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Abstract

Quantitative measurement of nanoscale surface roughness of articular cartilage tissue is

significant to assess the surface topography for early treatment of osteoarthritis, the most

common joint disease worldwide. Since it was not established by clinical diagnostic tools,

the current studies have been suggesting the use of alternative diagnostic tools using pre-

clinical methods. This study aims to measure the nanoscale surface roughness of articular

cartilage tissue utilizing biospeckle which is used as a non-destructive and non-contact opti-

cal imaging technique. An experimental setup was implemented to capture biospeckle

images from twelve cross-section areas of articular cartilage tissue gathered from bovine

knee joints at 632 nm wavelength laser radiation. Then, to analyze the biospeckle image, a

second-order statistical-based method was proposed through the combination of 308 highly

correlated statistical features extracted from implemented gray-level co-occurrence matri-

ces by employing principal component analysis. The result indicated that the measurement

of the nanoscale surface roughness based on the first principal component only is able to

provide accurate and precise quantitative measurement of early signs of articular cartilage

degeneration up to 2500 nm.

Introduction

Articular cartilage is a thin layer glassy-like connective tissue that covers the ends of joint

bones with no nerves or blood vessels [1]. Its thickness varies according to the species, location,

age, gender, and weight where it ranges from 1 mm to 6 mm in the human knee joint [2]. The

articular cartilage reduces the friction between the interacting bones to permit the movements

of one bone against another, supplies shock-absorbent of body and protects the bones from

excessive loads where it can bear 2.5–5 times body weight during walk [3–5]. Besides, the artic-

ular cartilage is highly deformable; it can adapt to different types of loads by changing its reac-

tion according to the type of load [2]. The structure of the articular cartilage is extremely

organized which is divided into four layers according to the distance from its surface. The

superficial layer is the thinnest and the outermost one that is surrounded by synovial fluid, a
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very high-water content (~98.8%), to lubricate the two articular cartilage surfaces in the joints

capsule [3]. Healthy articular cartilage consists of a small number of cells called chondrocytes

(1–5%), that are embedded in the extracellular matrix (contains water (65–80%), proteogly-

cans, glycoproteins, and lipids), and type II collagen [4,6]. Typically, the water is concentrated

near the articular cartilage surface and decreases with increasing the depth towards the inner-

most layer [3]. This large amount of water helps in gas, nutrient, and waste exchange with the

surrounding synovial fluid. Additionally, nearly 70% of water moves outside the articular carti-

lage when exposed to load for the deformation of articular cartilage helping in reducing fric-

tion. The type II collagen assists in the attachment of the chondrocytes to the extracellular

matrix and maintains the tensile strength [7].

Osteoarthritis is a public health issue that describes articular cartilage degeneration [8,9]. It

can be caused by the erosion of the articular cartilage tissue resulting in cracking and thinning

of this connective tissue surface that in advanced stages can be gradually worn out to bone sur-

face, i.e. naked of articular cartilage [4]. Articular cartilage of knee joints can be damaged by

genetics, overweight especially in women, leg curvatures, age, knee injuries, and repeated stress

on the knee like climbing stairs, cycling, and long time sitting [4,7,10]. Thus, the nanoscale

average surface roughness of articular cartilage is an important symptom of osteoarthritis for

the reason that the earliest sign of osteoarthritis is fibrillation of the articular cartilage surface;

it has to be measured quantitatively. Yet, the clinical diagnostic tools, such as magnetic reso-

nance imaging, computer tomography, arthroscopy, and plain x-ray provide a qualitative

investigation of osteoarthritis and cannot detect osteoarthritis in the early stage [2,4,11].

Therefore, pre-clinical methods have appeared whereas they play a crucial role in investigating

the integrity of articular cartilage tissue surface. A small size mechanical indentation instru-

ment was developed to quantitatively measure the stiffness of articular cartilage during

arthroscopy [12]. The authors tested the instrument in cadaver articular cartilage specimens.

Moreover, for measuring the dynamic indentation properties of articular cartilage, a mechani-

cal indentation tool was developed [13]. Whereas it was supposed that, with further develop-

ment, the system could be inserted into a human or animal knee joint under arthroscopic

control. However, this technique depends on imposing a constant deformation on the articular

cartilage surface and the maximum indenter by which the articular cartilage resists the induced

deformation was measured and used as an indicator of articular cartilage stiffness [14]. To

overcome the limitation of mechanical indentation, ultrasound indentation measurements

have been developed [15–18]. In these studies, the ultrasound technique was shown to be sen-

sitive for the direct measurement of the average surface roughness of articular cartilage. The

main drawback of this technique is that it requires an invasive approach in clinical use. with

non-invasive ultrasound imaging, the ultrasound penetration would then be limited to small

areas in the tissue. Optical coherence tomography was first introduced for the assessment of

articular cartilage microstructure by Herrmann et al. [19]. The main limitation of articular car-

tilage OCT imaging is that the penetration of light in the cartilage is limited [20]. Several publi-

cations for measuring the articular cartilage surface ex-vivo through contact profilometers like

stylus profilometer [21,22], and scanning probe microscopes [23–26] have appeared. They

allowed quantitative measurement of the average surface roughness, while they can easily

scratch the tissue surface, as they depend on passing a probe across the specimen surface.

Besides, they allow a very small scanning area at one time (<100 μm2). The non-contact profil-

ometers such as the scanning electron microscope were utilized to assess the articular cartilage

surface topography [22,27]. The most disadvantages of SEM are that the specimens have to be

covered with a thin layer of gold or carbon and the specimens have to be dehydrated. Hence,

SEM cannot be used to scan the biological specimens in their natural conditions. Other non-

contact profilometers such as scanning white light interferometer [28] and optical profilometer
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[29] were used to qualitatively investigate the articular cartilage surface. To the best of our

knowledge, the reported values of average surface roughness for healthy and degenerated artic-

ular cartilage were varied in the existing studies according to the accuracy of the applied mea-

surement method. For example, when utilizing the ultrasound indentation [15], the average

surface roughness values were 7.9, 29.1, and 49.1 μm for smooth, intermediate, and rough

articular cartilage surfaces, respectively. In another report utilizing the optical profilometer

[29], the average roughness of healthy and degenerated surfaces was reported to be 30 ± 5 and

140 ± 9 μm, respectively. While, the scanning white light interferometer [28] gave values of

800 ± 300, 1000 ± 300 and 1700 ± 900 nm for the average roughness of osteoarthritis gardes 0

(healthy), 1, and 2, respectively. Examination using scanning probe microscopes, like atomic

force microscope (AFM), was reported to be 68.90, 110.40, 110.95, and 119.22 nm for grades 0,

1, 2, and 3, respectively [26].

Speckle is observed in any imaging modality involving laser illumination such as optical

coherence tomography and ultrasound. Therefore, the speckle is treated as noise that distorts

the results of measurements and, subsequently, has to be eliminated [30]. Though, speckle

image contains significant information about the observed object surface; that is why speckle

imaging methods have been of interest to researchers [30,31]. Since then, through speckle

imaging, never-ending studies in many fields of medicine, engineering, food quality assess-

ment, agriculture, industry, and science have been developed [32–34]. It is worth noting that

speckle is popularly called biospeckle when characterizing a biological tissue [32]. Regarding

the biological tissue, several reports on laser speckle rheology (LSR), which measures the bio-

mechanical properties of tissues and biofluids, have been provided [35–39]. Another possible

utilization of biospeckle is laser speckle flowgraphy, which is a powerful tool for blood flow

mapping [40–42]. A simple algorithm based on laser speckle contrast imaging (LSCI) and his-

togram analysis of biospeckle data to study the cerebral blood flow in rat cortex was described

[43]. Surface configuration for the normal and laser-treated retina to study the accumulation

effects on the retina was investigated through laser photography [44]. The surface roughness

variations of zirconia materials that were used for dental crowns were measured by speckle-

based autocorrelation analysis [45]. Deana et al. [46] reported on the application of biospeckle

imaging for the early assessment of carious lesions on teeth.

Generally, when laser light illuminates a biological tissue as presented in Fig 1, some

effects may exist: reflection (specular and/or diffuse), scattering, transmission, and/or

absorption [47,48]. The biospeckle imaging is based on the backscattered light, due to dif-

fuse reflection, from the biological tissue surface [49]. Where the different points on the bio-

logical tissue surface transmit spherical wavelets that are subjected to different path lengths

due to the surface topography (see Fig 1). As all the transmitted spherical wavelets are

coherent, they interfere with each other resulting in an illuminated chaotic and irregular

pattern with bright and dark patches covering the biological tissue surface termed bios-

peckle image [31]. The bright and dark patches, respectively, correspond to constructive

and destructive interference [31,50]. Thus, the biospeckle image is characterized by random

intensities and phases distribution [51].

In consequence of the texture properties of the biospeckle image, speckle contrast technique

based on first-order statistics to characterize surface roughness was used by Persson [52]. Dha-

nasekar et al. [53] extracted autocorrelation parameters from the speckle images to investigate

the surface roughness. Besides, some studies binarized the speckle images and their statistical

properties were utilized to evaluate the surface roughness [54–57]. By employing the gray-level

co-occurrence matrix of the speckle image, the authors could measure the surface roughness

[58–60]. A local contrast analysis model was proposed to extract three parameters from the

biospeckle images for the evaluation of the surface roughness [11]. By Hurst exponent method,
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Peron et al. [30], Sampaio et al. [61], and Martinez et al. [62] analyzed the speckle images.

Moreover, local texture analysis through morphological operations by opening and closing at

different neighborhoods was applied to investigate the speckle images [63].

The proposed method is based on the statistics of the gray-level co-occurrence matrix (two-

dimensional histogram) and principal component analysis for investigating the biospeckle

images to quantitively measure the nanoscale average surface roughness of articular cartilage

tissue specimens gathered from bovine knee joints.

Speckle theory

The two-basic configurations for recording biospeckle images to investigate the surface rough-

ness of a biological tissue surface are shown in Fig 2. In Fig 2(A), the biospeckle image is

formed in free-space and termed objective speckle or speckle at the diffraction plane. The

Fig 2. Two-basic biospeckle imaging configurations for collecting biospeckle images of a biological tissue surface: (a) objective

speckle and (b) subjective speckle.

https://doi.org/10.1371/journal.pone.0246395.g002

Fig 1. Shematic presentation of laser interaction with biological tissue.

https://doi.org/10.1371/journal.pone.0246395.g001
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average size of the speckle grains at the observation plane is approximately given by [64]:

dO ¼ 1:22lL=D ð1Þ

where λ is the wavelength of the laser radiation, L is the distance from the rough surface to the

observation plane and D is the diameter of the illuminated spot. This equation shows that

when the diameter of the illuminated spot is wider, the speckle is smaller.

While as shown in Fig 2(B), the biospeckle image that is formed on the image plane of an

imaging lens is termed subjective speckle [31]. In this case, the average speckle grain size is

approximately defined as follows [64]:

dS ¼ 1:22lð1þMÞf=d ð2Þ

where, f, M, and d are the focal length, the magnification, and the diameter of the imaging

length, respectively. From Eq (2), it can be concluded that when the aperture of the imaging

lens is wider, the laser speckle is smaller. This is to be expected, as the size of the diffraction

pattern of a lens decreases as the aperture of the lens increases [65]. Hence, under the same

experimental conditions, the texture properties of the biospeckle image will depend only on

the topography of the biological tissue surface. In this study, the biospeckle images were

recorded through the objective speckle.

Experimental configuration

Specimen source and preparation

Ex-vivo study on bovine articular cartilage on bone specimens was utilized in this study. They

were directly collected after the slaughter at a local butcher’s shop (Behiry Butcher, Giza,

Egypt). For documented results, three specimens, approximately 2 cm ×2 cm × 2cm inspected

with the naked eye to ensure that they are free from damage, were obtained from the lateral

and medial tibial condyle of a male bovine articular capsule of the right knee joint, approxi-

mately three years old. Then, four cross-section areas on each specimen surface were degener-

ated using an abrasive machine into different average roughness, Ra, values. Finally, before the

imaging process, the average roughness of the twelve degenerated cross-section areas of the

specimens’ surfaces was measured using a stylus profilometer. Notably, the specimens were

transported in an icebox and immediately disposed after recording the biospeckle images.

Optical setup

As the scattering properties of the articular cartilage tissue dominates its absorption properties

in the wavelength range ~ 400–850 nm [58,66], the optical setup was built with 5 mW, 632 nm

He-Ne laser. The laser beam was then expanded to 4 mm in diameter after a diaphragm to pro-

vide local investigations of the specimen which was placed on manual tilt and linear translation

stages to be examined for the different degenerated areas. The biospeckle images produced

from the interference of backscattered radiations were recorded with a CCD camera of resolu-

tion 4608×3456 pixels that were placed at 50 cm from the specimen (Fig 3). During the bios-

peckle imaging, all the experimental conditions and the angle between incident laser radiation

and the normal direction (~ 15˚) were respected.

Biospeckle statistical-based image analysis

Statistics of gray-level co-occurrence matrix

The gray-level co-occurrence matrix (GLCM), innovated by Haralick et al. [67], is a two-

dimensional histogram of size L×L, where L is the maximum gray-level value of an image. The
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GLCM is a second-order statistical-based analysis since it is implemented from the texture

information of the image by calculating the frequency of occurrence of two-neighbor pixels of

values i and j, respectively, separated by a distance d with a specific direction θ. Generally, sym-

metrical GLCM around its principal diagonal (i.e. in the direction of i = j) is implemented

when the calculation is done in the forward and backward along four directions corresponding

to angles of 0˚ (horizontal), 45˚ (right diagonal), 90˚ (vertical) and 135˚ (left diagonal). Assum-

ing a biospeckle image Z having a dimension of M×N, the values contained in the cells (i,j) of

the GLCM, implemented from Z, is defined by the following equation [67]:

CMði; jÞd;y ¼
XM

x¼1

XN

y¼1

1; if Zðx; yÞ ¼ i and Zðxþ d; y þ dÞ ¼ j

0; otherwise
ð3Þ

(

To avoid scaling effects, it is preferred to use normalized values of CM instead of frequency.

The normalized CM, denoted by P, is given by Eq (4) [67]. Thus, the sum of all cell’ values of P

is equal to one.

P i; jð Þ ¼
CMði; jÞ

PL� 1

i¼0

PL� 1

j¼0
CMði; jÞ

ð4Þ

In view of the GLCM, it can measure the uniformity or the randomness of the biospeckle

image. For example, when comparing two images with few and many gray-level transitions,

the more uniform one (few transitions) assigns the GLCM cells with high values within the

principal diagonal region. While the principal diagonal region of the other image (many tran-

sitions) is modified by low values. Therefore, the GLCM elements’ distribution (spatial varia-

tion) and values depend on the texture properties of the image. To describe the GLCM,

Haralick et al. [67] extracted 14 statistical parameters from the GLCM, for each direction and

separation distance. This study deals with eight of Haralick’s statistical parameters which

describe the image homogeneity, contrast, randomness, and gray-level transitions. Their

mathematical expressions and descriptions are listed in Table 1.

Fig 3. Schematic presentation of the biospeckle optical setup.

https://doi.org/10.1371/journal.pone.0246395.g003
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Principal component analysis

Unfortunately, visualizing the relationships of more than three statistical features is extremely diffi-

cult. Therefore, it is more useful to reduce the number of statistical features under consideration by

generating a new feature vector, this process is known as dimensionality reduction from variables.

Then, dimensionality reduction is the linear or nonlinear transformation of the original dataset,

using all statistical features, to a new dataset with a reduced number of statistical features [68].

Though many techniques have been developed for dimensionality reduction, principal

component analysis (PCA) is one of the most widely used. Generally, the principal component

analysis is a multivariate statistical method that generates a new set of statistical features,

orthogonal to each other, called principal components, whereas each principal component is a

linear combination of the original features. Since all the principal components are orthogonal

axes in space, uncorrelated statistical features, there is no redundant information. If the first

few principal components account for most of the variation, then only these principal compo-

nents will be used to describe the data, thus leading to a dimensionality reduction [68,69]. It is

important to consider that PCA is sensitive to the rating and relative scaling (i.e. dynamic

range) of the statistical features. Besides, it must be applied to highly correlated statistical fea-

tures (the pairwise correlation among the statistical features is more than 0.8) [68].

Statistical parameter preparation. Let the statistical feature dataset to be analyzed by

PCA comprises n observations described by p statistical parameters and is represented by n×p

Table 1. Representation and description of Haralick’s statistical parameters.

Statistical parameter Mathematical expression [67] Description

Angular second

momentum (ASM) ASM ¼
XL� 1

i¼0

XL� 1

j¼0

P2ði; jÞ
It measures the image homogeneity. A high value of this statistical parameter is obtained for a

homogeneous image which is characterized by very few gray-level transitions and hence the matrix P is

modified by few entries to the GLCM cells with large values.

Contrast (CON)
CON ¼

XL� 1

n¼0

n2

(
XL� 1

i¼0

XL� 1

j¼0

Pði; jÞ

)

ji � jj ¼ n

It is a measure of the local variations of the gray-level intensities within an image whereas it gives weight

factors, denoted by n2, to the matrix P with respect to the distances away from the GLCM principal

diagonal. The principal diagonal is assigned by n2 = 0, the adjacent diagonals above and below the

principal diagonal are assigned by n2 = 1, etc. A high value of this measure is obtained when the elements

accumulate away from the GLCM principal diagonal.

Inverse difference

moment (IDM): IDM ¼
XL� 1

i¼0

XL� 1

j¼0

1

1þði� jÞ2
Pði; jÞ

It is a measure of the closeness of the GLCM cells to the principal diagonal by modifying the matrix P

with a weight factor 1/1+(i—j)2.

Entropy (ENT):
ENT ¼ �

XL� 1

i¼0

XL� 1

j¼0

Pði; jÞ log Pði; jÞ
It measures image disorder and randomness. It outputs a higher value for an image with high gray-level

transitions, i.e. modifies the matrix P with small values to many cells.

Difference average

(DA) DA ¼
XL� 1

i¼0

iPx� yðiÞ Px� yðkÞ ¼
XL� 1

i¼0

XL� 1

j¼0

Pði; jÞ; k ¼ 0; 1; 2; . . . . . . ; L� 1

ji� jj ¼ k
The value at Px-y(0) is the summation of elements accumulated in the principal diagonal and the value at

Px-y(k) is the summation of the elements in the kth diagonal above and below the principal diagonal. Like

CON and ENT, high values of DA, DV, and DE are obtained when the elements distribute away from the

principal diagonal.

Difference variance

(DV) DV ¼
XL� 1

i¼0

ði � DAÞ2Px� yðiÞ

Difference entropy

(DE) DE ¼ �
XL� 1

j¼0

Px� yði; jÞ log Px� yði; jÞ

Correlation (CORR)
CORR ¼

XL� 1

i¼0

XL� 1

j¼0

Pði; jÞ ði� mxÞðj� myÞ
sxsy mx ¼

XL� 1

i¼0

XL� 1

j¼0

iPði; jÞ sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XL� 1

i¼0

XL� 1

j¼0

ði� mxÞ
2Pði; jÞ

v
u
u
t

my ¼
XL� 1

i¼0

XL� 1

j¼0

jPði; jÞ sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XL� 1

i¼0

XL� 1

j¼0

ðj � myÞ
2Pði; jÞ

v
u
u
t

where μx, μy and σx, σy are the means and standard deviations of rows and columns, respectively. This

statistical parameter measures the correlation between cells in the rows and columns of P.

https://doi.org/10.1371/journal.pone.0246395.t001
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data matrix X whose jth column is a vector xj of observations described by the jth statistical

parameter, that is:

X ¼

X1;1 X1;2 . . . . . . X1;p

..

. ..
. . .

.
. . . ..

.

X2;1 X2;1 . . . . . . X2;1

Xn;1 Xn;2 . . . . . . Xn;p

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

where xj = {X1,j, X2,j,. . .,Xn,j}, j = 1,2,. . ., p.

Statistical parameters selection. The correlation coefficient is a statistical measure by

which the strength and the direction of a relationship between two statistical parameters are

measured. The range of values for the correlation coefficient is bounded between -1.0 for per-

fect negative correlation and 1.0 for perfect positive correlation when comparing a statistical

parameter to itself. A correlation coefficient of 0.0 shows no relationship between the two sta-

tistical parameters while a correlation coefficient greater than 0.8 is generally described as

strong. The correlation coefficient rxi;xk , where xi and xk are two statistical parameters vectors

collected from n observations, can be computed in terms of the covariance of xi and xk,

denoted by covxi ;xk , by [70]:

rxi;xk ¼
covxi;xk
sxisxk

ð5Þ

covxi;xk ¼
1

n � 1

Xn

l¼1

ðxiðlÞ� mxi
Þ
�
ðxkðlÞ� mxk

Þ ð6Þ

mxj
¼

1

n

Xn

l¼1

xjðlÞ ð7Þ

sxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

l¼1

ðxjðlÞ � mxj
Þ

2

s

ð8Þ

where xj denotes a statistical feature vector collected from n observations, mxi
; mxk

and

sxi ; sxk are respectively their means and standard deviations defined by Eqs (7) and (8),

respectively, and the superscript “�” denotes the complex conjugate. For the dataset X which

contain more than two statistical features, the pairwise correlation matrix can be obtained

directly from the dataset X using the following equation [70]:

R ¼
1

n � 1

X � m
s

� �T X � m
s

� �

ð9Þ

where m and σ are the mean and standard deviations vectors of the data matrix X, the super-

script “T” denotes the transpose operation of a matrix.

Statistical feature standardization. In view of that, the extracted statistical features have

been gathered with different dynamic ranges, they have to be standardized to ensure that all of

them have the same dynamic range and weight before applying the PCA analysis. Conse-

quently, each column vector in the data matrix X, i.e. a statistical feature vector xj, is
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standardized as follows [70]:

�xj ¼
xj � mxj

sxj
ð10Þ

where �xj is the standardized vector of the statistical feature vector denoted by xj, and mxj
and

sxj are the mean and standard deviation of xj as defined by Eqs (7) and (8), respectively. By sta-

tistical feature standardization, the values of each statistical feature will have zero-mean and

unit variance.

Finding the principal components. Generally, the principal components Y of the statisti-

cal feature dataset is a matrix containing the linear combination of the columns of the data

matrix as follows [69]:

Y ¼ XA ð11Þ

where A is a matrix of weight coefficients containing a set of p eigenvectors computed from

p×p covariance matrix of the dataset X, in which each column vector aj = {A1,j, A2,j,. . .,Ap,j}

represents one eigenvector. Then, each column vector Yj = {Y1,j, Y2,j,. . .,Yn,j} in the matrix Y

will represent one principal component. Since the set of eigenvectors form an orthonormal set,

these principal components are linearly independent and uncorrelated. As follows, the princi-

pal components are computed from the dataset X according to the following steps:

Step 1: an n×n covariance matrix, C, is computed from the dataset X which has zero mean

by [69]:

C ¼
1

n � 1
XTX ð12Þ

To the best of our knowledge, the covariance matrix C is the same as the pairwise correla-

tion matrix R, obtained from (9), as the dataset X has unit variance and zero mean.

Step 2: a set of p scalar eigenvalues λ = λ1, λ2,. . .,λp of the covariance matrix C are obtained

using the following equation [71]:

ðC � lIÞA ¼ 0 ð13Þ

where I is the identity matrix and A is a matrix containing the set of eigenvectors of C corre-

sponding to the set of eigenvalues λ. This equation has a nontrivial solution if and only if the

matrix C−λI is not invertible and this happen if and only if λ satisfies the characteristic equa-

tion [71]:

determinantðC � lIÞ ¼ 0 ð14Þ

By solving this characteristic equation for λ, the p eigenvalues are obtained. Then, the eigen-

values are arranged in descending order, so that λj�λj+1.

Step 3: the p eigenvectors of the covariance matrix C are calculated by taking each of its p

eigenvalues (λ1, λ2,. . .,λp) in turn, i.e., each eigenvector aj corresponding to the eigenvalue λj

where obtained by solving Eq (13) for λ = λj, j = 1,2,. . ., p. Then A is a matrix whose columns

are formed from eigenvectors of C, ordered whereas the first column of A is the eigenvector

corresponding to the largest eigenvalue, and the last column is the eigenvector corresponding

to the smallest eigenvalue. This will present the principle components in order of significance.

Step 4: finally, the p principal components are computed by Eq (11), each principal compo-

nent is computed as Yj = X aj.

Since the lower-dimensional representation has to be obtained from the largest eigenvalues

only, that account for most of the variance, only their corresponding eigenvectors and
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principal components which must be used to describe the statistical features dataset. To do

that, the percentage of the total variance of each principal component is computed by:

% of total variance of Yj ¼ lj=
Xp

j¼1
lj ð15Þ

where
Pp

j¼1
lj provides the total variance.

Results and discussion

Biospeckle image analysis

The biospeckle images presented in Fig 4(A) were collected using the experimental setup

shown in Fig 3. The images were obtained from the backscattered radiations of twelve degen-

erated cross-section areas of the bovine articular cartilage tissue specimen having different

average surface roughness values as discussed above. It can be observed that the biospeckle

images contain mainly bright and dark batches with few gray-level values. In Fig 4(B), a gray-

level intensity distribution along a line passing over each biospeckle image is presented. A

closer look at the biospeckle images and line plots shows that the gray-level intensity decreases,

the number of bright patches decreases, and the dark area increases as the average surface

roughness increases. Besides, high gray-level transitions for the smooth surfaces than the

rough ones are obvious in the line plots (Fig 4(B)), indicating that the rough surfaces have

bright batches with a bigger size than the smooth surfaces. Clearly, the biospeckle images pres-

ent texture patterns that differ for the different average surface roughness values. This outcome

promoted the possibility to extract truthful statistical features from the biospeckle images to

accurately estimate the surface topography.

Fig 4. (a) Eight-bit gray-level display of twelve biospeckle images, with a dimension of 400×400 pixels, collected from twelve degenerated cross-section

areas of a bovine articular cartilage specimen, and (b) gray-level intensity distribution along the colored lines passing over the biospeckle images

presented in (a).

https://doi.org/10.1371/journal.pone.0246395.g004
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GLCM analysis

The GLCM was implemented from the relationship between two neighbor pixels at a certain

separation distance along a specific direction. For each biospeckle image, forty GLCMs at ten

separation distances (d = 1–10 pixels) along the four directions were implemented. Twenty of

them concerning four different biospeckle images along the horizontal direction at five differ-

ent separation distances are plotted and presented in Fig 5. It can be observed that as the aver-

age surface roughness increases, the element distribution width decreases where the elements

concentrate towards the principal diagonal. This effect is due to that the biospeckle image of

the rough surface has larger bright batches and less gray-level transitions than the smooth sur-

face. Then, it implements GLCM with fewer entries with high values within the principal diag-

onal region unlike the other biospeckle image of the smooth surface which modifies the

GLCM cells with more entries with low values away from the principal diagonal. Besides, the

GLCM cell’s distributions moved towards the upper side direction of the matrix as the surface

roughness increase (due to the lower gray-level intensities) resulting in higher values. What’s

more, the cell’s distribution width increases with increasing the separation distance for each

average surface roughness. The effectiveness of the GLCM in the discrimination of the bios-

peckle images is evident where the cells’ distributions of the GLCM differ in a good relation-

ship with the separation distance and surface roughness. It is worthily to conclude that the

GLCM contains important information about the gray-level intensities and spatial distribution

of the biospeckle image pixels.

Fig 5. GLCM plots along the horizontal direction at d = 1,2,3,5 and 10 pixels of biospeckle images collected from cross-section areas of: (a) Ra = 10 nm,

(b) Ra = 170 nm, (c) Ra = 1600 nm and (d) Ra = 2500 nm.

https://doi.org/10.1371/journal.pone.0246395.g005
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Haralick’s statistical parameters extraction

From each implemented GLCM, the eight Haralick’s statistical parameters, angular second

moment, contrast, inverse difference moment, entropy, difference average, difference vari-

ance, difference entropy, and correlation were computed. For illustrative purposes, Fig 6

shows the results of the extracted statistical parameters versus the separation distance of the

biospeckle images whose GLCM plots are presented in Fig 5. Some explanations and discus-

sions regarding both Figs 5 and 6: the ASM value outputted higher values with the increase in

surface roughness and decrease in separation distance due to the increased sum of the squares

of the P matrix values; that results from the domination of few numbers with large magnitude.

Moreover, since the IDM and CORR Equations were created to measure the closeness of the

cells’ distribution of the P matrix to the principal diagonal and cells’ correlations, respectively,

they had high values for the biospeckle images with the big bright patches that were collected

from rough surfaces. On the contrary, the CON, ENT, DA, DV, and DE outputted high values

for the biospeckle image with rather small bright patches, as the GLCM is implemented from

more entries with small values. Consequently, as the separation distance increased, the GLCM

cells were distributed with small values away from the principal diagonal, hence high CON,

ENT, DA, DV, and DE were obtained. Then, the extracted Haralick’s statistical parameters

plots for the four cross-section areas seem to have good relationships with different ratings

and dynamic range versus the separation distance and average surface roughness where they

verify that the statistical parameters could describe the GLCM.

It was observed that all the extracted statistical parameters, presented in Fig 6, might resem-

ble exponential function. As an empirical fitting model, the exponential function, y = y0+Ae-

Bx, was utilized to fit the plots. Where y and x, respectively, indicate the statistical parameter

value and the separation distance d, A and B are the exponential coefficients that together

determine the shape and behavior of the exponential function (A is the y-intercept), and y0 is

the constant that shifts the exponential curves vertically upwards or downwards. Examples of

fitting exponential curves for two statistical parameters exhibiting exponential decay and

Fig 6. Plots of the extracted Haralick’s statistical parameters from the GLCM of four biospeckle images along 0˚ direction versus the separation distance.

https://doi.org/10.1371/journal.pone.0246395.g006
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growth, like ASM and CON respectively, are presented in Fig 7. Clearly, the fitting exponential

function could accurately describe the different statistical parameters’ curves showing perfect

fit correlation value, R2, of 0.99. As seen from the different fitting exponential curves, y0 has a

good relationship with the average surface roughness. While A and B, which control the expo-

nential function’s shape, are not promising to characterize the average surface roughness.

Therefore, it was decided to ignore A and B and maintain y0 for each statistical parameter.

To show the relationship between the statistical parameters and the average surface rough-

ness for the twelve cross-section areas of the articular cartilage specimens, some plots chosen

arbitrarily from the computed dataset of Haralick’s statistical parameters are presented in Fig

8. From the results of CORR (Fig 8(J)–8(L)), obtained along 90˚ and 45˚ where extremely dif-

ferent dynamic range is shown, it is interesting to note that the shape of the biospeckle image

is not uniformly distributed in the four directions. Moreover, it is clearly observed that the sta-

tistical parameters have different distributions, rating, and dynamic range with respect to the

average surface roughness and separation distance. Theses analysis reveals that each statistical

parameter contains some specific information about the texture characteristics of the bios-

peckle image. Therefore, it is difficult to adopt a specific statistical feature, along a specific

direction at a specific separation distance, to estimate the average surface roughness of the

articular cartilage tissue specimens. On that point, it was suggested that the combination of

these extracted Haralick’s statistical parameters together through the principal component

analysis to produce new uncorrelated significant statistical features would add value in charac-

terizing the average surface roughness.

Dimensionality reduction by principal component analysis

To prepare the statistical features dataset, each computed Haralick’s statistical parameter

extracted from the GLCM at a specific direction and separation distance was used as a feature.

Therefore, for each Haralick’s statistical parameter, 44 statistical features were obtained at

d = 1–10 and their fitting constant y0, along the four directions. That is to say, the statistical

feature dataset comprised p = 352 statistical features for each observation (i.e. cross-section

area of the articular cartilage tissue specimens, n = 12). Summing up, the feature dataset,

shown in Fig 9(A), is represented by 12×352 data matrix X whose jth column is a vector x1:12,j

of observations described by the jth statistical feature.

Fig 7. Exponential function fit for two of the extracted Haralick’s statistical parameters shown in Fig 6. The curve fitting equations are presented.

https://doi.org/10.1371/journal.pone.0246395.g007
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Before analyzing the statistical features dataset using PCA: first and most importantly, all

the computed features of ASM, IDM, and CORR (along all directions and separation distances,

and their fitting parameter y0) were replaced by their reciprocal (multiplicative inverse).

Therefore, all the statistical features could have the same rating, i.e. as the average surface

roughness increase, they decrease (see Fig 9(A) and 9(C)). Second, the strength and direction

of the relationship between the 352 statistical features, were measured through computing the

pairwise correlation among them by Eq (5) and presented in Fig 9(B). The principal diagonal

of the correlation matrix represents the highest correlation value since the pairwise correlation

is computed between a feature and itself. It is apparent from this figure that there are signifi-

cantly high pairwise correlation coefficients among the statistical features (more than 0.80)

except for the 44 statistical features of CORR which show very weak correlation values with

the other statistical features. The presumed reason is the nonuniform distribution of the bios-

peckle image in different directions, resulting in inconsistent CORR values for describing the

average surface roughness. As a result, the 44 statistical features of CORR were excluded from

the statistical features dataset. Then the dataset X became a matrix of order 12×308, where

p = 308. Third, since the extracted Haralick’s statistical parameters had different dynamic

ranges as evident in Figs 8 and 9(C), the statistical feature data were standardized to have the

Fig 8. Computed Haralick’s statistical parameters versus the average surface roughness of the twelve articular cartilage cross-section areas.

https://doi.org/10.1371/journal.pone.0246395.g008
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same dynamic range and weight by means of Eq (10). Fig 9(C) and 9(D) show the distribution

of the statistical features data before and after standardization, respectively.

After preparing the statistical features dataset to be analyzed by PCA, the eigenvalues,

p = 308, and their corresponding eigenvectors, A = 308×308, were obtained. Then, utilizing Eq

(11), a new statistical feature vector without redundant information, a set of principal compo-

nents that do not exhibit correlation among them ordered according to their meaningful

(from the highest to the lowest eigenvalues), were generated. The dimensionality of the statisti-

cal features’ dataset was effectively reduced to a feature vector of only eleven principal compo-

nents. The percentage of the total variance explained by the feature vector of the principal

components is shown in Fig 10(A), in which it is clearly seen that the first principal component

by itself explains more than 95% of the total variance. Therefore, more components were not

needed as they were less significant, the second and third principal components explain

2.111% and 1.324% of the total variance, respectively. It must be declared that these percent-

ages are consequent to the high correlation among the statistical features. The relationship

between the first principal component and the average surface roughness of the twelve

Fig 9. The distribution of the statistical features, 44 features for each Haralick’s statistical parameter, computed from the twelve cross-section areas of articular

cartilage tissue: (a) the initial statistical features dataset, (b) the pairwise correlation matrix of the statistical features, (c) the statistical features dataset after

having the same rating and removing the 44 statistical features of CORR, and (d) the final statistical features dataset after standardization to be analyzed by

PCA, where they range from -1.92 to 2.09.

https://doi.org/10.1371/journal.pone.0246395.g009
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articular cartilage cross-section areas is plotted in Fig 10(B). As shown in the plot, the fitting

curve of the data can resemble an exponential function with fit correlation and root-mean-

square error of R2 = 0.98 and RMSE = 1.94, respectively. Since the first principal component

eigenvector which consists of 308 weight coefficients indicates how each statistical feature con-

tributes to it, its plot is illustrated in Fig 10(C). It has been found that the first principal compo-

nent has positive weight coefficients for all the statistical features. Whereas the largest

coefficients are corresponding to the statistical features of CON and DA at d ~ 5–10 pixels and

y0. While the smallest coefficients are corresponding to DV along 0˚ and 90˚ at d = 1, and

CON along 0˚ at d = 1. The obtained result reveals that the first principal component can accu-

rately estimate the average surface roughness of the articular cartilage tissue surface.

Conclusion

Investigating a new diagnostic non-contact and non-destructive method that has the ability to

quantitively measure the nanoscale surface roughness of articular cartilage tissue, which is the

earliest important indicator of osteoarthritis, has been proposed. The method has been based

Fig 10. Principal component analysis: (a) percentage of the total variance of the principal components, (b) the first principal component versus average surface

roughness, and (c) the weight coefficients plot of the first principal component.

https://doi.org/10.1371/journal.pone.0246395.g010
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on second-order statistical-based biospeckle optical imaging through the combination of

highly correlated statistical features extracted from the gray-level co-occurrence matrix by

means of principal component analysis. The results showed that the first principal component

which explains more than 95% of the total variance has positive weight coefficients for all the

statistical features and can accurately discriminate the different degenerated cross-section

areas of the articular cartilage tissue. Therefore it was turned out to be a significant and valu-

able statistical feature. In conclusion, the proposed method can be used as an alternative tool

for early diagnosis of articular cartilage degeneration and it is expected that the proposed sta-

tistical analysis of biospeckle images will be widely used by researchers for precise analysis of

biospeckle images in different applications.
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49. Jelı́nková H. lasers for medical applications: Diagnostics, therapy and surgery. Jelı́nková H, editor.
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