
Transient, Consequential Increases in Extracellular Potassium 
Ions Accompany Channelrhodopsin2 Excitation

J. Christopher Octeau1,8, Mohitkumar R. Gangwani1,8, Sushmita L. Allam7,8, Duy Tran3,8, 
Shuhan Huang1,8, Tuan M. Hoang-Trong7, Peyman Golshani3,4,5,6, Timothy H. Rumbell7, 
James R. Kozloski7, and Baljit S. Khakh1,2,9,*

1Department of Physiology, David Geffen School of Medicine, University of California, Los 
Angeles, Los Angeles, CA 90095-1751, USA

2Department of Neurobiology, David Geffen School of Medicine, University of California, Los 
Angeles, Los Angeles, CA 90095-1751, USA

3Department of Neurology, David Geffen School of Medicine, University of California, Los 
Angeles, Los Angeles, CA 90095-1751, USA

4Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, 
University of California, Los Angeles, Los Angeles, CA 90095-1751, USA

5Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, 
University of California, Los Angeles, Los Angeles, CA 90095-1751, USA

6Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, 
David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 
90095-1751, USA

7IBM T.J. Watson Research Center, P.O. Box 218, 1101 Kitchawan Road, Yorktown Heights, NY 
10598, USA

8These authors contributed equally

9Lead Contact

SUMMARY

Channelrhodopsin2 (ChR2) optogenetic excitation is widely used to study neurons, astrocytes, and 

circuits. Using complementary approaches in situ and in vivo, we found that ChR2 stimulation 

leads to significant transient elevation of extracellular potassium ions by ~5 mM. Such elevations 
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were detected in ChR2-expressing mice, following local in vivo expression of ChR2(H134R) with 

adeno-associated viruses (AAVs), in different brain areas and when ChR2 was expressed in 

neurons or astrocytes. In particular, ChR2-mediated excitation of striatal astrocytes was sufficient 

to increase medium spiny neuron (MSN) excitability and immediate early gene expression. The 

effects on MSN excitability were recapitulated in silico with a computational MSN model and 

detected in vivo as increased action potential firing in awake, behaving mice. We show that 

transient, physiologically consequential increases in extracellular potassium ions accompany 

ChR2 optogenetic excitation. This coincidental effect may be important to consider during 

astrocyte studies employing ChR2 to interrogate neural circuits and animal behavior.

In Brief

Using multiple approaches, Octeau et al. discover that optogenetic excitation of ChR2-expressing 

cells leads to significant transient extracellular potassium ion elevations that increase neuronal 

excitability and immediate early gene expression in neurons following in vivo stimulation.

Graphical Abstract

INTRODUCTION

The emergent field of optogenetics has revolutionized neuroscience since the landmark 

discovery that optical stimulation of channelrhodopsin2 (ChR2)-expressing cells elicits 

membrane potential depolarization (Nagel et al., 2003) and by the subsequent demonstration 

that such responses can be used to evoke action potential (AP) firing in neurons (Boyden et 

al., 2005). ChR2 and its variants are now widely used to explore neurons, glia, and multiple 

other cell types, permitting straightforward optical stimulation of genetically targeted cell 

populations and exploration of their contributions to neural circuit properties and animal 

behaviors (Bernstein and Boyden, 2011; Deisseroth, 2015).
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The usual interpretation of neuronal studies that employ ChR2 is that selective, brief optical 

excitation of the targeted neurons causes sufficient membrane depolarization to engage 

endogenous voltage-gated ion channels and lead to AP firing in ChR2- expressing neurons, 

which then may cause ensuing changes in neural circuits controlling behavior. Thus, ChR2 

provides an initial depolarizing inward current to bring the neurons to threshold. In this way, 

ChR2 has become a powerful tool for functional interrogation of neural circuits in vivo in a 

multitude of scenarios (Bernstein and Boyden, 2011; Deisseroth, 2015). Given its ease of 

use, ChR2-mediated excitation has also been used in a similar manner to explore the roles of 

astrocytes in regulating mouse behavior and circuits. For example, ChR2- driven astrocyte 

excitation has been used to implicate astrocytes in breathing (Gourine et al., 2010), response 

selectivity in the visual cortex (Perea et al., 2014), regulation of blood flow (Masamoto et 

al., 2015), sleep (Pelluru et al., 2016; Yamashita et al., 2014), and cerebellar motor function 

(Sasaki et al., 2012). It has also been used to regulate neuronal activity by engaging 

astrocyte mechanisms (Deemyad et al., 2018; Mederos et al., 2019; Shen et al., 2017) and to 

mimic the effects of neuronal activity on astrocyte glutamate transport (Gomez et al., 2019). 

However, astrocytes have few if any voltage-gated ion channels and display no propagated 

voltage signals. In the absence of a physiologically relevant endogenous voltage-dependent 

excitability mechanism to engage following brief ChR2 stimulation, several astrocyte studies 

have instead used quite long periods of ChR2 stimulation lasting from seconds to tens of 

seconds in order to observe subsequent effects on single neurons, circuits, and, in some 

cases, animal behavior. In some of these cases, ChR2-mediated excitation of astrocytes has 

suggested that astrocytes regulate circuits via gliotransmission, which was evoked by optical 

stimulation (Bang et al., 2016; Figueiredo et al., 2011).

We have been exploring astrocyte-neuron interactions in striatal microcircuits (Chai et al., 

2017; Jiang et al., 2016; Octeau et al., 2018a; Srinivasan et al., 2016; Tong et al., 2014; Yu et 

al., 2018). As part of this, buoyed by the aforementioned studies, we used Thy1-ChR2-YFP 

mice (Arenkiel et al., 2007) to drive trains of APs in premotor cortical neurons and to study 

the consequences of this increased excitation upon striatal MSNs and astrocytes. However, 

during the experiments, we identified an unexpected slow inward current in both striatal 

medium spiny neurons (MSNs) and, surprisingly, in astrocytes. We describe the properties of 

the slow inward current and subsequent experiments that suggested that it was due to release 

of K+ into the extracellular space, which we carefully explored. The data reveal a potentially 

important consequence of ChR2-mediated optogenetic excitation, which is likely an 

important confounding feature for astrocyte studies employing prolonged ChR2 stimulation, 

especially for behavioral experiments where electrophysiological studies are not performed. 

Elevated K+ is expected to affect the physiology of not only neurons, but also diverse brain 

cell types (McDonough and Youn, 2017), as well as affect local blood flow and functional 

hyperemia (Girouard et al., 2010). These could influence the interpretation of, and possibly 

even cause, endpoint measures at different temporal scales, especially in vivo, in studies that 

employ ChR2 in astrocytes.
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RESULTS

Transient Extracellular K+ Elevations during Optical Stimulation in Thy1-ChR2-YFP Mice

ChR2 and its variants are the most commonly used tools for optogenetic excitation (Zhang et 

al., 2011). Immunohistochemistry (IHC) revealed strong expression of ChR2-YFP in Thy1-
ChR2-YFP mice (Arenkiel et al., 2007) with strong expression in layer V cortical neurons 

(Figure 1A; n = 3 mice). As expected with the Thy1 promoter, there was little expression in 

the striatum (Figure 1A), but at higher magnification, there was strong colocalization 

between ChR2-YFP and neurofilament (Nflm) in corticostriatal white matter tracts, but no 

significant colocalization between ChR2-YFP and neuronal nuclei (NeuN) or with the 

astrocyte marker S100β (Figures 1B and 1C; n = 12 images, n = 4 mice). Next, we recorded 

in whole-cell voltage-clamp mode from MSNs in sagittal brain slices and employed wide-

field optical stimulation using parameters comparable to those used in vivo (Gibson et al., 

2014). We used 473 nm light, ~0.02 mW/mm2 power, and 25 ms flashes at 20 Hz for 30 s 

and recorded optically evoked excitatory postsynaptic currents (EPSCs) in all MSNs from 

Thy1-ChR2-YFP mice, but not from wild-type (WT) mice (Figure 1D; n = 15 cells, n = 8 

mice). The evoked EPSCs were accompanied by the development of a slow inward current 

(at −75.6 mV after correcting for the tip potential) during the optical stimulation train 

(Figure 1D; see Figure S1 for expanded traces). This inward current peaked at −90 ± 19 pA, 

developed with a time constant (τ) of 1.1 ± 0.1 s, was maintained during the stimulation 

train, and decayed with a τ of 3.7 ± 0.2 s (Figure 1D; n = 15 cells, n = 4 mice). Furthermore, 

recordings from striatal astrocytes revealed a similar inward current of −281 ± 48 pA and 

with rise and decay τ values of 1.0 ± 0.1 and 4.3 ± 0.2 s, respectively (Figure 1E; n = 15 

cells, n = 8 mice). The finding that optically evoked inward currents could be measured in 

striatal MSNs and astrocytes, even though neither cell type expressed ChR2-YFP (Figures 

1A–1C), argues against photocurrents; the kinetics of the inward currents were also nearly 

three orders of magnitude slower than ChR2 activation and deactivation (Zhang et al., 2011). 

Additionally, the astrocyte responses argue against ionotropic glutamate receptor activation 

during corticostriatal axon stimulation (see later section) because such ion channels are 

unlikely to be expressed in striatal astrocytes (Chai et al., 2017). Moreover, the finding that 

the peak inward currents were larger in astrocytes than in MSNs suggests they may be due to 

elevation of K+. The astrocyte membrane has high resting K+ conductance and is thus 

sensitive to extracellular K+ increases.

We made K+ selective microelectrodes to directly measure K+ in the extracellular space of 

striatal slices before, during, and after optical stimulation in Thy1-ChR-YFP mice. The 

calibrated electrodes displayed the expected ~54 mV change for a 10-fold change in K+ 

(Figure 1F; mean of 4 electrodes shown). Furthermore, single 25 ms flashes at a range of 

powers (0–0.09 mW/mm2) elicited clear, transient extracellular K+ elevations in Thy1-

ChR2-YFP mice, but not in WT mice (Figure 1G; n = 14, n = 4 mice). Such transients 

peaked and decayed over seconds, as expected for release and subsequent washout of K+ in 

the extracellular space (Figure 1G). At power of 0.02 mW/mm2, 30 s trains of light flashes 

at 20 Hz elicited significant increases in extracellular K+ that were maintained for the 

duration of the stimulus, with rise and decay τ values of 2.1 ± 0.6 and 6.1 ± 0.5 s (Figure 

1H; Table 2). The kinetics of the K+ elevations were thus similar to the steady-state inward 

Octeau et al. Page 4

Cell Rep. Author manuscript; available in PMC 2019 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



currents recorded from MSNs and astrocytes (Figures 1D and 1E): the slightly slower time 

course measured with the electrodes may reflect sampling from the tip of the K+ electrode, 

whereas the MSN and astrocyte recordings sampled within the tissue. At peak, the 

extracellular K+ levels were elevated significantly to 7.2 ± 0.3 mM from a bath 

concentration of 4.5 mM (Figure 1H). Furthermore, the change in K+ evoked by a train of 

stimuli was not blocked by tetrodotoxin (TTX; 500 nM) or a combination of TTX, 

cyanquixaline (6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 μM), and D 2-Amino-5-

phosphonopentanoic acid (APV; 10 μM) to block APs and ionotropic glutamate receptors 

(Figure 1I; n = 14–23 slices, n = 4 mice). Similar, albeit as expected smaller, changes were 

measured when the flash duration was reduced to 2 ms (Figures S2A-S2D; n = 14–23 slices, 

n = 4 mice, 20 Hz). We also performed a set of experiments in the cortex to ascertain if the 

K+ elevations were a striatal specific effect. However, during optical stimulation, we 

measured slow-seconds time scale cortical pyramidal neuron depolarization (rise and decay 

0.3 ± 0.1 and 6.8 ± 0.7 s, respectively) and significant-seconds time scale elevations in 

extracellular K+ (8.7 ± 0.5 mM, with rise and decay 2.8 ± 0.2 and 9.1 ± 1.1 s, respectively) 

that were not blocked by TTX (Figures 1J and 1K; n = 16 slices, n = 4 mice). Responses 

were also observed with 2 ms flashes (Figures S2E and S2F; n = 12 slices, n = 4 mice).

Transient Extracellular K+ Elevations after AAV-Driven Expression of ChR2

Channelrhodopsin is frequently deployed using adeno-associated viruses (AAVs) for 

localized expression. We explored extracellular K+ changes following local expression of the 

commonly used ChR2 variant, ChR2(H134R), in the striatum. Intrastriatal hSynapsin1-

driven expression of ChR2(H134R)-YFP was robustly localized to NeuN positive neurons 

(Figures 2A and 2B), and optical stimulation with trains of increasing duration resulted in 

significant elevations of extracellular K+ to 8.8 ± 0.8 mM (Figure 2C; n = 16 slices, n = 4 

mice). The rise and decay τ values of these elevations were 3.2 ± 0.3 and 9.5 ± 1.4 s, 

respectively (Figures 2A–2C; n = 16 slices, n = 4 mice). Furthermore, the K+ elevations 

were not significantly affected by TTX (Figure 2D; p > 0.05, n = 11–12 slices, n = 4 mice), 

showing they were not due to AP firing. Next, we expressed ChR2(H134R)-mCherry in 

striatal astrocytes using AAV2/5 and the GfaABC1D promoter (Haustein et al., 2014; 

Shigetomi et al., 2013): as expected, we detected no colocalization with NeuN positive 

neurons but detected significant colocalization with S100β positive astrocytes (Figures 2E 

and 2F). Optical stimulation with trains of increasing duration resulted in significant 

elevation of extracellular K+ to 7.4 ± 0.2 mM (Figure 2G; n = 16 slices, n = 4 mice). The rise 

and decay τ values of such elevations were 3.0 ± 0.2 and 11.0 ± 1.4 s, respectively (Figures 

2E–2G; n = 16 slices, n = 4 mice). Responses were also observed with 2 ms flashes (Figures 

S2G and S2H; n = 16 slices, n = 4 mice). Astrocytes are proposed to regulate extracellular K
+ dynamics via Ba2+ sensitive Kir4.1 ion channels (Nwaobi et al., 2016). Ba2+ block (100 

μM) of Kir4.1 did not significantly alter the peak change in K+ evoked by ChR2(H134R) 

activation; however, suggesting a possible role for Kir4.1 in K+ clearance, Ba2+ significantly 

increased the rise and decay times of the extracellular K+ elevations (Figure 2H; n = 16 

slices, n = 4 mice). To explore the possibility that the ChR2-mediated extracellular K+ 

elevations may be due to brain slicing, we repeated the experiments following expression of 

ChR2(H134R) in cortical astrocytes in vivo (Figure 2I). We measured significant, albeit 

smaller, slow K+ elevations in the cortex in vivo of awake head-fixed mice (rise and decay 
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times of 0.5 ± 0.4 and 1.4 ± 0.7 s, respectively), but not in mice that received a control AAV 

(Figure 2J; n = 4 mice each). Finally, we compared the K+ elevations measured at room 

temperature and at more physiological temperatures (34°C): we found significant elevations 

at both temperatures and only subtle effects of temperature on the kinetics of extracellular K
+ (Table 1; Figure S4).

ChR2-Mediated Extracellular K+ Elevations Increased MSN Excitability in Brain Slices

The finding that ChR2(H134R) activation in astrocytes caused an increase in extracellular K
+ (~7.4 mM) comparable to that caused by neuronal ChR2 activation (~8.8 mM; Figures 2C 

and 2G) provided an opportunity to evaluate if such K+ fluxes were consequential for 

neuronal function. To this end, we expressed ChR2(H134R)-mCherry in adult striatal 

astrocytes using AAV2/5 and the GfaABC1D promoter (Haustein et al., 2014; Shigetomi et 

al., 2013). We confirmed in these specific experiments that ChR2(H134R)-mCherry was 

expressed in ~80% of striatal S100β positive astrocytes, but not in striatal NeuN positive 

neurons (Figures 3A and 3B; n = 12 sections, n = 4 mice). In this experimental approach, we 

identified and recorded from MSNs but optically stimulated ChR2(H134R)-mCherry 

expressing astrocytes nearby in the dorsolateral striatum. A single brief train of ten 2 ms 

flashes significantly and slowly depolarized MSNs by ~2 mV (Figure 3D; n = 14 MSNs, n = 

4 mice). A longer 30 s train of flashes depolarized MSNs by ~7 mV for the duration of the 

stimulation train (Figure 3D; n = 14 MSNs, n = 4 mice). The depolarization also peaked and 

decayed with seconds time scale kinetics similar to those observed for extracellular K+ 

elevations (Figures 2G and 3D). Some past studies have suggested that ChR2 stimulation of 

astrocytes evokes astrocyte glutamate release, which is proposed to be a gliotransmitter 

acting on neurons. However, we detected no change in excitatory postsynaptic potentials 

(EPSPs) arriving onto MSNs during optical stimulation of astrocytes, and of most relevance 

here, the change in MSN membrane potential was not affected by the bath application of 

CNQX and APV (10 μM), which completely blocked all EPSPs (Figure 3D). These data 

suggest that ChR2- mediated stimulation of striatal astrocytes depolarized MSNs 

significantly, likely by K+ elevations and not via glutamate release (Chai et al., 2017; see 

also Nedergaard and Verkhratsky, 2012 and Sloan and Barres, 2014). To explore neuronal 

consequences more carefully in the striatum, we applied slow ramps to determine the 

amount of current required to trigger APs in MSNs (rheobase) before, during, and after 

optical stimulation of ChR2-expressing astrocytes (Figure 3E). In all cases, we measured 

significant MSN membrane potential depolarization and a significant drop in the rheobase 

(Figure 3E; n = 14 MSNs, n = 4 mice). Furthermore, following in vivo stimulation of 

astrocytes expressing ChR2(H134R), we detected a significant increase in the expression of 

the immediate early gene, cFos, in 20% of DAPI-positive cells in the striatum (Figures 3F–

3H; n = 7 slices, n = 3 mice), which was significantly greater than that observed in mice 

expressing tdTomato in astrocytes (Figures 3G and 3H). Of the cells with elevated cFos 

expression following in vivo astrocyte optogenetic stimulation, ~35% were S100β positive 

astrocytes (Figures 3F and 3H), whereas ~18% were NeuN positive neurons (Figures 3G and 

3H). These data are consistent with the interpretation that optogenetic excitation of 

ChR2(H134R)-expressing astrocytes in vivo was sufficient to alter astrocyte and neuronal 

excitability, resulting in significantly elevated cFos expression in a proportion of the cells. 

During our experiments, we observed no overt change in open-field activity or general 
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behavior during optical stimulation of ChR2(H134R)-expressing astrocytes relative to 

control mice (Figure S3).

Computational Modeling: MSN Excitability Increase Recapitulated by K+ Elevation Alone

We adapted a MSN model (Mahon et al., 2000) (Figure 4A; Table 2), which comprised a 

single compartment representing a MSN soma and proximal dendrites, and eight active 

Hodgkin-Huxley (HH)-based models of variable membrane conductances. The modeled 

currents are persistent sodium (INap); slowly inactivating sodium (INas); transient sodium 

(INat); delayed rectifier potassium (IKDR); inwardly rectifying potassium (IKIR); persistent 

potassium (IKRP); fast inactivating A-type potassium (IKAf); slow inactivating A-type 

potassium (IKAs); and a lumped, non-specific ion leak current. We replaced the non-specific 

leak current with three Goldman-Hodgkin-Katz (GHK)-based specific ion leaks (Cl−, Na+, 

and K+). We used the model to explore how K+ concentration changes measured in the 

experiments reported in Figure 3 affect MSN excitability in silico. We adjusted the model’s 

parameters to replicate basal MSN spiking features (Mahon et al., 2000) (see STAR 

Methods). We then varied conductance and permeability parameters to constrain a 

population of MSN models to reproduce the observed ranges of resting membrane potential 

values and resting levels of excitability during light off and light on conditions. We required 

that each model reproduce these measures at both 4.5 and 7.5 mM extracellular K+ to be 

included in the population. By asking if models exist sensitive to K+ changes within 

experimentally observed ranges from Figures 1 and 2, we aimed to test if the modeled range 

of extracellular K+ was sufficient to explain the data. Current injection ramp protocols were 

replicated for each model instance using two extracellular K+ concentration parameters 

related to Figure 3 (i.e., 4.5 and 7.5 mM). A model instance comprised a unique set of ionic 

conductances and specific leak permeability parameters. Using a modified version of the 

parameter optimization via evolutionary algorithms approach (Rumbell et al., 2016) (see 

STAR Methods), we identified a population of model instances that reproduced the range of 

excitability features measured before and after optical stimulation of astrocytes expressing 

ChR2 (Figure 3) when the extracellular K+ increased from 4.5 to 7.5 mM K+ (Figure 4B), 

respectively. The resulting population of model instances recapitulates a range of excitability 

features measured empirically, which are modulated consistently in the same direction by 

extracellular K+ across all model instances, thus establishing extracellular K+ as an 

independent parametric change in the model sufficient to explain changes in MSN 

excitability observed during ChR2 excitation (Figure 4). We further optimized these models, 

constraining with specific spiking features from one of the experimental traces. One such 

outcome generated the waveforms depicted in Figure 4C, which closely recalls experimental 

data of Figure 3. To explore the full range of extracellular K+ concentrations, we 

incrementally varied K+ in the model used to generate Figure 4C. Increases in extracellular 

K+ depolarized MSNs and decreased rheobase in the model (Figure 4D). K+ above 9 mM 

caused seizure-like bursting activity in the MSN model; to generate plots in Figure 4D, we 

thus did not exceed 7.5 mM K+. Overall, this MSN model supports the hypothesis that 

extracellular K+ elevations are sufficient per se to reproduce the increased excitability 

changes measured during experiments in Figure 3 without the need to invoke additional 

factors.
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ChR2-Mediated Extracellular K+ Elevations Increased MSN Excitability In Vivo

Experiments reported in the preceding sections show that optical stimulation of ChR2-

expressing astrocytes causes extracellular K+ increases (Figure 2) and MSN depolarization 

(Figure 3D), as well as increased MSN excitability in brain slices (Figure 3E) and in silico 
(Figure 4). In order to determine whether such responses translated into increased MSN AP 

firing in vivo, we recorded MSN activity in awake behaving mice (Figure 5) using multisite 

silicon probes (Bakhurin et al., 2016). ChR2 was selectively expressed in striatal astrocytes 

using approaches described in the preceding sections. Silicon probes with an inbuilt light-

emitting diode (LED) were used for optical excitation and electrophysiological recording 

(Figure 5A) in awake behaving mice on a spherical treadmill. MSN APs were analyzed 

offline, sorted using established criteria (Bakhurin et al., 2016) and AP frequency assessed 

before, during, and after optical stimulation (Figure 5A). Post hoc, we verified in each 

mouse that AAV-driven ChR2 expression was overlapping anatomically with the site at 

which the silicon probes were placed for electrophysiological assessments (Figure 5B). As a 

control group, we used mice in which tdTomato was identically expressed in astrocytes: 

MSN APs from tdTomato and ChR2 groups were identified and recorded (Figure 5C). 

Figure 5D shows AP firing of 60—70 MSNs before, during, and after optical stimulation for 

the control tdTomato and the ChR2 groups. From the raster plots, it was clear that optical 

stimulation did not evoke alterations in MSN AP firing in the control group, but optical 

stimulation evoked clear increases in AP firing in the ChR2 group (Figure 5D; n = 5 mice in 

each group). These data are summarized as average firing over time (Figure 5E) or as 

histograms before, during, and after optical stimulation (Figure 5F). Together with the 

studies of extracellular K+ increases, MSN excitability, and computational modeling, these 

in vivo recordings strongly indicate that optical stimulation of ChR2-expressing astrocytes 

can cause significantly elevated MSN firing. Our brain slice data and modeling suggest that 

astrocyte ChR2-mediated K+ elevations are the underlying cause.

DISCUSSION

We show that transient extracellular K+ elevations accompany optogenetic excitation with 

two widely used variants of ChR2 (wild-type and H134R) in a common transgenic mouse 

model, following AAV-mediated delivery in brain slices and in vivo, regardless of whether 

the ChR2 is expressed in neurons or astrocytes. The simplest interpretation is that K+ flows 

down its electrochemical gradient through the ChR2 pore from the inside to the outside of 

cells. The ChR2 pore displays a K+ to Na+ relative permeability of ~0.4 (Lin et al., 2009; 

Nagel et al., 2003) and a minimal open pore diameter of ~6.2 Å (Richards and Dempski, 

2012). Thus, opening of the ChR2 pore carries inward Na+ current and outward K+ current 

under physiological conditions as determined by the respective ion equilibrium potentials 

relative to the cell’s membrane potential. Our data show that this outward K+ flux is 

significant and elevates K+ concentrations in the extracellular space to consequential levels 

during seconds-long optical stimulations usually employed in astrocyte studies.

Interestingly, our observations recall work at the neuromuscular junction where a slow 

endplate potential due to K+ release directly by nerve terminal APs was detected (Katz and 

Miledi, 1982). Several other papers have similarly documented K+ elevations during 
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neuronal activity (Heinemann et al., 1990; McCreery and Agnew, 1983; Walton and Chesler, 

1988). However, the K+ elevations we report are not due to K+ release during the AP 

because they occurred when APs were blocked and when ChR2 was expressed in astrocytes 

devoid of APs. Furthermore, although K+ is expected to flow through open endogenously 

expressed voltage-dependent K+ channels that open during ChR2-mediated depolarization, 

this cannot account for our observations: astrocytes have little if any rectification indicative 

of voltage-gated K+ conductance, and owing to their low membrane resistance and high 

resting ohmic K+ conductance, they rarely deviate from near the K+ equilibrium potential. In 

light of these considerations, we discuss the relevance of ChR2-mediated K+ fluxes in 

relation to the diverse uses of optogenetic excitation strategies, but with a focus on astrocyte 

studies.

A logical interpretation of our astrocyte studies is that optogenetic stimulation increased 

neuronal excitability via extracellular K+ elevations, which was recapitulated in a 

computational model. Our studies should not be overinterpreted, however, as indicating that 

we dismiss gliotransmission (Araque et al., 2014), but our studies highlight an important 

consideration with the use of ChR2 in these regards. It will be important to candidly 

consider if cellular and behavioral responses ascribed to ChR2-evoked gliotransmission onto 

neurons (reviewed by Bang et al., 2016) could instead reflect elevations of extracellular K+. 

Even subtle changes in K+ will change neuronal excitability directly (Hille, 2001) and 

indirectly by reducing glutamate clearance by electrogenic transporters (Barbour et al., 

1988; Szatkowski et al., 1990). This will lead to elevated ambient glutamate levels, which 

could conceivably be interpreted as glutamate gliotransmission. If so, the relevance of this 

phenomenon to circuits and behaviors may have been misinterpreted. Furthermore, strong 

excitation of astrocytes with ChR2 may change extracellular electric fields, which may 

affect neuronal ephaptic signaling (Jefferys, 1995). The use of optogenetic excitation 

approaches to study astrocytes, therefore, requires careful consideration not least because 

these cells are largely electrically silent (Kuffler, 1967). It is not immediately clear why 

artificially changing membrane potential is appropriate to explore astrocyte physiology, 

although such approaches are obviously meaningful for neurons.

Our goals in this study were not to identify a past behavioral study based on ChR2 and 

highlight it as being better explained by transient K+ elevations. Instead, we followed 

empirical observations that show K+ elevations occur, and we suggest this should be 

considered in the interpretation of future studies using ChR2, especially in astrocytes. We 

also did not perform detailed behavior analysis, but during our experiments, we observed no 

overt change in open-field activity or general behavior during optical stimulation of 

ChR2(H134R)-expressing striatal astrocytes relative to control mice. This is unsurprising 

because astrocytes do not have axonal projections and do not discriminate between D1 and 

D2 MSNs. Thus, we suggest that the elevation of K+ would not discriminate between D1 

and D2 MSNs, both of which exist within single astrocyte territories (Chai et al., 2017; 

Octeau et al., 2018a) and may drive compensatory signals in relation to simple behaviors. 

Instead, we interpret the in vivo data to show that elevated cFos responses most likely reflect 

neuronal firing caused by transient K+ elevations, a finding confirmed by recording neuronal 

activity in vivo.
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It is problematic to search for a specific striatal microcircuit-related behavior that may be 

caused by astrocyte-mediated K+ increases because unlike a neurotransmitter, K+ will affect 

the functions of all cells, not just neurons. Instead, we explored the effect of astrocyte ChR2-

mediated K+ elevations on the behavior of single neurons using modeling and experiments. 

These data strongly suggest that ChR2-mediated optical excitation of astrocytes can affect 

the excitability of neurons via K+ elevations. Since K+ is tightly regulated, even small 

changes are expected to affect neurons, astrocytes, microglia, and blood vessels 

(McDonough and Youn, 2017). For example, K+ is potently ictogenic at around 9 mM (de 

Curtis et al., 2018), has vasoconstrictor and vasodilator actions on brain vasculature 

(Girouard et al., 2010), contributes to neurological disease phenotypes (Nwaobi et al., 2016; 

Tong et al., 2014), and will synchronize neuronal activity (Jefferys, 1995). Subtle changes in 

K+ will depolarize neurons and alter the open and closed probabilities of the activation and 

inactivation gates of voltage-gated K+ and Na+ channels, which of course will alter AP 

properties through Hodgkin-Huxley outcomes (Hodgkin and Huxley, 1952). Such effects 

may explain why ChR2-mediated stimulation of astrocytes silenced neurons in the 

subthalamic nucleus in pioneering early studies (Gradinaru et al., 2009). Hence, long-term 

optogenetic stimulation in vivo may cause complex effects on cells in parallel with the 

effects desired by expression of ChR2 in specific cell types. K+ changes may also engage 

local circuits that modulate behavior through ionic or ephaptic mechanisms (Jefferys, 1995) 

in addition to the pathways targeted by ChR2 expression. These are relevant considerations 

with the use of optogenetic strategies in vivo and may predict the emergence of unrelated, 

possibly pathogenic, effects during use. Additional consequences of the larger and more 

compartmentalized intracellular Na+ fluxes also merit consideration. Perhaps, infrared 

induced electro-mechanical effects (Plaksin et al., 2018) may provide opportunities for 

remote neuronal excitation (Shapiro et al., 2012) without reliance on substantial ionic 

currents. In the case of astrocytes, new tools are clearly needed to remotely manipulate 

physiological levels of activity.

It would be egregiously misleading of us to suggest that transient K+ elevations markedly 

contribute to most optogenetic excitation studies. This is not our intention. More 

parsimoniously, we suggest that the impact of extracellular K+ dynamics will depend on the 

membrane properties of the neurons in question (e.g., their input resistance, levels of open K
+ channels, and rectification), as well as the activation and inactivation thresholds for 

voltage-gated ion channels. Local neuroanatomy will also be relevant, as this will determine 

how K+ elevations are dissipated in the extracellular milieu and will affect local electric 

fields. Overall, our insights echo caution by others emphasizing effects of light itself 

(Rungta et al., 2017) and the importance of depolarization block (Herman et al., 2014) and 

of circuit-related off-target effects in the case of silencing approaches (Otchy et al., 2015; 

Südhof, 2015). Admittedly, our work may have little relevance to the use of ChR2 in 

neuronal studies where optical stimuli are usually brief, but we suggest transient K+ 

increases are likely to be markedly consequential in astrocyte and behavioral studies when 

optical stimuli are typically prolonged. The impact of such changes may have been missed 

when independent electrophysiological evaluations were not employed to measure cellular 

level electrical changes and extracellular K+ levels. We suggest that cellular 

neurophysiology is necessary in parallel with in vivo studies in order to make adequate 
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interpretation of neural circuit and behavioral outcomes in studies employing ChR2 and 

other related optogenetic strategies.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for resources and reagents should be directed to and will be fulfilled by the Lead 

Contact, Baljit S. Khakh (bkhakh@mednet.ucla.edu). Adeno-associated viruses and 

plasmids are, or will, be made available on Addgene or through the University of 

Pennsylvania Vector Core.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal experiments were conducted in accordance with the National Institute of Health 

Guide for the Care and Use of Laboratory Animals and were approved by the Chancellor’s 

Animal Research Committee at the University of California Los Angeles. Mice were housed 

with food and water available ad libitum in a 12-hour light/dark environment. Mice were 

healthy with no abnormal behavioral phenotypes and were not involved in prior studies. For 

all experiments, mice were sacrificed during the light cycle. Both male and female mice 

were used for experiments (between 8–16 weeks of age).

METHODS DETAILS

Mouse lines—Most experiments were conducted on C57BL/6N mice (from Taconic) from 

an in-house colony. Heterozygous Thy1-ChR2-YFP mice were obtained from Jackson 

Laboratories (strain B6.Cg-Tg(Thy1-COP4/EYFP)9Gfng/J; stock #007615) and have been 

published by others (Arenkiel et al., 2007). Thy1-ChR2 mice were maintained as 

heterozygous × wt breeding pairs in an in-house colony. For all experiments, wt mice were 

C57BL/6N.

Plasmid and adeno-associated viruses (AAV)—All plasmid constructs were 

generated using standard molecular biology techniques and the In-Fusion HD Cloning Kit 

(Clontech). All constructs were sequenced before AAV generation. For all constructs, we 

modified plasmid pZac2.1 GfaABC1D Lck-GCaMP6f (Addgene plasmid # 52924). Briefly, 

we generated adeno-associated virus plasmids (AAV2/5) capable of expressing the selected 

cDNA using the following strategy. For the plasmid, GfaABC1D-ChR2(H134R)-mCherry, 

we removed Lck-GCaMP6f using Xho1 and Xba1 restriction enzymes and infused the 

ChR2-(H134R)-mCherry cDNA. The fully sequenced “pZac2.1” plasmids were sent to the 

Penn Vector Core, which used them to generate AAV serotype 2/5 for this construct yielding 

a concentration of ~1 × 1013 genome copies/ml (gc/ml). This construct has been deposited at 

Addgene in the Khakh lab repository, and the AAVs are available from the UPenn Vector 

Core Catalog.

In vivo microinjections of AAVs—Male and female P42-P56 C57BL/6N mice were 

used in all AAV experiments. Briefly, animals were deeply anesthetized using isoflurane 

(induction at 5%, maintenance at 1%−2.5% v/v). After induction of anesthesia, the mouse’s 

head was carefully placed into a stereotaxic frame and gently secured by blunt ear bars and 
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their nose was placed into an anesthesia system (David Kopf Instruments). Before the 

surgery, mice were administered 0.05 mL of buprenorphine (Buprenex, 0.1 mg/ml) 

subcutaneously. 10% povidone iodine and 70% ethanol were used to sterilize the incision 

site. Short (5–8 mm) skin incisions were made, followed by craniotomies ~2 mm in diameter 

using a small steel burr (Fine Science Tools) powered by a highspeed drill (K.1070; 

Foredom) directly above the site of the injection. Sterile saline was applied onto the skull to 

lessen heating caused by drilling. Viral injections were performed using a stereotaxic 

apparatus (David Kopf Instruments) which guided the placement of angled bevel glass 

pipettes (1B100 – 4; World Precision Instruments) into the appropriate brain region. Our 

stereotaxic coordinates (Axes: Anterior-Posterior / Medial-Lateral / Dorsal-Central; relative 

to Bregma) for AAV microinjection were as follows: dorsolateral striatum: +0.8 / +2.0 / −2.4 

and superficial motor cortex: −0.1 /+0.7 / −0.1. In this study, the following viruses and their 

titers were used: AAV2/5 GfaABC1D-ChR2(H134R)-mCherry (8.1 × 1012 gc/ml), AAV2/5 

hSynapsin1-ChR2(H134R)-YFP (2.9 × 1012 gc/ml, Lot# AV4319J, UNC GTC Vector Core). 

AAVs were injected by using a syringe pump at 200 nl/min (Pump11 PicoPlus Elite; 

Harvard Apparatus). The glass needles were left in place for at least 6 min and slowly 

removed over the course of 1 minute. The incisions were closed with single external 6 – 0 

nylon sutures. After surgery, animals recovered overnight in cages which were placed 

halfway on a low-voltage heating pad. As an analgesic, subcutaneous buprenorphine was 

given twice daily for 48 hours following surgery. In addition, trimethoprim/sulfadiazine diet 

(275 & 1,365 ppm, TD.06596, Teklad) was fed ad lib prophylactically for one week after 

surgery. Following AAV injection and recovery, the mice were sacrificed 22–28 days later 

for all experiments.

Acute brain slice preparation and single cell recordings—Acute brain slices were 

prepared from P42–70 wt, Thy1-ChR2 mice or AAV microinjected mice. Briefly, animals 

were deeply anesthetized and decapitated. The brains were placed in ice-cold modified 

artificial CSF (aCSF, containing in mM: 194 sucrose, 30 NaCl, 4.5 KCl, 1 MgCl2, 26 

NaHCO3, 1.2 NaH2PO4, and 10 D-glucose) and cut into 300 μm-thick coronal or 

parasagittal slices containing areas of the striatum and cortex. Brain slices equilibrated for 

~30 min at 32–34°C in normal aCSF (containing in mM; 124 NaCl, 4.5 KCl, 2 CaCl2, 1 

MgCl2, 26 NaHCO3, 1.2 NaH2PO4, and 10 D-glucose) which was continuously bubbled 

with a mixture of 95% O2/5% CO2, stored at room temperature in the same buffer. All slices 

were used for experiments within ~6 hr of animal death. Cells were visualized using IR-DIC 

optics on an upright microscope (BX61WI, Olympus). pCLAMP10 software and a 

MultiClamp 700B amplifier and Digidata 1322A was used for electrophysiology (Axon 

Instruments). For all recordings we used normal aCSF at 20–25°C. For patch recordings, the 

intracellular solution contained the following (in mM): 135 potassium gluconate, 3 KCl, 0.1 

CaCl2, 10 HEPES, 1 EGTA, 8 Na2-phosphocreatine, 4 Mg-ATP, 0.3 Na2-GTP, pH 7.3 

adjusted with KOH. The initial access resistances were < 20 MΩ for all cells; if this changed 

by > 20% the cell was discarded.

Recording K+ ion dynamics in slices and in vivo—To record slice K+ dynamics, we 

made K+ selective microelectrodes (Octeau et al., 2018b). Briefly, borosilicate glass 

capillaries were pulled to a fine tip of ~2–5 μm and then baked at ~200°C in the presence of 
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5% dichlorodimethylsilane for 1 hour up to overnight to enhance the hydrophobicity of the 

glass by silanization. The silanized capillaries were then allowed to cool to room 

temperature and then broken to a diameter of approximately 15 μm using a blunt instrument. 

The capillaries were then backfilled with a solution containing 300 mM NaCl and 10mM 

HEPES, pH 7.4. The microelectrode tip was then immersed in a small volume (~1 μl) of 

potassium ionophore cocktail (5% w/v valinomycin, 93% v/v 1,2-dimethyl-3-nitrobenzene, 

2% w/v potassium tetrakis(4-chlorophenyl)borate) and this solution was drawn 

approximately 1 mm into the tip by capillary action. The primed microelectrode was then 

fixed into an electrode holder on the connected to an amplifier and digitizer which 

transmitted voltage responses to a PC recording the responses in pCLAMP10. The voltage 

responsiveness of all microelectrodes were calibrated with solutions of aCSF which had 

various concentrations (in mM 0.1, 1.0, 10 and 100) of KCl, for these solutions iso-osmolar 

quantities of NaCl were subtracted to maintain total solution osmolarity at ~310 mOsm. The 

K+-selective microelectrodes were then slowly inserted into prepared brain slices which 

were superfused with 4.5 mM K+ aCSF and the voltage responses to blue LED flashes were 

measured. For in vivo measurement of K+ ion dynamics mice were prepared with a cranial 

bar fixed to the skull to maintain brain position. Mice were anesthetized with isoflurane (3%

−5% induction, 1.5% maintenance) ten minutes after injection of a systemic analgesic 

(carprofen, 5 mg per kg of body weight) and placed in a stereotaxic frame. During surgery, 

mice were always kept at 37°C using a feedback-controlled heating pad. Pressure points and 

incision sites were injected with lidocaine (2%), and eyes were protected from desiccation 

using artificial tear ointment. The skin above the skull was cut and a custom-made 

lightweight metal head holder was implanted on the skull using Vetbond (3M) and a 

recording chamber was built using dental cement (Ortho-Jet, Lang). Access to the brain was 

closed using a thin layer (~2 mm) fast drying silicone elastomer (Kwik-sil, WPI) and a top 

layer of dental cement. Mice had a recovery period from surgery of five days, during which 

they were administered amoxicillin (0.25 mg per ml in drinking water through the water 

supply). After the recovery period, mice were habituated to head fixation on the spherical 

treadmill. 20–25 days following viral injection mice were placed onto the spherical treadmill 

and maintained in a head fixed position using a metal arm to grip the head holder attached to 

the mouse’s skull. Following head restriction, the dental cement and silicone covering was 

removed and ACSF was applied to the surface of the brain to prevent tissue drying. To 

assess potassium ion changes a K+ selective microelectrode was prepared, calibrated and 

then lowered ~50 microns perpendicularly into the cortical surface. Electrode potentials 

were allowed to stabilize over the course of 8–10 minutes before recording. Light flashes 

from a LED-Blue optogenetics light source were delivered via a fiber which was controlled 

remotely using a TTL pulse from Pulser software version 2.3.1 (Prizmatix, Israel). Electrode 

responses were captured and recorded using an Axopatch 700B amplifier connected via a 

digitizer to a computer with pCLAMP9 software. After completion of the experiments, the 

mice were euthanized by pentobarbital injection and immunostaining was performed on the 

brains to confirm viral expression.

In vivo ChR2 activation and behavioral assessment—To deliver blue light to the 

striatum we constructed a fiber optic cannula using a DIY-cannula kit (Prizmatix). The fiber 

optic was cleaved into the desired length, which was approximately 10 mm. A small, ~1 μL 
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droplet of epoxy resin was applied to the flat opening of a 6.5 mm long cannula. The fiber 

was then inserted through the epoxy bead into the cannula until it protruded approximately 1 

mm from the opposite end of the cannula. Using a heat gun, we then cured the epoxy resin 

and secured the fiber in place. When the epoxy cooled, the fiber on the convex end of 

cannula was made transparent using polishing paper of increasing grits; from 4500 to 60000 

final grit strength. Cannulated fibers were tested for their integrity and maximum light 

output (≥8 mW) before being used for the implantation. To implant the cannulated fiber 

optic, mice were first anesthetized with isoflurane (induction at 5%, maintenance at 1%

−3%). The scalp was shaved and animals were gently fitted into a stereotaxic frame with 

their heads secured by ear bars. Ophthalmic ointment was applied to eyes to prevent dryness 

and postoperative discomfort. The surgical area was sterilized thrice with 10% povidone 

iodine and 70% isopropanol. A skin incision was made on top of the head and the 

periosteum was removed by swiping with a cotton swap wetted with 3% hydrogen peroxide. 

A mark was made on the skull at coordinates above the dorsolateral striatum using the 

stereotactic apparatus. At this mark, a small opening (~1 mm in diameter) was drilled using 

small steel burr powered by high speed drill; during which saline was applied to the skull to 

diffuse heating and remove bone debris. Afterward, 1 μL of AAV was injected at 200 nl/min 

(dorsolateral striatum coordinates relative to bregma: in mm +0.8/+1.8/−2.4). The needle 

was kept in place for 10 minutes and slowly removed over a 5 minute period. Subsequently, 

the cannulated fiber optic was slowly lowered into the striatum and secured in place using 

Vetbond tissue adhesive (3M Maplewood, MN) and dental cement. Three weeks after the 

surgery the mouse was connected to optical stimulation system (Prizmatix). The optical 

cannula was connected to the patch cord through the mating sleeve (Prizmatix). Blue light 

pulses were applied in a stimulation paradigm consisting of 10 s light on and 10 s light off 

for a period of 60 min. During this period the mouse behavior in an opaque open chamber (L 

× W × H in cm: 29 × 29 × 15) was recorded using a camera placed above the field. 

Locomotion was tracked by ANY-maze software (Stoelting Co.) and the tracking accuracy 

was verified by the investigator.

Immunohistochemistry (IHC)—Prior to transcardial perfusion, mice were euthanized 

with 200 mg/kg pentobarbitol (i.p.). Once reflexes were lost, the abdominal cavity was 

opened and heparin (0.1 ml, 100 USP) was injected into the heart to avert blood clotting. 

Mice were perfused with ~50 mL of 0.1 M phosphate buffered saline (PBS) followed by ~50 

mL 10% buffered formalin (Fisher Scientific). After careful removal from the skull, the 

brain was post fixed in 10% buffered formalin overnight. The tissue was cryoprotected (0.1 

M phosphate buffered saline with 30% sucrose) the following day for at least 2 days at 4°C 

until use. 40 μm sections were sectioned using a cryostat (Leica) and processed for 

immunohistochemistry. Sections were washed 4 times in 0.1 M PBS for 5 min each, and 

then incubated in a blocking solution comprising 5% NGS in 0.1 M PBS with 0.2% Triton 

X-100 for 1 hr at room temperature with gentle rocking. Sections were then incubated in 

primary antibodies diluted in ‘blocking solution overnight at 4°C. The following primary 

antibodies were used: chicken anti-GFP (1:1000; Abcam Cat# ab13970 RRID:AB_300798), 

rabbit anti-NeuN (1:1000; Cell Signaling; RRID: AB_2630395), rabbit anti S100β (1:2000, 

Abcam Cat# ab41548 RRID:AB_956280), guinea pig anti-cFOS (1:500, Synaptic systems 

#226004 RRID:AB_2619946), rabbit anti-dsRed (1:1000, Clontech Laboratories Cat# 
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632496 RRID:AB_10013483), mouse anti-mCherry (1:1000, St. John’s Cat# STJ97087), 

guinea pig anti-NeuN (1:500; Synaptic Systems Cat # 266 004; RRID:AB_2619988), mouse 

anti-neurofilament (1:250, BioLegend Cat# SMI-312R, RRID:AB_2314906). The next day 

the sections were washed 4 times in 0.1 M PBS for 5 min each before incubation at room 

temperature for 1–2 hr with secondary antibodies diluted in 0.1 M PBS with 5% NGS and 

0.2% Triton X-100. The following Alexa conjugated secondary antibodies were used: goat 

anti-guinea pig 488 (1:1000, Molecular Probes Cat# A-11073 RRID:AB_142018), goat anti-

rabbit 546 (1:1000, Molecular Probes Cat# A-11035 RRID:AB_143051), goat anti-chicken 

488 (1:1000, Molecular Probes Cat# A-11039 RRID:AB_142924), goat anti-guinea pig 546 

(1:1000, Thermo Fisher Scientific Cat# A-11074 RRID:AB_2534118) and goat anti-mouse 

546 (1:1000, Molecular Probes Cat# A-11030 RRID:AB_144695). The sections were then 

rinsed 4 times in 0.1 M PBS for 5 min each, and briefly dipped in distilled water before 

being dried, mounted and coverslipped on microscope slides. Fluorescence images were 

taken using UPlanSApo 20X 0.85 NA and UPlanFL 40X 1.30 NA oil immersion objective 

lens and FV1000 Fluoview confocal laser-scanning microscope. We used the 488 nm 

emission wavelength of an Argon laser to excite Alexa488, with the intensity adjusted to 

0.5%−10% of the maximum output, which was 10 mW. The sample emission light path 

consisted of a band-pass emission filter (505–525 nm) before the photomultiplier tube. 

Alexa 546 was excited by the 543 nm wavelength of a Helium-neon laser at 2%−30% of the 

maximum output (1 mW). The emitted light pathway consisted of a dichroic mirror 

(SDM560) and a 560–600 nm band-pass filter. For imaging Alexa 647, we used a 635 nm 

light emitting diode (LD635, Olympus) at 0.1%−15% of its power output which was 23 mW. 

The emitted light pathway consisted of a dichroic mirror (SDM640) and a 655–755 band-

pass filter. For fluorescence images of brain hemisections, individual images were acquired 

using identical settings and stitched together to show a single composite image of the tissue 

section.

Computational model of MSNs—The computational model of the medium spiny 

neuron (MSN) was refined from a past study (Mahon et al., 2000), but is reported in full 

here. The model comprises a single compartment, representing a MSN soma and proximal 

dendrites, and eight active Hodgkin-Huxley (HH) based models of variable membrane 

conductances associated with MSN ion channel currents. The eight modeled currents are the 

persistent sodium current (INap), the slowly inactivating sodium current (INas), the transient 

sodium current (INat) the delayed rectifier potassium current (IKDR), the inward rectifying 

potassium current (IKIR), the persistent potassium current (IKRP), the fast inactivating A-

current (IKAf), the slow inactivating A-current (IKAs), and a lumped, non-specific ion leak 

current.

The model is computationally inexpensive compared to multicompartment models (Wolf et 

al., 2005), and in its original form captured MSN spike timing dynamics such as 

characteristic latency to first spike and short-term facilitation of intrinsic excitability. A 

major drawback of the original model is its assumption of different reversal potentials (EK or 

ENa) among ion channels selective for the same ion species, rendering it biophysically 

unrealistic, because these channels likely share the same intracellular and extracellular ion 

concentrations. To resolve this discrepancy, we replaced the model’s non-specific leak 

Octeau et al. Page 15

Cell Rep. Author manuscript; available in PMC 2019 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



current with specific leak currents for potassium, sodium and chloride, each based on the 

Goldman-Hodgkin-Katz (GHK) equation:

Φs = Pszs
2VmF2

RT

Si − So exp −zsVmF /RT

1 − exp −zsVmF /RT
,

where ϕs is the current density (flux) (amperes per unit area) of ion S, Ps is the permeability 

of ion S (μm/ms), [S]i is the intracellular concentration of ion S (mM), [S]o is the 

extracellular concentration of ion S (mM), and Vm is the membrane potential (mV). Reversal 

potentials for each ion species are then calculated once for all currents using the Nernst 

equation:

Es = RT
ZF ln

So
Si

,

where R is the universal gas constant 8.314 J⋅K−1⋅mol−1, T is the temperature 295.15 K, z is 

the valence of the ionic species, and F is the Faraday’s constant 96,485 C⋅mol-1. We set 

external and internal ion concentrations to those used for the experiments reported in 

preceding sections. The calculation of MSN membrane potential in our revised model then 

follows:

C dV
dt = INaT + IKDR + IKIR + IKRP + IKA f + IKAs + INaS + INaP + ICl, leak + INa, leak + IK, leak

+ IIn j,

where V is the membrane potential. Ion channel currents followed I = gmkh(V − E), where 

each g is the conductance of an ion channel current (noted by subscript). IInj is an injected 

current. IX is either the specific leak current for each ion species or the ion channel current. 

Specific leak current is derived by multiplying current density (Φs) from Equation 1 by the 

compartment surface area (assumed to be 1 μm2). Ion channel currents are derived by 

multiplying channel conductance (gX) by membrane potential minus the ion specific reversal 

potential (V − EX) by compartment surface area. The activation m and optional inactivation 

h gating variables were as reported in Mahon et al. (2000) followed:

dp
dt = αp(1 − p) − βpp,

where p represents (m, h, n). For channel Nat and KDR, the gating parameters were as 

follows:

αm = − 0.1(V + 28)/exp(( − 0.1(V + 28)) − 1)
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βm = 4.0exp( − (V + 53)/18)

αh = 0.07exp( − (V + 51)/20)

βh = 1/(exp( − 0.1(V + 21) + 1)

αn = − 0.01(V + 27)/exp(( − 0.1(V + 27)) − 1)

βn = 0.125exp( − (V + 37)/80)

All other currents obeyed the Boltzmann equation for steady state activation

s∞(V) = 1/ 1 + exp − V − Vs /ks

and the voltage dependent time constants followed

τ(V) =
τ0

exp
−(V − Vτ kτ) + exp

(V − Vτ kτ)

except for the time constant of IAs and IKRP. The inactivation for these currents, followed

τhAs(V) = 1790 + 2930exp −(V + 38.2)
282

V + 38.2
28

and

tKRP(V) = 3 ∗ thAs(V)

For numerical integration, we chose a time step of 0.01 ms. The datasets used for the model 

were archival at the time they were shared with researchers from IBM, and no new 

experiments were suggested, designed, or performed based on these models and analyses. 

All simulations were performed using the IBM Neural Tissue Simulator (NTS) (Kozloski 

and Wagner, 2011) on IBM Cloud. NTS executes simulations based on model descriptions 

(written in the Model Description Language) and resource allocation scripts (written in the 

Graph Specification Language), both of which are available in Supplemental Information. 
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The software is experimental, and readers are therefore encouraged to contact the IBM 

authors if interested in using the tool.

We employed an optimization technique to search parameter space of this model. Each 

optimization targeted features extracted from measures taken during experiments under 

differing conditions as reported in Figure 3. Specifically, we optimized the single neuron 

model to reproduce both the Light off and Light on experimental conditions. By first setting 

the extracellular K+ concentrations to 4.5 mM and 7.5 mM, respectively for each condition, 

we guided automatic changes to model conductance parameters toward models that 

replicated both experimental measurements and conditions simultaneously. The 

optimizations accessed and varied 11 parameters, the maximal conductances gNaT, gNaP, 

gNaS, gKDR, gKRP, gKIR, gKA f , gKAs and GHK based permeability coefficients PCl, leak, 

PNa, leak and PK, leak.

The optimization employed the non-dominated sorting (NS) differential evolution (DE) 

algorithm (NSDE) (Deb et al., 2002; Price et al., 2005), previously used to search parameter 

space of compartmental neuron models in Rumbell et al. (2016). To run the algorithm, we 

used a modified version of the BluePyOpt (Van Geit et al., 2016) python framework for 

single neuron optimization. Each parameter set was simulated for 5 s. Trial-and-error was 

used to assess optimization metaparameters such as population size and number of 

generations. A single optimization of ~500 generations of a population of ~100 models took 

approximately ~12 hours of computing time on an X86_64 Intel architecture (2 Ghz, 64 bit, 

56 cores, 128 Gb of RAM). The neuron model error score for each target feature was 

calculated by extracting feature measures and subtracting them from the exact target values 

based on empirical measures and dividing the absolute value of this quantity by a deviation 

variable based on variability of the experimental measures. Dominance ranking according to 

the NS algorithm was used as the first criterion for model selection, and total error was used 

to sort models within dominance ranks. We ran three optimizations, first to validate the 

modified version of the model with specific ion leaks to reproduce MSN model spiking 

features as in the original implementation (Mahon et al., 2000). All of the relevant features 

targeted and parameters thus obtained are reported in Tables S1-S5. A second optimization 

to find a population of parameter sets that reproduced the range of empirically observed 

excitability measures with Light off and on conditions by the two extracellular K+ 

conditions, and third to target several spiking features from one neuron recording to produce 

a more detailed characterization of MSN firing, sufficiently accurate to allow interpolation 

of excitability measures when tested with various extracellular K+ values. We targeted 4 

features for the second optimization: empirical measurements of resting membrane potential 

(RMP) and rheobase (Rh) in both light on and light off conditions, modeled here as 4.5 mM 

K+ and 7.5 mM K+ respectively. Target feature values were chosen as (target value ± 

deviation) 70.0 ± 4.0 (RMP, 4.5 mM K+), 60.4 ± 4.0 (RMP, 7.5 mM K+), 310.23 ± 10.0 pA 

(Rh, 4.5 mM K+), and 200.89 ± 8.10 pA, to approximate the variability around the empirical 

median of these features. These models were also constrained by change in initial RMP 

voltage variability ~0. For this optimization, the NSDE algorithm (Deb et al., 2002; Price et 

al., 2005) used in Rumbell et al. (2016) was modified by subtracting 2.0 from the calculated 

error score for each feature, rounding up to 0.0. This ensured that any feature values 
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calculated from models that lie within two standard deviations of the mean would be 

considered equally acceptable as a potential model of an empirical observation. As this 

meant that any models with all 4 feature values within 2 standard deviations of the target 

mean would have a total error score of 0.0, we used a crowdedness function to sort models 

with equal total error score, calculated as Euclidean distance to the nearest neighbor in 

feature space. This additional selection criterion encouraged the algorithm to find models 

filling the range of acceptable features within 2 standard deviations of the target mean. We 

ran this optimization for 1000 generations with population size 110, simulating 110,000 

unique parameter sets, among which 1119 acceptable models with total error score of 0.0 

were identified. From among these, 20 were selected randomly and their resulting feature 

values displayed in Figure 4B. For the third optimization, we chose 14 features to optimize 

in the models, which characterized measurements of neuron properties (Figure 4) such as 

Rheobase, resting membrane potential, inter-spike interval distributions, action potential 

shape. Here the target feature values were precise and extracted from one empirical 

recording, and the ‘standard deviations’ used here was selected as 5% of the target feature 

value for each feature, except RMP where smaller ‘standard deviation’ values ~0.1 were 

used, to prevent the optimization from entering local minima (Tables S1-S5). As this 

optimization targeted one particular voltage trace, the above method for reducing errors to 

0.0 within 2 standard deviations was not used. We ran this optimization for 5000 generations 

with a population size of 220, testing 1,100,000 unique parameter sets, at which point we 

terminated the optimization and selected the best fitting member of the population to 

demonstrate the voltage traces shown in Figure 4C. This model was then simulated in 

conditions with extracellular K+ between 4.5 and 7.5 mM in increments of 0.5mM, 

demonstrating reliability of the change in excitability produced by this modulation (Figure 

4D).

In vivo multi-unit recordings of neuronal activity—Three weeks following AAV 

microinjection in the dorsolateral striatum, adult 9 week old male C57Bl6N mice were 

anesthetized with isoflurane (3%−5% induction, 1.5% maintenance). Ten minutes after 

injection of a systemic analgesic (carprofen, 5 mg per kg of body weight) mice were placed 

in a stereotaxic frame. Mice were maintained at 37°C at all times using a feedback-

controlled heating pad. Pressure points and incision sites were injected with lidocaine (2%), 

and eyes were protected from desiccation using artificial tear ointment. The skin above the 

skull was incised, a custom-made lightweight metal head holder was implanted on the skull 

using Vetbond (3M) and a recording chamber was built using dental cement (Ortho-Jet, 

Lang). Mice had a recovery period from surgery of five days, during which they were 

administered amoxicillin (0.25 mg per ml in drinking water through the water supply). After 

the recovery period, mice were habituated to head fixation on the spherical treadmill. On the 

day of the recording, mice were anesthetized with isoflurane. To fix the ground wire, a small 

craniotomy (0.5 mm diameter) was made above the right cerebellum and a silver wire was 

implanted at the surface of the craniotomy and fixed with dental cement. A circular 

craniotomy 1 mm in diameter was made at a location above the dorsolateral striatum and the 

mice was allowed to recover from anesthesia. The recording chamber was filled with cortical 

buffer containing (in mM) 135 NaCl, 5 KCl, 1.8 CaCl2 and 1 MgCl2. The head-bar was 
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fixed to a post and the mouse was placed on the spherical treadmill consisting of a ball 

floating on small cushion of air allowing for 2D movement.

All recordings were performed at least two hours after the end of anesthesia, when the 

mouse was alert and could actively behave. A 128-channel silicon nanoprobe was lowered 

into the brain (Shobe et al., 2015). Each nanoprobe had 2 shanks with 64 electrodes on each 

shank. Each shank was 1.05 mm long and 86 μm at its widest point and tapered to a tip. 

Each prong was separated by 400 μm. A multiplexed analog output signal was sent from the 

head stage (Intan Technologies, RHA-2164B) of each probe via thin flexible cables to a 16-

bit analog to digital conversion cards (USB-6356, National Instruments), which sampled 

each signal at a rate of 25 kHz per channel. Signals were then filtered offline and a 

background signal subtraction was performed. Unit clustering was performed using JRClust 

(Jun et al., 2017), a fully-automated method for clustering units based on unit spike 

properties across multiple channels. We only included high-quality units (Butterworth filter 

300–6000 Hz, spikes count > 1000, SNR > 7.0). We performed firing rate analysis in 

MATLAB; we averaged each unit firing rates across 5 trials with 5 s activity bins. For each 

experimental condition a raster graph was plotted by combining all spike times from 5 trials 

for each unit and down sampling in 5:1 ratio.

General reagents—All general chemicals used were from Cayman Chemical, Tocris, 

Thermo-Fisher or Sigma. Other specific reagents and kits are listed in the methods.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data from every experiment represents a minimum of n animals with a balanced number of 

male and female mice. In all the experiments, n was ≥ 4 mice; sample sizes were not 

calculated a priori. For AAV injections, mice were randomly assigned to each experimental 

group. No experimental data points were excluded. Statistical tests were run in OriginPro 

2015. Summary data are presented as mean ± SEM. Note that in some of the graphs, the bars 

representing the s.e.m. are smaller than the symbols used to represent the mean. For every 

dataset, we determined within Origin whether the data were normally distributed or not 

using the Shapiro-Wilk test. For tests of statistical significance, we used parametric tests for 

normally distributed data and non-parametric tests for data that was not normally distributed. 

Paired and unpaired Student’s two-tailed t tests (as appropriate) and two tailed Mann-

Whitney or Wilcoxon paired sign tests were used for most statistical analyses with 

significance declared at P < 0.05. When a statistical test was employed that was not a 

Student’s t test or a Mann-Whitney test for a specific case, then it is stated as such in the 

text. Specific P values are stated in the figures, however, when the P value was less than 

0.001, it is stated as p < 10−3 to save space on the figure panels and text. However, where 

appropriate key statistics are also reported in the text. If the P value was greater than 0.05, 

then it is stated as p > 0.05. The sample size, n, is defined as the number of cells, numbers of 

slices, fields-of-view or numbers of mice depending on the experiment on a case-by-case 

basis.
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DATA AND SOFTWARE AVAILABILITY

The AAV expression vector for ChR2(H134R)-mCherry using the GfaABC1D promoter will 

be available from Addgene (#112496). Data analyses and software guidance is available 

upon request. The MSN model is available from James R. Kozlozki at IBM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Multiple approaches reveal transient K+ elevations during ChR2 excitation

• ChR2-mediated K+ elevations increase neuronal excitability and cFos 

expression

• Neuronal effects of K+ are recapitulated with a model and in vivo

• Increased K+ may contribute to astrocyte experiments employing ChR2 in 
vivo
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Figure 1. Optical Stimulation of ChR2-Expressing Cells Evokes Transient Elevation of 
Extracellular K+

(A) Representative image showing brain distribution of channelrhodopsin2 (ChR2-YFP; 

green) in a Thy1-ChR2-YFP mouse brain section together with neurofilament (Nflm, red). 

The inset shows strong colocalization of ChR2 and NeuN positive neurons in cortex.

(B) The images show colocalization of ChR2 with Nflm positive axonal tracts in the 

striatum, but not with NeuN or S100β positive neurons and astrocytes.

(C) Pearson’s colocalization correlation coefficient (r) for images such as those shown in 

(B).
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(D) Left: schematic depicting patch-clamp of medium spiny neurons (MSNs) in the striatum. 

Middle: representative current waveforms from MSNs in Thy1-ChR2-YFP or WT mice in 

response to a train of flashes to stimulate corticostriatal axons. Right: peak amplitude of the 

first EPSC upon blue light flashes.

(E) Left: schematic depicting patch-clamp of astrocytes in the striatum. Middle: 

representative current waveforms from striatal astrocytes in Thy1-ChR2-YFP or WT mice in 

response to a train of flashes. Right: quantification of the steady-state inward current (Iss) 

from MSNs and astrocytes in the striatum from WT or Thy1-ChR2-YFP mice.

(F) Left: schematic depicting the experimental setup for recording of K+ dynamics in brain 

slices with blue light activation ofChR2. Right: graph plots the response of the K+ electrode 

to various K+ concentrations in the extracellular fluid.

(G) Left: waveforms of changes in K+ concentration in response to a single flash of various 

light intensities. Right: quantification of the peak amplitude of K+ in WT and Thy1-ChR2-

YFP mice in response to single flashes of various light intensities.

(H) Left: waveform depicting changes in K+ in response to different numbers of flashes in 

Thy1-ChR2 and WT mice. Right: quantification of the peak amplitude of the K+ elevation in 

WT and Thy1-ChR2-YFP mice in response to different numbers of flashes.

(I) Left: waveform depicting K+ responses in the striatum with TTX or TTX, CNQX, and 

APV. Right: average data for experiments in the left panel.

(J) Left: schematic depicting patch-clamp of pyramidal neurons in the cortex. Middle: 

representative voltage waveform in cortical pyramidal cells from WT or Thy1-ChR2 mice 

with light flashes. Right: quantification of the number of action potentials.

(K) Left: quantification of the peak K+ concentration in the cortex. Middle: representative 

waveform of K+ concentrations in the cortex. Right: average data from the experiment 

depicted in the left panel. Data shown as mean ± SEM. In some cases, the error bars are 

smaller than the symbol used to represent the mean. See also Figures S1—S3.
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Figure 2. Transient Extracellular K+ Increases Occur Following AAV-Driven Expression of 
ChR2
(A) AAV vector for neuron-specific expression of ChR2(H134R).

(B) Left: representative image of the dorsolateral striatum showing the colocalization of 

hSyn-ChR2(H134R)-YFP (red) and NeuN (green). Right: representative image of hSyn-

ChR2(H134R)-YFP (red) and S100β (green).

(C) Left: waveforms depicting striatal K+ elevations in mice expressing the hSyn-ChR2. 

Right: average data for hSyn-ChR2(H134R)-YFP K+ elevations.

(D) Left: waveforms of K+ elevations with and without TTX. Right: quantification of 

various properties of the responses shown in the left panel.

(E) AAV vector for astrocyte-specific expression of ChR2(H134R).
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(F) Left: representative image showing the distribution of GfaABC1D-ChR2 showing 

overlap with S100β (green). Right: representative image of the dorsolateral striatum 

showing colocalization of GfaABC1D-ChR2 (red) and NeuN (green).

(G) Left: waveforms of K+ elevations in mice expressing the GfaABC1D-ChR2. Right: 

average data for the experiment in the left panel.

(H) Left: waveform of K+ elevations with and without Ba2+ applied to the slice. Right: 

quantification of various properties of the responses in the left panel.

(I) Representative images from animals expressing ChR2(H134R) in cortical astrocytes, 

showing overlap with S100β in green.

(J) Left: schematic depicting the experimental setup for in vivo monitoring of K+ 

concentrations. Middle: waveforms of K+ concentration changes in the cortex from in vivo 
recordings. Right: average peak K+ concentration in the in vivo recordings. The LED power 

was 0.33 mW/mm2. Data shown as mean ± SEM. In some cases, the error bars are smaller 

than the symbol used to represent the mean.

See also Figures S2 and S4.
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Figure 3. ChR2-Mediated Extracellular K+ Increased Neuronal Excitability
(A) Left: representative image of a striatal section from mice expressing GfaABC1D-

ChR2(H134R) (red), showing overlap with S100β (green). Right: fraction of S100β positive 

cells expressing GfaABC1D-ChR2(H134R) in the dorsolateral striatum.

(B) Left: representative image from mice expressing GfaABC1D-ChR2(H134R) (red), 

showing no overlap with NeuN (green). Right: fraction of NeuN positive cells expressing 

GfaABC1D-ChR2(H134R) in the dorsolateral striatum.
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(C) Left: schematic depicting patch-clamp of medium spiny neurons (MSNs) in the striatum 

near astrocytes expressing ChR2(H134R). Right: waveform of membrane potential changes 

of a MSN to a series of stepwise current injections.

(D) Left: traces of membrane potential changes from MSNs in response to a train of 10 

flashes with and without glutamate antagonists in mice expressing GfaABC1D-ChR2. Traces 

for 30 s of flashes with and without glutamate antagonists are also shown. Right: average 

data from experiments shown with the traces.

(E) Left: waveforms of membrane potential responses of a MSN to a ramp current injection 

with and without blue light. Inset: highlighted region showing rheobase shift. The scatter 

graphs show average data for rheobase and membrane potential.

(F) Left: representative images showing overlap between cFos (upper left inset, white) and 

S100β (lower left inset, red) from animals in which ChR2 was expressed in astrocytes and 

activated with blue light. Right: as in left panels, but for NeuN (green) instead of S100β.

(G) As in (F), but for control experiments expressing tdTomato instead of ChR2.

(H) Summary plots of cFos expression following optical stimulation of astrocytes expressing 

ChR2 in relation to control experiments where astrocytes expressed tdTomato. For the 

experiments in (F)-(H), the stimulation conditions were 0.05 Hz (10 s on and 10 s off for 1 

hr). The power was ~3.5 mW from the tip of the cannula before implantation. Data shown as 

mean ± SEM. In some cases, the error bars are smaller than the symbol used to represent the 

mean.

See also Figures S3 and S4.
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Figure 4. Computational Modeling of K+ Effects In Silico
(A) Diagrammatic representation of the circuit model of a MSN with the indicated active 

conductances and ion-specific leak currents. Key values used in the model are listed in Table 

1: kinetic parameters were unchanged from those reported in published work (Mahon et al., 

2000).

(B) Scatter graphs plot the effect of K+ elevations from 4.5 to 7.5 mM on the MSN model 

population’s resting membrane potentials and rheobases. Each conductance parameter set 
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(model instance) is represented as a pair of points joined by a line. Across scatterplots, 

colors represent the same model instance.

(C) Traces of MSN excitability from the computational model at the indicated levels of K+. 

The arrows emphasize the shift in rheobase with increasing K+.

(D) Summary plots of how resting membrane potential and rheobase change as a function of 

extracellular K+ in the MSN model depicted in (C). Full details of the MSN model are 

provided in the STAR Methods section.

See also Tables S1 — S5.
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Figure 5. In Vivo Activation of ChR2 in Astrocytes Enhances MSN AP Firing Measured with 
Silicon Probes in Awake Behaving Mice
(A) Schematic depicting experimental workflow using multi-site silicon probes in vivo. 

Mice were injected with AAVs to express tdTomato or ChR2 within astrocytes. Light flashes 

were produced by 30 s of 25 ms flashes at 20 Hz and at 470 nm using a LED light source.

(B) IHC staining of coronal sections from mice injected with AAVs expressing tdTomato 

(left) or ChR2 (right) in astrocytes of the dorsolateral striatum (white dashed outline) and 

used for in vivo recordings.
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(C) Representative waveforms from narrow spiking single units in either tdTomato (left) or 

ChR2 (right) expressing mice. The average trace is the thick colored line.

(D) Raster plots of single unit recordings from 5 mice expressing tdTomato (top graph) or 

ChR2 (bottom graph) during 30 s periods with the LED off or on.

(E) Average firing rate of all units over the recording period (in 5 s bins) in tdTomato or 

ChR2 groups of mice. The period optical stimulation is highlighted in blue.

(F) Bar graphs of average activity of all units in the 30 s periods prior to, during, or 

following optical stimulation in either condition. Average data are represented as mean ± 

SEM from n = 5 mice.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Chicken anti-GFP Abcam Cat# ab13970; RRID: AB_300798

Rabbit anti-NeuN Cell Signaling Cat# 12943; RRID: AB_2630395

Mouse anti-mCherry Saint John’s Cat#STJ97087; RRID:AB_2687534

Rabbit anti-DsRed Clontech Laboratories Cat# 632496; RRID:AB_10013483

Rabbit anti-S100b Abcam Cat# ab41548; RRID: AB_956280

Guinea pig anti-Neun Synaptic Systems Cat# 266 004; RRID:AB_2619988

Guinea pig anti-cFOS Synaptic Systems Cat# 226 004; RRID:AB_2619946

Rabbit anti-cFOS Abcam Cat# ab190289; RRID:AB_2737414

Mouse anti-neurofilament Biolegend Cat# SMI-312R; RRID:AB_2314906

Alexa goat anti-rabbit 488 Molecular Probes Cat# A11008; RRID: AB_143165

Alexa goat anti-chicken 488 Molecular Probes Cat# A11039; RRID: AB_142924

Alexa goat anti-rabbit 546 Molecular Probes Cat#A11010; RRID: AB_143156

Alexa goat anti-mouse 546 Molecular Probes Cat#A11003; RRID: AB_141370

Alexa goat anti-guinea pig 488 Molecular Probes Cat# A-11073; RRID:AB_142018

Alexa goat anti-guinea pig 546 Molecular Probes Cat# A-11074 RRID:AB_2534118

Bacterial and Virus Strains

AAV2/5 GfaABC1D ChR2(H134R)-mCherry SV40 This manuscript, UPenn Vector Core Available upon request from UPenn

AAV2/1 hSynapsinl ChR2(H134R)-eYFP SV40 UNC GTC vector core Lot# AV4319J

Chemicals, Peptides, and Recombinant Proteins

TTX Cayman Chemical Company Cat# 14964

CNQX Tocris Cat# 0190

D-AP5 Tocris Cat# 0106

Barium chloride Sigma Cat# 202738

Normal goat serum Vector Cat# S-1000

Critical Commercial Assays

QIAquick PCR Purification Kit QIAGEN Cat# 28104

QIAGEN Mini kit QIAGEN Cat# 27104

QIAGEN Endofree MAXI kit QIAGEN Cat# 12362

QIAquick Gel extraction Kit QIAGEN Cat# 28704

Experimental Models: Organisms/Strains

Mouse: C57BL/6N inbred mice Taconic JAX Stock # 005304

Mouse: Thy1-ChR2-YFP Arenkiel et al., 2007 JAX Stock # 007615

Recombinant DNA

pZac2.1 GfaABC1D ChR2(H134R) SV40 This manuscript; Addgene Plasmid # 112496

Software and Algorithms

OriginPro 8.5/9/2015 Origin Lab N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

GraphPad Instat 3 GraphPad Software N/A

pCLAMP10 Molecular Devices N/A

ClampFit 10.5 Molecular Devices N/A

Fluoview FV3000 Olympus N/A

ImageJ v1.30 ImageJ N/A

ANY-maze behavioral tracking software Stoelting Co. N/A

Prizmatix Pulser Prizmatix Ltd. N/A

MSN model parameter file GSL file submitted here N/A

Cell Rep. Author manuscript; available in PMC 2019 June 19.


	SUMMARY
	In Brief
	Graphical Abstract
	INTRODUCTION
	RESULTS
	Transient Extracellular K+ Elevations during Optical Stimulation in Thy1-ChR2-YFP Mice
	Transient Extracellular K+ Elevations after AAV-Driven Expression of ChR2
	ChR2-Mediated Extracellular K+ Elevations Increased MSN Excitability in Brain Slices
	Computational Modeling: MSN Excitability Increase Recapitulated by K+ Elevation Alone
	ChR2-Mediated Extracellular K+ Elevations Increased MSN Excitability In Vivo

	DISCUSSION
	STAR★METHODS
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	METHODS DETAILS
	Mouse lines
	Plasmid and adeno-associated viruses (AAV)
	In vivo microinjections of AAVs
	Acute brain slice preparation and single cell recordings
	Recording K+ ion dynamics in slices and in vivo
	In vivo ChR2 activation and behavioral assessment
	Immunohistochemistry (IHC)
	Computational model of MSNs
	In vivo multi-unit recordings of neuronal activity
	General reagents

	QUANTIFICATION AND STATISTICAL ANALYSIS
	DATA AND SOFTWARE AVAILABILITY

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.
	Table 2.
	KEY RESOURCES TABLE

