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A multivariable Mendelian 
randomization to appraise the 
pleiotropy between intelligence, 
education, and bipolar disorder in 
relation to schizophrenia
Charleen D. Adams

Education and intelligence are highly correlated and inversely associated with schizophrenia. 
Counterintuitively, education genetically associates with an increased risk for the disease. To 
investigate why, this study applies a multivariable Mendelian randomization of intelligence and 
education. For those without college degrees, older age of finishing school associates with a decreased 
likelihood of schizophrenia—independent of intelligence—and, hence, may be entangled with the 
health inequalities reflecting differences in education. A different picture is observed for schooling years 
inclusive of college: more years of schooling increases the likelihood of schizophrenia, whereas higher 
intelligence distinctly and independently decreases it. This implies the pleiotropy between years of 
schooling and schizophrenia is horizontal and likely confounded by a third trait influencing education. 
A multivariable Mendelian randomization of schooling years and bipolar disorder reveals that the 
increased risk of schizophrenia conferred by more schooling years is an artefact of bipolar disorder – not 
education.

Schizophrenia is a heterogeneous neurological syndrome, typically presenting in early adolescence, and observa-
tionally associated with lower intelligence and lower educational attainment1–3.

Education is positively associated with many health outcomes4,5. Counterintuitively, more years of schooling 
is genetically associated with an increased risk for schizophrenia3. Intelligence and education are highly positively 
correlated both phenotypically (r = 0.8)6 and genetically (r = 0.7)7. The traits are bidirectionally causally related: 
higher intelligence causes more years of schooling and more years of schooling increases intelligence8. The inter-
woven traits are also pleiotropically related to schizophrenia: a recent genome-wide association (GWA) study 
found evidence of an increased risk for schizophrenia for the single-nucleotide polymorphisms (SNPs) tagging 
years of schooling (P = 3.2 × 10−4) and strong genetic covariance between cognitive performance and increased 
years of schooling (P = 9.9 × 10−50)9.

Three possible explanations exist for the associations between intelligence, education, and schizophrenia: ver-
tical, horizontal, and confounding pleiotropy (Fig. 1). Uncovering the nature of these relationships could inform 
interventional strategies. To that end, this study uses univariable and multivariable Mendelian randomization 
(MR) to appraise these pleiotropic relationships and considers two measures of education: 1) age at completion 
of full-time schooling without a college degree (Education Age) and 2) years of schooling inclusive of college 
(Education Years). Due to the nature of the pleiotropy suggested by the findings for Education Years and schizo-
phrenia, the study also considers a multivariable MR appraisal of Education Years and bipolar disorder in relation 
to schizophrenia.

Results
Table 1 and Table 2 contain the results for (i) the univariable (total) effects of education and intelligence on 
schizophrenia, (ii) the univariable results for the (total) effect of bipolar disorder on schizophrenia, and (iii) the 
bidirectional effects of Education Years and intelligence.

City of Hope, Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA. email: chaadams@coh.org

OPEN

https://doi.org/10.1038/s41598-020-63104-6
mailto:chaadams@coh.org


2Scientific Reports |         (2020) 10:6018  | https://doi.org/10.1038/s41598-020-63104-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

MR-Egger intercept.  While inverse-variance weighted (IVW) column provides the main MR results in 
Tables 1 and 2, the MR-Egger intercept column is shaded grey. This is because its interpretation is different than 
that of the IVW and the other sensitivity estimators; the MR-Egger intercept provides a test for directional plei-
otropy and an assessment of the validity of the instrument assumptions10. If the intercept is not different than 1 
on the exponentiated scale (or 0 on the non-exponentiated scale), that indicates a lack of evidence for bias in the 
IVW estimate. For all the univariable results, the MR-Egger intercept demonstrated no evidence for pleiotropy 
(P > 0.05).

Education Years (Lee instrument) on schizophrenia.  An increased (but null) effect on schizophre-
nia is observed for Education Years (odds ratio (OR) for schizophrenia per SD increase in years of schooling: 
IVW estimate 1.13; 95% CI 0.98, 1.29; P = 0.085). The sensitivity estimators are discrepant both in direction and 
magnitude of effects, indicating possible unwanted pleiotropy. Simulation extrapolation (SIMEX), which adjusts 
the MR-Egger estimate for potential regression dilution to the null11, did not ameliorate the discrepancy for the 
MR-Egger estimate.

Education Years (Okbay instrument) on schizophrenia.  In contrast, a robust increased risk for schiz-
ophrenia is observed for the Education Years: OR for schizophrenia per SD increase in Education Years: instru-
ment estimate 1.49; 95% CI 1.23, 1.81; P < 0.001). There is comportment in the direction of effects among the 
sensitivity estimators. The weak F-statistic for the Lee instrument may explain the discrepancy between the Lee 
and Okbay results (see the Methods section for a discussion of the F-statistics).

Education age on schizophrenia.  A strong protective effect against schizophrenia is observed for 
Education Age (OR for schizophrenia per SD increase in Education Age): IVW estimate 0.46; 95% CI 0.28, 0.76; 
P = 0.002). The sensitivity estimators align both in direction and magnitude of effects.

Intelligence (Hill instrument) on schizophrenia.  A protective effect of intelligence against schizophre-
nia is observed for both the Hill and UK Biobank instrumental variables. There is, however, substantial disagree-
ment between the IVW and MR-Egger estimates for the Hill instrument, which was rescued by SIMEX correction 
(the direction of the effect is reversed towards that of the IVW). The remaining discordance in the sensitivity esti-
mators for the Hill instrument likely indicates pleiotropy: OR for schizophrenia per SD increase in intelligence: 
IVW estimate 0.76; 95% CI 0.63, 0.93; P = 0.007.

Intelligence (UK Biobank instrument) on schizophrenia.  A robust protective effect against schizo-
phrenia is observed for the UK Biobank instrument (OR for per SD increase in intelligence): IVW estimate 0.86; 
95% CI 0.78, 0.95; P = 0.006. The sensitivity estimators align.

IQ = intelligence; UKBB = UK Biobank; EduYears=Education Years; EduAge=Education Age; P = P-value; 
F = F-statistic; OR = odds ratio; CI = confidence interval. IVW = inverse-weighted variance test; IVW is the pri-
mary MR method. The MR-Egger, weighted median estimator, and weighted mode estimators are included as 

Figure 1.  Possible explanations for the pleiotropy between intelligence, education, and schizophrenia. An 
example of vertical pleiotropy would be the SNPs for intelligence influencing schizophrenia (only) through 
their effect on education. Vice versa, the SNPs for education might influence schizophrenia (only) through 
their effect on intelligence. Since education influences intelligence, an increase in intelligence from education 
might influence risk for schizophrenia (a). An example of horizontal pleiotropy would be if the SNPs for 
intelligence and/or the SNPs for education have independent, direct effects on schizophrenia (b). An example 
of confounding pleiotropy would be if education has no influence on schizophrenia but appears to due to 
strong association with intelligence. Vice versa, intelligence might not influence schizophrenia but appears to 
due to strong association with education (c). Multivariate MR can be used to investigate these relationships. 
(Multivariable MR does not eliminate potential bias from pleiotropic pathways not tested for in a given model5. 
For instance, in a multivariable MR of education and intelligence on schizophrenia, the multivariable analysis 
would not overcome possible bias from other traits, such as depression43.).
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sensitivity tests to examine horizontal pleiotropy. The magnitude and direction of their effects in comparison to 
the IVW are what are gauged—and are more informative than their p-values. If the magnitudes and directions 
of effects are similar to those of the IVW, this provides some evidence against pleiotropy. (When p-values for the 
sensitivity estimators are>0.05, this does not invalidate the results from the IVW estimate; it simply means that 
the sensitivity estimators do not provide additional evidence in support of the IVW findings.) SIMEX = simula-
tion extrapolation, a correction that adjusts the MR-Egger estimate for potential regression dilution to the null11. 
The MR-Egger intercept is shaded grey because it is interpreted differently than the IVW estimate and the sen-
sitivity estimators; the MR-Egger intercept provides a test for directional pleiotropy10. If the MR-Egger intercept 
is not different than 1 (P > 0.05), that indicates a lack of evidence for bias due to pleiotropy in the IVW estimate.

Bipolar disorder on schizophrenia.  An increased risk for schizophrenia is observed per genetic liability 
to bipolar disorder (IVW estimate 1.17; 95% CI 1.09, 1.26; P < 0.001). The effect estimate is reversed for the 
MR-Egger estimator, and the magnitudes of the various estimators vary, possibly indicative of some unwanted 
pleiotropy.

Multivariable results.  Figure 2 contains the comparison of the univariable and multivariable (adjusted) 
estimates for the effects of education and intelligence on schizophrenia and bipolar disorder and education 
(Education Years) on schizophrenia.

Intelligence, adjusting for education age.  The impact of intelligence on schizophrenia attenuates to 
the null when adjusting for Education Age (adjusted OR for schizophrenia per SD increase in intelligence: IVW 
estimate 0.92; 0.82, 1.04; P = 0.219). One explanation for the difference observed between the univariable and 
multivariable MR estimates for the effect of intelligence on schizophrenia is that intelligence affects schizophrenia 
through its effect on Education Age, rather than through a direct effect on schizophrenia.

Intelligence, adjusting for education years.  The protective effect of intelligence remains after adjusting 
for Education Years (adjusted OR for schizophrenia per SD increase in intelligence: IVW estimate 0.84; 95% CI 
0.74, 0.94; P = 0.004). This suggests intelligence has a robust and direct protective effect against schizophrenia. 
The effect attenuates some in comparison to the univariable model, perhaps reflecting the loss of the contribution 
of Education Years to intelligence.

Education age, adjusting for intelligence.  A direct protective effect against schizophrenia is observed 
for Education Age (adjusted OR for schizophrenia per SD increase in Education Age: IVW estimate 0.51; 95% 
0.30, 0.89; P = 0.02).

Education years, adjusting for intelligence.  An increased risk for schizophrenia is observed for 
Education Years (adjusted OR for schizophrenia per SD increase in Education Years: IVW estimate 1.95; 95% 
1.43, 2.67; P < 0.001). Together with the multivariable results for intelligence when adjusted for Education Years, 

Test

Strength IVW analysis MR-Egger MR-Egger intercept Weighted median Weighted mode SIMEX

R2 F
OR (95% 
CI) P

OR (95% 
CI) P

OR (95% 
CI) P

OR (95% 
CI) P

OR (95% 
CI) P

OR (95% 
CI) P

EduYears (Lee) 0.013 4.7 1.13 (0.98, 
1.29) 0.085 0.86 (0.53, 

1.39) 0.533 1.00 (1.00, 
1.01) 0.254 1.11 (0.90, 

1.37) 0.318 1.31 (0.74, 
2.33) 0.361 0.82 (0.44, 

1.52) 0.528

EduYears (Okbay) 0.006 11.3 1.49 (1.23, 
1.81) <0.001 1.06 (0.41, 

2.75) 0.910 1.01 (0.99, 
1.02) 0.475 1.47 (1.08, 

1.99) 0.013 1.13 (0.60, 
2.12) 0.709 1.13 (0.14, 

9.10) 0.906

IQ (Hill) 0.018 14.9 0.76 (0.63, 
0.93) 0.007 1.36 (0.59, 

3.12) 0.467 1.01 (1.00, 
1.02) 0.292 0.83 (0.71, 

0.97) 0.022 1.17 (0.64, 
2.14) 0.603 0.52 (0.25, 

1.07) 0.075

IQ (UKBB) 0.005 26 0.86 (0.78, 
0.95) 0.006 0.83 (0.56, 

1.24) 0.386 1.00 (0.98, 
1.03) 0.863 0.89 (0.77, 

1.03) 0.127 0.92 (0.68, 
1.24) 0.587 0.80 (0.45, 

1.42) 0.448

EduAge (UKBB) 0.001 13.3 0.46 (0.28, 
0.76) 0.002 0.63 (0.13, 

3.11) 0.592 0.99 (0.97, 
1.02) 0.692 0.43 (0.22, 

0.85) 0.016 0.41 (0.15, 
1.17) 0.134 0.56 (0.03, 

9.01) 0.680

Bipolar disorder 0.008 34.5 1.17 (1.09, 
1.26) <0.001 0.99 (0.77, 

1.28) 0.943 1.03 (0.99, 
1.08) 0.314 1.16 (1.05, 

1.27) 0.003 1.11 (0.98, 
1.25) 0.195 1.00 (0.33, 

3.05) 0.999

Table 1.  Univariable estimates of the effect of education, intelligence, and bipolar disorder on schizophrenia.

Test

Strength IVW analysis MR-Egger MR-Egger intercept Weighted median Weighted mode SIMEX

R2 F
β (95% 
CI) P

β (95% 
CI) P α (95% CI) P

β (95% 
CI) P

β (95% 
CI) P

β (95% 
CI) P

EduYears 
(Lee) on IQ 
(UKBB)

0.02 5.8
1.90 
(1.80, 
1.99)

<0.001
2.10 
(1.76, 
2.44)

<0.001
−0.003 
(−0.007, 
0.002)

0.236
1.97 
(1.82, 
2.12)

<0.001
2.02 
(1.58, 
2.46)

<0.001
2.55 
(2.19, 
2.92)

<0.001

IQ (Hill) on 
EduYears 
(Lee)

0.005 42.2
0.45 
(0.42, 
0.48)

<0.001
0.53 
(0.36, 
0.70)

<0.001
0.000 
(−0.002, 
0.002)

0.806
0.42 
(0.36, 
0.47)

<0.001
0.39 
(0.28, 
0.49)

<0.001
0.83 
(0.42, 
1.23)

<0.001

Table 2.  Bidirectional relationship between Education Years and intelligence.
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these findings strongly suggest that the underlying pleiotropy between intelligence and Education Years is hori-
zontal in relationship to schizophrenia (Fig. 1b) and that the relationship is additionally caught up by the presence 
of an unmeasured confounder (similar to Fig. 1c).

The horizontal pleiotropy and opposing directions of effect for Education Years and intelligence prompted a 
univariable investigation of bipolar disorder and schizophrenia and a multivariable Mendelian randomization of 
bipolar disorder and Education Years on schizophrenia. The proposed hypothesis is seen in Fig. 3.

Education years on schizophrenia, adjusting for bipolar disorder.  The increased risk for Education 
Years on schizophrenia attenuated to the null when accounting for bipolar disorder (adjusted OR: IVW estimate 
1.31; 95% CI 0.87, 1.98; P = 0.207).

Bipolar disorder on schizophrenia, adjusting for education years.  A direct, increased risk is 
observed for genetic liability to bipolar disorder on schizophrenia (adjusted OR for schizophrenia: IVW estimate 
1.16, 95% CI 1.01, 1.33; P = 0.033).

Bidirectional relationship between education years and intelligence.  Table 2 and Fig. 4 depict 
the results for the bidirectional analysis of Education Years and intelligence. A SD-unit higher intelligence causes 
more Education Years (β 0.45, 95% CI 0.42, 0.48; P < 0.001) and a SD-year more of Education Years increases 
intelligence (β 1.90, 95% CI 1.80, 1.99; P < 0.001). These findings replicate those of Anderson et al. (2018)8.

EduYears=Education Years; EduAge=Education Age; IQ = intelligence; F = F-statistic; β = beta coeffi-
cient; α = MR-Egger intercept estimate; P = P-value; CI = confidence interval. The MR-Egger intercept column 
is shaded grey because it is interpreted differently than the IVW estimate and the sensitivity estimators; the 

Figure 2.  Comparison of univariable and multivariable (adjusted) estimates of the effects of education and 
intelligence on schizophrenia and bipolar disorder and Education Years on schizophrenia. IQ = intelligence; 
EduYears=Education Years; EduAge=Education Age; SZ = schizophrenia; UKBB = UK Biobank; OR = odds 
ratio; CI = confidence interval.

Figure 3.  Hypothesized relationships between Education Years, intelligence, bipolar disorder, and 
schizophrenia suggested by the multivariable analysis of education and intelligence on schizophrenia. 
DAG = directed acyclic graph.
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MR-Egger intercept provides a test for directional pleiotropy10. If the MR-Egger intercept is not different than 0 
(P > 0.05), that indicates a lack of evidence for bias due to pleiotropy in the IVW estimate.

Discussion
The MR findings show that, for those without college degrees, older age of finishing school (Education Age) 
associates with a decreased likelihood of schizophrenia—independent of intelligence. For those without college 
degrees, education—not intelligence—acts as the mechanism conferring protection against schizophrenia. The 
implications of this are uncertain, since the protective effect is likely to be entangled with the social inequalities 
linked to educational attainment. Nonetheless, efforts to retain at-risk adolescents in school, especially those 
beginning to show features of cognitive impairment, may be worth exploring, even if difficult to implement 
societally.

A different picture is observed for years of schooling inclusive of college (Education Years): more school-
ing years increases the likelihood of schizophrenia, whereas higher intelligence distinctly and independently 
decreases it. This implies the pleiotropy between schooling years and schizophrenia is horizontal and likely con-
founded by a third trait also influencing Education Years. Further to this, bipolar disorder, associated observa-
tionally with both higher education and schizophrenia3,12,13, was investigated along with Education Years, using 
multivariable MR. The findings suggest that the increased risk of schizophrenia conferred by more schooling 
years is an artefact of bipolar disorder – not Education Years.

Educational attainment has been described as feature of bipolar disorder12,13. Bipolar disorder shares some 
cognitive deficits and genetic overlap with schizophrenia, but also predisposes to cognitive adeptness and crea-
tivity that distinguish it from the more neurodevelopmental aspects of schizophrenia3. This complex picture is 
reflected in the horizontal and confounding pleiotropy uncovered by the multivariate analyses here. Specifically, 
when bipolar disorder is not accounted for, it appears that more years of schooling increase risk for schizophrenia. 
Hence, bipolar disorder is a confounder of the relationship between Education Years and schizophrenia. Since 
more years of schooling increase intelligence and higher intelligence strongly protects against schizophrenia, 
these findings imply that staying in school is neuroprotective.

The bidirectional analysis of intelligence and Education Years revealed that higher intelligence increases 
years of schooling and years of schooling increase intelligence, replicating the findings by Anderson et al. (2018). 
Anderson et al. observed over a two-fold greater magnitude of effect for Education Years on intelligence (IVW 
estimate=1.04; 95% CI 0.99, 1.10) compared with intelligence on Education Years (IVW estimate=0.51; 95% 
CI 0.49, 0.54)8. This comports with what was found in the present study. Given the multivariable finding that 
Education Years does not cause schizophrenia once bipolar disorder is accounted for, the bidirectional causation 
between intelligence and Education Years strengthens the implication that staying in higher education longer may 
have beneficial consequences against acquisition of schizophrenia.

The primary strength of this study is that it capitalizes on the power of seven large GWA studies to probe 
these complexly related traits. It is the most detailed and comprehensive joint investigation of them to date. An 
unintended benefit of doing so demonstrates the value of these massive public datasets for etiologic discovery.

The study has several limitations. MR critically relies on the validity of the instrumental variables. As such, 
measures were taken to assess the robustness of the analyses to potential unwanted pleiotropy, including the use 
of instruments lacking between-SNP heterogeneity and comparison of the IVW estimate with a battery of sensi-
tivity estimators, each making different assumptions.

Another possible limitation, which, like unwanted pleiotropy, cannot be entirely ruled out, is the possible 
introduction of bias caused by some instances of the same individuals being included in the GWA studies of 
both the exposures and the outcomes. The greatest overlap is likely to be for the Lee Education Years instrument 
on intelligence and the Hill intelligence instrument on Lee’s Education Years. However, since that bidirectional 

Figure 4.  Bidirectional relationship between intelligence (IQ) and Education Years (EduYears). LD = linkage 
disequilibrium.
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appraisal is a replication of Anderson et al.’s (2018) study that used non-overlapping samples with comparable 
results, the impact of the bias is likely to be minimal.

Methods
Conceptual approach.  MR is an instrumental variables technique, and, as a heuristic, it is analogous to a 
randomized controlled trial. It capitalizes on several features of the genome for causal inference:

	 1)	 Mendel’s Laws of Inheritance,
	 2)	 genotype assignment at conception, and
	 3)	 pleiotropy (genes influencing more than one trait)14–16.

Two-sample MR (Fig. 5) uses summary statistics from two genome-wide association (GWA) studies10,17–21. 
Bidirectional MR, as the name suggests, is an MR method for examining causal relationships in two directions. 
Bidirectional MR helps orient the causal direction and determine whether both traits causally influence each oth-
er—“bidirectional causation”. Multivariable MR permits adjustment, similar to multivariable regression to adjust 
for potential confounders in observational studies22. Multivariable MR is especially useful when two variables 
are highly correlated with each other, as is the case for Education Years and intelligence. In a multivariable MR 
analysis of Education Years and intelligence on schizophrenia, the estimated effect of Education Years is the effect 
given a constant level of intelligence, and the effect for intelligence is the effect given a constant level of Education 
Years. The effect estimates from univariable and multivariable MR can be compared to obtain total (univariable, 
unadjusted) and direct (multivariable, adjusted) effects.

Mendelian randomization assumptions.  In order for MR to be valid, three assumptions must hold: (i) 
the SNPs acting as the instrumental variables must be strongly associated with the exposure; (ii) the instrumental 
variables must be independent of confounders of the exposure and the outcome; and (iii) the instrumental varia-
bles must be associated with the outcome only through the exposure19,23. For example, for the present analysis, the 
following assumptions must hold: (i) genetic variants robustly associated with Education Years must be chosen 
as instruments to test the causal relationship between Education Years and schizophrenia; (ii) the genetic vari-
ants chosen to instrument Education Years must not be associated with confounders of the relationship between 
Education Years and schizophrenia; and (iii) the genetic variants chosen to instrument Education Years must 
only impact schizophrenia through their impact on Education Years. When violated, assumption (iii) describes 
horizontal pleiotropy (Fig. 1b), which can invalidate causal inference from vertical (Fig. 1a) pleiotropy probed in 
univariable MR designs.

GWA study data sources for instruments.  Education age on schizophrenia.  Two measures of educa-
tion were selected to instrument education: age at completion of full-time schooling without a college degree 
(Education Age) and years of schooling inclusive of college (Education Years). The Education Age measure was 
obtained from field 845 in the UK Biobank project24,25. Participants were asked if they had a college or university 
degree. Those without a college or university degree were asked what age they left continuous full-time education. 
Summary statistics for a GWA study of Education Age (adjusted for sex and 10 principal components), including 
226,899 UK Biobank participants who answered field 845, are publicly available; the GWA study was performed 
by the Neale lab, after transforming the item into a normally distributed quantitative variable26 (SNP coefficients 
per standard deviation (SD) units of Education Age). Because the instrument for Education Age captures only 
those without college or university degrees, the inference from the use of Education Age as an instrument is 
restricted to those without college or university degrees.

Figure 5.  Two-sample Mendelian randomization testing the causal effect of intelligence or education on 
schizophrenia. Estimates of the SNP-intelligence (or SNP-education) associations (β̂ZX) are calculated in sample 
1 (from GWA study of intelligence or GWA study of education). The association between these same SNPs and 
schizophrenia are then estimated in sample 2 (β̂ZY) (from a schizophrenia GWA study). These estimates are 
combined into Wald ratios (β̂XY=β βˆ ˆ/ZY ZX). The β̂XY  estimates are meta-analyzed using the inverse-variance 
weighted analysis (β̂  IVW) method. The IVW method produces an overall causal estimate of intelligence and/or 
education on schizophrenia.
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The F-statistic, a function of how much variance in a trait is explained by an instrument (R2), the sample size, 
and the number of SNPs in an instrument, provides an indication of instrument strength27. F-statistics <10 are 
conventionally considered to be weak28. The F-statistic for the Education Age instrument is 13.3.

Education years on schizophrenia.  The primary years of schooling measure was obtained from the Lee et al. 
(2018) GWA study of 1,131,881 participants of European ancestry from 71 cohorts29. Education Years was meas-
ured for those who were at least 30 years of age, and International Standard Classification of Education (ISCED) 
categories were used to impute a years-of-education equivalent (SNP coefficients per SD units of years of school-
ing). The F-statistic for the Lee Education Years instrument is 4.7, indicating the instrument may be weak. Due to 
this, a second measure of Education Years from a smaller GWA study of years of schooling was used to construct 
a second instrument for Education Years9. The Okbay et al. (2016) GWA study used the same construction of 
Education Years as did Lee et al. (2018) GWA study and contained 293,723 participants of European ancestry9. 
The Okbay Education Years instrument has an F-statistic of 11.3. Because it is aptly strong, the Okbay Education 
Years instrument was used in the multivariate model of intelligence and education on schizophrenia.

Education years on intelligence (Bidirection 1).  The Lee et al. (2018) GWA study was used to extract SNPs for 
the first part of the bidirectional analysis of education on intelligence. The instrument has an F-statistic of 5.8, 
indicating it may be inadequately strong. However, a bidirectional appraisal of Education Years and intelligence 
using the Okbay et al. (2016) GWA study for instrumental variables was previously reported8. The Anderson et 
al. study is treated as a natural-history sensitivity analysis, since they included fewer and (likely) stronger SNPs 
(148 compared to 299, respectively), which can increase the F parameter30. (See Table 3 for a list of the number of 
selected SNPs for each of the instrumental variables).

Intelligence on schizophrenia (Hill instrument).  Two GWA studies were used to create instruments for intelli-
gence. The first came from the Hill et al. (2019), which included 248,482 individuals of European ancestry (SNP 
coefficients per one SD increase in intelligence test scores7. The instrument’s F-statistic is 14.9.

Intelligence on schizophrenia (UK Biobank instrument).  A second instrument for intelligence was constructed 
from a GWA study performed by the Neale lab using the UK Biobank measure for fluid intelligence (field 20016) 
(n = 108,818). The participants answered 13 logic questions within two minutes and the number of correct 
answers were summed. The data were transformed into a normally distributed quantitative variable (SNP coeffi-
cients per one SD unit increase in fluid intelligence score)26. The instrument’s F-statistic is 26.

Type
Mendelian randomization model 
(source GWAS) SNPs

Univariable Intelligence (Hill) on schizophrenia 150

Univariable Intelligence (UK Biobank) on 
schizophrenia 17

Multivariable Intelligence (UK Biobank), adjusting 
for Education Years (Okbay) 13

Univariable Education Years (Lee) on 
schizophrenia 238

Univariable Education Years (Okbay) on 
schizophrenia 45

Multivariable Education Years (Okbay), adjusting 
for intelligence (UK Biobank) 36

Univariable Education Age (UK Biobank) on 
schizophrenia 9

Multivariable
Intelligence (UK Biobank) on 
schizophrenia, adjusting for 
Education Age (UK Biobank)

17

Multivariable
Education Age (UK Biobank) 
on schizophrenia, adjusting for 
intelligence (UK Biobank)

9

Bidirection 1 Intelligence (Hill) on Education Years 
(Lee) 35

Bidirection 2 Education Years (Lee) on intelligence 
(UK Biobank) 299

Multivariable
Education Years (Okbay) on 
schizophrenia, adjusting for bipolar 
disorder

51

Multivariable Bipolar disorder on schizophrenia, 
adjusting for Education Years 3

Univariable Bipolar disorder on schizophrenia 4

Table 3.  Univariable, multivariable, and bidirectional Mendelian randomization models.
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Intelligence on Education Years (Bidirection 2).  The Hill et al. (2019) GWA study of intelligence was 
used for the second part of the bidirectional analysis of intelligence and education (Education Years). The instru-
ment has an F-statistic of 42.2.

Bipolar disorder on schizophrenia.  A GWA of bipolar disorder containing 16,731 participants of European 
descent (of which 7,481 were cases) was available for the instrument for bipolar disorder31. The instrument has 
an F-statistic of 34.5.

GWA study data sources for outcomes.  Intelligence.  Because the full GWA study summary data were 
unavailable for the Hill GWA study of intelligence, the UK Biobank GWA study of intelligence (n = 108,818) was 
used as the outcome GWA study for the tests of Education Years and Education Age on intelligence.

Education (education years).  Full summary data were available for 766,345 participants in the Lee et al. 
Education Years GWAS.

Education (education age).  Full summary data were available for 226,899 participants in the UK Biobank 
Education Age GWAS.

Schizophrenia.  Full summary data were available for a schizophrenia GWA study dataset containing 82,315 
participants of European ancestry, of which 35,476 were cases32.

Instrument construction.  For each instrument (β̂ZX), independent (those not in linkage disequilibrium, LD; 
R2 < 0.01) SNPs associated at genome-wide significance (P < 5 × 10−8) with a trait were extracted from within 
their respective GWA study. The summary statistics for the instrument-associated SNPs were then extracted from 
an outcome GWA study (β̂ZY). SNP-exposure and SNP-outcome associations were harmonized with the “harmo-
nization_data” function within the MR-Base “TwoSampleMR” package within R17,33. Harmonized SNP-exposure 
and SNP-outcome associations were combined with the IVW method (Fig. 5).

For the bidirectional associations between intelligence and schooling years, SNPs tagging both traits at 
genome-wide significance and/or SNPs that were in LD between intelligence and schooling years were excluded. 
This is because overlapping SNPs can invalidate bidirectional MR findings21,34. In addition, for all instrumental 
variables, RadialMR regression35 was run to detect SNP outliers. Outlier SNPs were removed. All instrumental 
variables included in this analysis have Cochrane’s Q-statistic P-values indicating no evidence for heterogeneity 
between SNPs36 (heterogeneity statistics are provided in Supplementary Tables 4, 7, 10, 13, 16, 21, 24, 27, and 30).

Sensitivity analyses.  To address possible violations to MR assumption (iii), MR-Egger regression, weighted 
median, and weighted mode MR methods were run as complements to the IVW method for the univariable 
models. When the magnitudes and directions of the various MR methods comport across estimators, this lack 
of heterogeneity is a screen against pleiotropy. The reason for this is that various MR sensitivity estimators make 
different assumptions about the underlying nature of pleiotropy. It is unlikely there would be homogeneity in the 
direction and magnitudes of their effect estimates if there were substantial violations to the pleiotropy assumption.

Comparing the IVW and the sensitivity estimators is a form of triangulation: integrating several approaches 
with different assumptions to weigh causal evidence37. Briefly, a drawback of the primary IVW estimator is that 
its estimate can be biased if one or more the SNPs in its multi-allelic genetic instrument are directionally pleio-
tropic38. The MR-Egger sensitivity estimator can provide unbiased estimates of causal effects, even if all SNPs in an 
instrument are invalid due to pleiotropy. But the SNPs in the genetic instrument must not violate the Instrument 
Strength Independent of Direct Effect (“InSIDE”) assumption, and measurement error in the genetic instrument 
must be negligible (“No Measurement Error” assumption). The weighted median estimator can provide unbiased 
causal effects, assuming at least 50% of the chosen SNPs are valid. The weighted mode estimator assumes the most 
common effect estimate among SNPs in an instrument comes from a valid instrument. Elaborate descriptions of 
the various MR methods and the different assumptions they make about pleiotropy are described elsewhere38–40. 
For the purposes of understanding how to interpret the IVW and sensitivity estimators in the present study, the 
IVW is the main estimator. The others are provided to compare their magnitudes and directions of effect with 
those of the IVW.

In addition to the comparative sensitivity estimators, a SIMEX correction was performed for all univariate 
tests to correct potentional regression to the null in the MR-Egger estimates41 (Supplementary Tables 5, 8, 11, 14, 
17, 22, 25, 28, 31).

Number of tests.  In total, 14 MR tests were run. Table 3 contains a list of the tests and the number of instru-
mental variables (detailed characteristics for the individual SNPs used in each model are provided in 
Supplementary Tables 3, 6, 9, 12, 15, 20, 23, 26, and 29). These 14 tests are not independent; a false-discovery 
rate (FDR)-correction was applied to the raw P-values to assess whether the penalization changed the inference 
(Supplementary Table 2). As it did not, the raw P-values are reported for the following reasons: the inference 
remained unchanged, the FDR-adjustment is overly conservative in this case, and P-values alone are not the best 
guide for causal inference42.

Statistical software.  SIMEX corrections were perfomed in Stata SE/16.0. All other described analyses were per-
formed in R version 3.5.2 with the “TwoSampleMR” package17.
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Data availability
All data sources used for SNP-exposure and SNP-outcome associations are publicly available. The data for the 
Hill intelligence7 and Lee Education Years29 instruments were obtained directly from the supplementary files 
accompanying their primary papers. The remaining data used for these analyses, including UK Biobank GWA 
studies run by the Neale lab, are accessible within MR-Base: http://www.mrbase.org/18.
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