was the target year for a 10-year forecast

based on launch year 1940, the 90th PE for 1950 would be used to predict the 90th
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PE for 1960 for a 10-year forecast based on launch year 1950. If error distributions

remain relatively stable over time, 90th PEs from past distributions will provide

reasonably accurate predictions of future 90th PEs. To assess the validity of this

hypothesis, we compared the predicted with the actual 90th PE for each target year

and computed the percentage of APEs that fell within the predicted values.

Table 3 shows the percentage of APEs in each target year that was less than the

predicted 90th PE. The numbers can be interpreted as follows: A value of 90 reflects

a perfect prediction. Values below 90 indicate that the 90th PE for target year t was

greater than the 90th PE for target year t-n (i.e., fewer APEs fell within the predicted

range). Values above 90 indicate the opposite. In addition to errors for each target

year, Table 3 shows 90th PEs averaged across all target years for each horizon,

along with the standard deviation associated with the average 90th PE.

Table 3 reflects a high degree of stability for averages covering all the target

years within a given forecast horizon: approximately 91% of APEs fell within the

predicted 90th PE for all three horizons. There was some variability when

comparing results for individual target years within each horizon, but for the most

part the values did not stray far from 90. For all three horizons, standard deviations

were nearly identical and were small relative to their means, further demonstrating

temporal stability. In this analysis, then, empirically-based prediction intervals

performed well: in most instances, intervals based on the distribution of past

forecast errors encompassed approximately 90% of subsequent forecast errors.

It is possible that using data from several historical time periods would provide

better results than using data from a single time period. To test this possibility, we

evaluated the percentage of 90th PEs that was less than the average of the two
previous target years (not shown here). This adjustment had little impact on the

results, generally leading to errors that were slightly larger than those shown here.

In this sample, then, data from a single time period were sufficient for constructing

empirical prediction intervals.

In order to investigate the impact of the choice of cut-off points for prediction

intervals, we replicated the analysis using 75th percentile errors (75th PEs) instead

of 90th percentile errors (not shown here). For the averages covering all the target

years within a given forecast horizon, between 75% and 77% of APEs fell within

the predicted 75th PE for all three horizons, reflecting a fair amount of temporal

stability. However, there was more variability from one target year to another than

for 90th PEs, which was caused by the greater concentration of APEs around the

75th PE than the 90th PE. Consequently, small differences in the size of the

predicted percentile error led to a larger difference in the percentage of APEs falling

within the predicted value. This can be seen in Figs. 1 and 2: the further the distance

from the center of the error distribution, the lower the concentration of APEs around

a particular percentile error.

Results by Population Size and Growth Rate

A number of studies have found that forecast precision improves with increases in

population size and declines with increases in the absolute value of the growth rate

(e.g., Keyfitz 1981; Murdock et al. 1984; Smith and Sincich 1992; Stoto 1983;
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White 1954). Others have found bias to be unrelated to population size but

positively related to the growth rate (e.g., Isserman 1977; Rayer 2008; Smith 1987;

Smith and Sincich 1988; Tayman 1996). To investigate the effects of these variables

on the performance of prediction intervals, we extended our analysis to counties

grouped by population size and growth rate.

Table 4 shows 90th PEs for AV5 for counties grouped by population size in the

launch year. Confirming the results of previous studies, errors generally declined as

population size increased for each target year and length of forecast horizon, with

the largest declines typically occurring in the move from the smallest to the next-

smallest size category. Furthermore, standard deviations generally declined relative

to their means as population size increased, reflecting less decade-to-decade

variation in errors for large counties than small counties.

How do differences in population size affect the performance of empirical

prediction intervals? Table 5 shows the percentage of APEs for AV5 that was less

than the predicted 90th PE by population size in the launch year. In general,

differences by population size were fairly small and followed no consistent pattern.

Table 3 Percentage of APEs less than the predicted 90th percentile error

Target year Horizon length Percentage

1940 10 93.0

1950 10 88.4

1960 10 90.9

1970 10 92.2

1980 10 80.1

1990 10 98.5

2000 10 92.4

Average 10 90.8

Std. dev. 10 5.6

1950 20 91.5

1960 20 84.9

1970 20 95.3

1980 20 83.4

1990 20 94.0

2000 20 97.6

Average 20 91.1

Std. dev. 20 5.7

1960 30 92.9

1970 30 89.9

1980 30 96.9

1990 30 82.0

2000 30 93.1

Average 30 91.0

Std. dev. 30 5.6
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For some combinations of target year and length of horizon, the percentages rose

with population size; for others, they fell; and for some, they followed no clear

pattern. The standard deviations were small and did not vary much among the four

size categories or by length of forecast horizon. Although 90th PEs themselves

varied considerably with differences in population size, it appears that differences in

population size had no consistent impact on the predictability of 90th PEs.

Table 6 shows 90th PEs for AV5 for counties grouped by the average per decade

rate of population growth during the base period, for each combination of target

year and forecast horizon. Errors generally displayed a U-shaped pattern, with

higher values for counties with large negative growth rates, smaller values for

counties with moderate growth rates, and higher values for counties with large

positive growth rates. These patterns are also consistent with those reported in

previous studies. Standard deviations followed a U-shaped pattern for 10- and

Table 4 90th Percentile errors by population size

Target year Horizon length \5,000 5,000–15,000 15,000–50,000 [50,000 All

1930 10 59.9 30.1 22.8 21.9 29.1

1940 10 59.0 28.8 17.0 18.4 23.3

1950 10 45.7 26.0 22.8 22.3 24.9

1960 10 31.8 23.5 21.5 26.7 23.2

1970 10 34.8 23.4 18.7 17.4 21.0

1980 10 36.8 28.7 24.1 19.0 26.3

1990 10 19.0 16.1 14.9 15.4 15.6

2000 10 21.0 14.7 12.3 12.5 13.9

Average 10 38.5 23.9 19.3 19.2 22.2

Std. dev. 10 15.5 5.8 4.2 4.4 5.2

1940 20 86.7 57.0 35.9 35.0 47.2

1950 20 76.7 50.2 35.4 31.6 43.6

1960 20 80.8 56.1 48.1 43.2 50.9

1970 20 51.5 35.5 35.5 37.7 37.3

1980 20 66.8 52.6 38.8 32.0 45.7

1990 20 53.2 41.9 34.6 34.6 39.6

2000 20 32.3 25.9 21.8 23.8 24.6

Average 20 64.0 45.6 35.7 34.0 41.3

Std. dev. 20 19.4 11.7 7.7 6.0 8.6

1950 30 124.7 96.5 61.9 54.6 78.7

1960 30 100.3 80.7 59.4 50.5 68.1

1970 30 115.1 73.9 64.0 55.5 68.3

1980 30 68.9 50.5 46.1 42.8 49.3

1990 30 78.1 67.4 51.7 49.3 60.6

2000 30 71.5 58.5 47.9 49.2 55.3

Average 30 93.1 71.3 55.2 50.3 63.4

Std. dev. 30 23.7 16.4 7.6 4.6 10.5
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20-year forecast horizons, but rose steadily with the growth rate for the 30-year

horizon.

Table 7 shows the percentage of APEs for AV5 that was less than the predicted

90th PE by the average per decade rate of population growth during the base period.

In contrast to differences in population size, differences in growth rates had a fairly

consistent impact on the performance of prediction intervals: there was a tendency

for the percentage of APEs that was less than the predicted 90th PE to increase with

the growth rate. Values were generally smallest for counties in the lowest growth

category and rose with increases in the growth rate. Furthermore—as indicated by

standard deviations that declined as growth rates increased for all three lengths of

forecast horizon—values for individual target years varied most for counties with

rapidly declining populations and varied least for counties with rapidly growing

populations. That is, there was more consistency in the results across target years for

rapidly growing populations than for rapidly declining populations. Future research

may lead to techniques for modifying prediction intervals by accounting for

differences in population growth rates.

Table 5 Percentage of APEs less than the predicted 90th percentile error by population size

Target year Horizon length \5,000 5,000–15,000 15,000–50,000 [50,000 All

1940 10 90.5 91.4 96.3 94.1 93.0

1950 10 95.0 92.2 82.8 86.5 88.4

1960 10 96.1 91.1 91.2 87.6 90.9

1970 10 87.7 89.7 93.2 98.1 92.2

1980 10 85.8 78.2 80.3 86.5 80.1

1990 10 97.6 98.4 99.0 96.2 98.5

2000 10 86.8 91.1 93.8 94.7 92.4

Average 10 91.3 90.3 90.9 92.0 90.8

Std. dev. 10 4.8 6.0 6.9 4.9 5.6

1950 20 93.0 93.4 90.9 94.8 91.5

1960 20 88.7 87.2 80.8 81.0 84.9

1970 20 98.7 97.5 95.4 92.1 95.3

1980 20 78.4 72.2 87.2 95.0 83.4

1990 20 97.4 96.3 93.4 86.9 94.0

2000 20 97.6 97.9 97.3 97.5 97.6

Average 20 92.3 90.7 90.8 91.2 91.1

Std. dev. 20 7.8 9.9 6.0 6.2 5.7

1960 30 88.4 94.6 91.1 93.0 92.9

1970 30 90.6 91.9 88.0 88.0 89.9

1980 30 98.0 98.4 96.9 95.0 96.9

1990 30 80.7 74.5 86.9 85.0 82.0

2000 30 94.7 95.7 91.9 90.6 93.1

Average 30 90.5 91.0 91.0 90.3 91.0

Std. dev. 30 6.6 9.5 3.9 4.0 5.6
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Results for Individual Techniques

Our analysis thus far has focused on AV5, the average of forecasts from the seven

individual techniques after the highest and lowest were omitted. Would similar

results be found for the individual techniques themselves? To answer this question,

we replicated Table 2 for each individual technique (not shown here). We found

many similarities in summary error statistics but several differences as well. For

example, the exponential technique generally had larger MAPEs and 90th PEs than

other techniques, especially for long forecast horizons, and displayed a strong

upward bias while most of the other techniques displayed a downward bias.

In spite of these differences, prediction intervals based on the distribution of past

errors performed well for most individual techniques (see Table 8). For 10-year

horizons, the overall percentage of errors falling within the predicted 90th PE for

Table 6 90th Percentile errors by population growth rate

Target year Horizon length \ -10% -10% to 10% 10% to 25% [25% All

1930 10 35.6 17.3 27.2 44.5 29.1

1940 10 40.7 16.7 21.6 54.1 23.3

1950 10 19.6 21.6 27.6 37.8 24.9

1960 10 16.1 19.2 29.7 37.9 23.2

1970 10 23.9 17.2 17.5 31.2 21.0

1980 10 31.8 24.1 23.3 30.8 26.3

1990 10 12.4 13.5 16.1 20.6 15.6

2000 10 17.3 10.7 13.6 22.6 13.9

Average 10 24.7 17.5 22.1 34.9 22.2

Std. dev. 10 10.2 4.3 5.9 11.1 5.2

1940 20 69.7 25.4 44.8 86.7 47.2

1950 20 61.0 32.2 51.0 81.5 43.6

1960 20 44.9 45.4 57.8 74.0 50.9

1970 20 30.1 30.5 51.1 60.2 37.3

1980 20 56.8 35.2 34.7 50.5 45.7

1990 20 47.7 32.8 38.6 50.9 39.6

2000 20 27.9 19.5 25.5 37.4 24.6

Average 20 48.3 31.6 43.4 63.0 41.3

Std. dev. 20 15.5 8.1 11.1 18.2 8.6

1950 30 71.9 43.5 82.6 145.0 78.7

1960 30 71.2 54.3 87.8 139.6 68.1

1970 30 61.6 60.6 82.6 136.6 68.3

1980 30 56.1 40.4 55.8 68.2 49.3

1990 30 72.2 46.5 53.0 70.1 60.6

2000 30 66.0 46.5 52.9 69.9 55.3

Average 30 66.5 48.6 69.1 104.9 63.4

Std. dev. 30 6.6 7.5 16.8 39.0 10.5
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individual techniques ranged only from 89.7 to 91.6; for 20-year horizons, from

89.5 to 91.6; and for 30-year horizons, from 84.2 to 91.3 (89.4 to 91.3 for all but the

shift-share technique). There was more variability for individual target years, but in

many instances the percentages were fairly close to 90. It appears that differences in

the functional form of the forecasting technique had little impact on the

performance of empirical prediction intervals.

Summary and Conclusions

Under formal definitions, probability statements regarding the accuracy of

population forecasts cannot be made because the distribution of future errors is

unknown (and unknowable) at the time forecasts are made. However, if current

forecasting methods are about as accurate as those used in the past, and if the degree

of uncertainty will be about the same in the future as it was in the past, then we can

assume that future forecast errors will be drawn from the same distribution as past

forecast errors (Keyfitz 1981). If this is true, prediction intervals based on the

Table 7 Percentage of APEs less than the predicted 90th percentile error by population growth rate

Target year Horizon length \ -10% -10% to 10% 10% to 25% [25% All

1940 10 84.1 91.1 96.1 91.5 93.0

1950 10 93.8 82.9 85.0 98.6 88.4

1960 10 84.7 93.0 88.4 88.2 90.9

1970 10 75.3 90.5 95.8 93.0 92.2

1980 10 72.4 76.4 83.9 95.6 80.1

1990 10 99.5 98.6 97.9 97.0 98.5

2000 10 78.7 93.2 93.8 89.1 92.4

Average 10 84.1 89.4 91.6 93.3 90.8

Std. dev. 10 9.8 7.4 5.7 4.0 5.6

1950 20 93.7 84.7 93.6 93.1 91.5

1960 20 92.1 79.1 88.3 94.1 84.9

1970 20 91.0 96.7 95.5 91.5 95.3

1980 20 52.5 78.5 97.0 94.2 83.4

1990 20 95.7 91.7 90.1 93.2 94.0

2000 20 98.1 97.2 97.7 97.7 97.6

Average 20 87.2 88.0 93.7 94.0 91.1

Std. dev. 20 17.2 8.4 3.8 2.1 5.7

1960 30 89.7 85.4 95.4 92.7 92.9

1970 30 92.7 86.1 95.4 93.8 89.9

1980 30 91.0 96.8 98.9 98.6 96.9

1990 30 67.8 77.2 90.3 89.5 82.0

2000 30 95.7 89.8 94.1 92.9 93.1

Average 30 87.4 87.1 94.8 93.5 91.0

Std. dev. 30 11.2 7.1 3.1 3.3 5.6
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distribution of past forecast errors will provide reasonably accurate measures of the

uncertainty surrounding subsequent population forecasts. This is the issue we

address in the present study.

We calculated population forecast errors for 2,482 counties in the United States

throughout the 20th century and evaluated the performance of empirical prediction

intervals based on the distribution of past forecast errors. We found that:

(1) MAPEs and 90th PEs remained fairly constant over time, but declined over the

last few decades in the century.

(2) The standard deviations for APEs and ALPEs also remained fairly constant

over time, but declined over the last few decades in the century.

(3) MALPEs did not remain at all constant over time.

(4) MAPEs and 90th PEs increased with the length of the forecast horizon, often

in a nearly linear manner.

(5) In most instances, the 90th PE from one time period provided a reasonably

accurate forecast of the percentage of APEs falling within the predicted 90%

interval in the following time period, even for long forecast horizons.

Table 8 Percentage of APEs less than the predicted 90th percentile error by forecasting technique

Target year Horizon length LIN MLN SHR SFT EXP COS CON AV7 AV5

1940 10 92.6 92.7 92.4 90.9 93.2 95.0 96.5 92.9 93.0

1950 10 89.6 89.6 90.8 94.4 92.3 79.2 79.1 87.1 88.4

1960 10 91.3 91.5 91.4 91.2 92.0 89.5 88.2 90.9 90.9

1970 10 89.9 90.5 87.8 77.1 91.0 91.8 94.7 93.2 92.2

1980 10 81.7 82.3 84.1 88.6 81.1 96.5 86.3 80.8 80.1

1990 10 98.7 98.6 98.8 99.2 97.1 87.2 96.0 98.4 98.5

2000 10 91.8 92.9 93.2 92.3 94.8 95.8 87.2 91.9 92.4

Average 10 90.8 91.2 91.2 90.5 91.6 90.7 89.7 90.8 90.8

Std. dev. 10 5.0 4.9 4.6 6.8 5.1 6.1 6.4 5.5 5.6

1950 20 90.7 90.8 91.0 91.1 94.7 83.2 89.0 91.6 91.5

1960 20 86.3 86.1 87.6 92.7 89.6 84.9 78.3 85.0 84.9

1970 20 94.9 95.6 95.1 92.8 95.5 94.8 93.0 95.9 95.3

1980 20 79.8 81.3 78.0 66.6 81.2 93.3 92.1 84.2 83.4

1990 20 93.9 93.6 94.2 94.7 92.7 91.1 91.3 93.8 94.0

2000 20 97.9 97.7 98.4 99.1 95.7 93.9 93.3 97.5 97.6

Average 20 90.6 90.8 90.7 89.5 91.6 90.2 89.5 91.3 91.1

Std. dev. 20 6.6 6.2 7.2 11.6 5.6 4.9 5.7 5.6 5.7

1960 30 91.5 92.1 92.1 88.9 95.0 84.9 85.6 92.9 92.9

1970 30 90.3 90.9 92.0 93.5 91.7 90.9 85.9 90.0 89.9

1980 30 95.5 96.3 95.2 90.0 96.8 97.3 94.4 97.3 96.9

1990 30 80.5 81.3 77.2 65.8 79.5 83.7 90.7 82.8 82.0

2000 30 94.2 93.8 94.4 83.0 93.7 95.5 90.6 93.3 93.1

Average 30 90.4 90.9 90.2 84.2 91.3 90.5 89.4 91.3 91.0

Std. dev. 30 5.9 5.7 7.4 11.0 6.9 6.1 3.7 5.4 5.6
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(6) Differences in population size had little impact on the percentage of APEs

falling within the predicted 90% interval, but differences in population growth

rates had a fairly consistent impact.

Of particular interest is the finding that 90th PEs from previous error distributions

provided reasonably accurate predictions of subsequent 90th PEs. Given the

tremendous shifts in population trends that occurred during the 20th century, this is

a notable finding. Drawing on these results and those reported in previous studies

(e.g., Keyfitz 1981; Smith and Sincich 1988; Stoto 1983; Tayman et al. 1998), we

conclude that empirical prediction intervals based on the distribution of past forecast

errors can provide useful information regarding the likely level of precision of

current population forecasts.

We did not construct empirical prediction intervals for measures of bias. As shown in

Table 2 and Fig. 1, MALPEs and the center of the distribution of ALPEs did not remain

stable over time. Although bias has been found to be related to differences in population

growth rates, it appears that past forecast errors do not provide useful information

regarding the tendency for a particular set of forecasts to be too high or too low (e.g.,

Isserman 1977; Kale et al. 1981; Smith and Sincich 1988; Tayman et al. 1998).

The prediction intervals analyzed in this study were based on forecasts derived

from seven simple trend extrapolation techniques. Would similar results be found

for forecasts based on cohort-component models and other complex forecasting

methods? The available evidence suggests this to be the case. A number of studies

have found that average forecast errors for alternative methods tend to be similar

when those methods are applied to the same geographic areas and time periods (e.g.,

Ascher 1978; Isserman 1977; Kale et al. 1981; Long 1995; Morgenroth 2002;

Pflaumer 1992; Rayer 2008; Smith and Sincich 1992; Smith and Tayman 2003).

These studies examined actual, published forecasts as well as simulated forecasts

based on extrapolation techniques. Furthermore, the present study found that

empirical prediction intervals worked well for almost every individual technique,

including techniques based on very different functional forms. Additional research

is needed, but it is likely that empirically-based prediction intervals can be usefully

employed in conjunction with many different population forecasting methods.

Probabilistic prediction intervals can be based on models that incorporate the

stochastic nature of the forecasting process, on empirical analyses of past forecast

errors, or on a combination of the two. Which of these approaches is most useful for

counties and other small areas? Model-based prediction intervals require a substantial

amount of base data and are subject to errors in specifying the model, errors in

estimating the model’s parameters, and structural changes that invalidate the model’s

parameter estimates over time (Lee 1992). In addition, many different models can be

specified, each providing a different set of prediction intervals (e.g., Cohen 1986;

Keilman et al. 2002; Sanderson 1995; Tayman et al. 2007). These limitations make

model-based intervals more difficult to apply than empirically-based intervals and

raise questions about their reliability. Although prediction intervals based on

stochastic models may be useful for national and perhaps for state population

forecasts, we believe an empirical approach will generally be more useful for counties

and other small areas.
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Empirically-based prediction intervals have their own limitations, of course. We

found that more than 90% of APEs fell inside the 90% prediction intervals in some

target years and less than 90% in other target years. Intervals based on 75th PEs did

not perform quite as well as intervals based on 90th PEs. Perhaps more important,

the empirical approach does not provide reliable forecasts of the likely direction of

error for a particular set of population forecasts.

Further research on empirical prediction intervals is clearly needed. Can formal

criteria be established for evaluating the stability of error distributions over time?

How much historical data are needed to develop the most stable intervals? Can

techniques be developed for adjusting prediction intervals to account for differences

in population size, growth rate, geographic region, and perhaps other factors as

well? How do differences in the choice of cut-off points (e.g., 90th vs. 75th

percentile) affect the accuracy of forecast error predictions? Can information on the

distribution of errors for one geographic region be used to develop prediction

intervals for another region? Would the performance of prediction intervals for

other functional units, i.e. areas bound together by economic and political ties such

as metropolitan areas or planning districts, differ from that shown here for counties?

Can techniques be developed for predicting the tendency of forecasts to be too high

or too low? Answers to these and similar questions promise to increase our

understanding of population forecast errors and improve the performance of

empirically-based prediction intervals.

Open Access This article is distributed under the terms of the Creative Commons Attribution

Noncommercial License which permits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

Appendix: Trend Extrapolation Techniques

We used the following forecasting techniques: linear (LIN), modified linear (MLN),

share-of-growth (SHR), shift-share (SFT), exponential (EXP), constant-share

(COS), and constant (CON).

LIN: The linear technique assumes that the population will increase (decrease) by

the same number of persons in each future decade as the average per decade

increase (decrease) observed during the base period:

Pt ¼ Pl þ x=yðPl � PbÞ;

where Pt is the population in the target year, Pl the population in the launch year, Pb

the population in the base year, x the number of years in the forecast horizon, and y
the number of years in the base period.

MLN: The modified linear technique initially equals the linear technique, but in

addition distributes the difference between the sum of the linear county forecasts and

an independent national forecast proportionally by population size at the launch year:

Pit ¼ LINþ Pil=PjlðPjt � RLINÞ;

where i represents the county and j the nation.

790 S. Rayer et al.

123



SHR: The share-of-growth technique assumes that each county’s share of

population growth will be the same over the forecast horizon as it was during the

base period:

Pit ¼ Pil þ Pil � Pibð Þ= Pjl � Pjb

� �� �
Pjt � Pjl

� �
;

SFT: The shift-share technique assumes that the average per decade change in

each county’s share of the national population observed during the base period will

continue throughout the forecast horizon:

Pit ¼ Pjt Pil=Pjl þ x=yð Þ Pil=Pjl � Pib=Pjb

� �� �
:

EXP: The exponential technique assumes the population will grow (decline) by

the same rate in each future decade as during the base period:

Pt ¼ Ple
rx; r ¼ ½ln Pl=Pbð Þ�=y;

where e is the base of the natural logarithm and ln is the natural logarithm.

COS: The constant-share technique assumes the county’s share of the national

population will be the same in the target year as it was in the launch year:

Pit ¼ Pil=Pjl

� �
Pjt

CON: The constant technique assumes that the county population in the target

year is the same as in the launch year:

Pt ¼ Pl

Four of these techniques (MLN, SFT, SHR, and COS) require an independent

national forecast for the target year population. Since no set of national forecasts

covers all the launch years and forecast horizons used in this study, we constructed a

set by applying the linear and exponential techniques to the national population. We

used an average of these two forecasts as a forecast of the U.S. population.
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